
Medical data analysis

Emil, Mads, Thomas & Yulii



Heart disease
Unbalanced data



Data

Heart disease

dtypes: booleans, strings, integers, and floats

➢ Cleaned:

○ 319.795 data points (18 features)

■ 8,6 % positive cases

➢ Raw:

○ 401.958 data points (279 features)

■ 10,6 % positive cases

Overview Heart disease



Clean data

➢ Quick classifier 91.4 % accuracy (8.6 % cases)

➢ Over- and under sampling → Drop to ~71 % accuracy

Initial testing Heart disease



Clean data

➢ Results: Complete feature overlap

Heart diseaseInitial testing



Raw data

Preprocessing

➢ Easy part

○ Categorical variables, binary choice → Numerical variables

○ Remove filling data (16 features)

➢ Tricky part

○ NAN value ~48 % (260 features) → 11 % (132 features)

Heart disease



Challenges
➢ Raw data set contains a lot of confounders, a lot of manual inspection is required to make an 

unbiased model.

➢ Choice of metric is important, true negatives are undiagnosed patients and true positives are 

costly due to the costs of heart disease tests in the U.S.

Processing Heart disease



Methods
➢ Boosted decision trees turned out to be the best

○ CatBoost, LightGBM and XGBoost

■ Keras HyperTune (Model from scratch) 

➢ Class weight balancing, SMOTE, and undersampling

➢ The average precision score turned out to be the best evaluation metric

○ Balanced Accuracy, F1 and F2 scores = not good enough

➢ Feature selection from SHAP and Feature Importance.

➢ Two turn HP optimization initial one + final micro tuning

Methods Heart disease



Main Method Framework

Methods Heart disease



Results: ROC- & Precision-Recall Curve

Heart diseaseResults



➢ Accuracy score: 0.93

➢ F1-score: 0.65

➢ Recall score: 0.75

➢ Precision score: 0.58

Best model: XGBoost

Heart diseaseResults



Conclusion
➢ Undersampling was the preferred method, however introduces bias

➢ Difficult dataset for predictive analysis

○ Too much class overlap

○ Requires a lot of manual inspection and cleaning

○ Difficult to reduce the number of false negatives without increasing false positives.

○ Confounders

➢ Could be used for descriptive analysis.

Heart diseaseResults



COVID-19 predictions
CNN



Data

8-bit grayscale images [256x256]

➢ 33.920 chest X-Ray images

○ 35,2 % COVID-19 cases

○ 33,2 % Non-COVID cases (pneumonia)

○ 31,5 % Healthy cases (normal)

➢ with premade masks for lungs

Multi-classification problem: divide the images into the 3 classes

COVID-19



Chest X-Rays

        Normal        Pneumonia  COVID-19

Preprocessing COVID-19



Chest X-Rays - using masks

Preprocessing COVID-19

        Normal        Pneumonia  COVID-19



Data splits

Train

 21715 images - 64 %

➢ 6849 Normal 32 %

➢ 7208 Non-COVID 33 %

➢ 7658 COVID-19 35 %

Validation

 5417 images - 16 %

➢ 1712 Normal 32 %

➢ 1802 Non-COVID 33 %

➢ 1903 COVID-19 35 %

Test

 6788 images - 20 %

➢ 2140 Normal 32 %

➢ 2253 Non-COVID 33 %

➢ 2395 COVID-19 35 %

Preprocessing COVID-19



CNNs for image classification

A simple CNN:

input ➝ 2 ⨉ (Conv2d ➝ ReLU ➝ MaxPool2d ➝ Dropout) ➝ Conv2d ➝ ReLU ➝ Flatten ➝ Linear ➝ output

May be improved upon in several ways but serves as a baseline.

NB: Images are normalized by subtracting the global mean across images and dividing by the standard deviation

        (see appendix)

Models COVID-19



CNNs for image classification

Reasons to use pre-trained models

➢ Superior network architecture

➢ Trained on millions of images from the 

ImageNet* database

➢ General image recognition features will 

‘hopefully’ transfer to our data set, meaning 

better initial weights than random and faster 

training

What we chose**

VGG-19: 144M parameters

ResNet-152: 60.2M parameters

ConvNeXt-Tiny: 28.6M parameters

EfficientNet-B4: 19.3M parameters

Models

* https://www.image-net.org/
** Models are implemented in PyTorch with downloadable pre-trained weights: https://pytorch.org/vision/stable/models.html

COVID-19

https://www.image-net.org/
https://pytorch.org/vision/stable/models.html


ConvNeXt-Tiny: Training Losses

Results COVID-19



ConvNeXt-Tiny: Training Losses and Confusion Matrix

Results COVID-19



Some predictions…Results COVID-19



Best models on test-data (Multi Classification) 

Results

Model Cross entropy loss Accuracy # Params Scheduler
Image 

augmentation

VGG-19 0.156 94.6% 144M ExponentialLR (lr_init = 1e-4, gamma = 0.6) Horizontal/vertical flip

ResNet-152 0.173 94.0% 60.2M ExponentialLR (lr_init = 1e-4, gamma = 0.6) RandomAugment

ConvNeXt-Tiny 0.152 94.7% 28.6M
CosineAnnealingWarmRestarts

(lr_init = 1e-4, lr_min = 0, T_0 = 3,
 T_mult = 2, gamma = 1)

None

EfficientNet-B4 0.168 94.4% 19.3M
CosineAnnealingWarmRestarts

(lr_init = 1e-3, lr_min = 1e-4, T_0 = 4,
 T_mult = 2, gamma = 0.8)

None

Simple model 0.591 76.1% 0.8M
ExponentialLR

(lr_init = 1e-3, gamma = 0.9)
None

COVID-19



Binary Classification (sick or not sick)

Combine classes ‘Non-COVID’ and 

‘COVID’ to form a binary 

classification problem:

➢ Positive Label ➝ Covid and 

Pneumonia (Sick)

➢ Negative Label ➝ Normal 

(Not Sick)

Pre-trained networks close to the 

information limit

Results COVID-19



Things we’ve tried…

Different learning rate schedulers

➢ StepLR
➢ ExponentialLR
➢ CosineAnnealingLR
➢ CosineAnnealingWarmRestarts (+ 

modification with exp. decay)

In practice there was little difference between 
the quality of the final models

Optimization

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate

COVID-19

https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate


Things we’ve tried…

Different augmentations for training set

➢ AutoAugment

➢ RandAugment

➢ AugMix

➢ TrivialAugmentWide

➢ Random Horizontal + Vertical Flip (Prob = 0.5)

Miscellaneous (but also poor)

➢ Label-smoothing in loss function

➢ Weight decay in Adam optimizer

﹜

COVID-19Optimization



Conclusion

➢ The pre-trained CNNs we tried were surprisingly powerful in classifying the images and in 

particular detecting COVID-19.

➢ The simple model couldn’t keep up with the tried and tested CNNs

➢ Our optimization attempts didn’t improve the models much

COVID-19



All group members have contributed 
equally to completing and presenting 

this project



Appendix



Links to the used data sets

Heart disease (cleaned): 
https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease

Heart disease (raw): 
https://www.cdc.gov/brfss/annual_data/annual_2020.html?fbclid=IwAR072yYfrbYrfTkYHbB-auzfdhGAHHk2z
foN69SDEbaDKPHu-ilU61583F8

Chest X-Rays (COVID-QU-Ex Dataset): https://www.kaggle.com/datasets/anasmohammedtahir/covidqu

Appendix

https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
https://www.cdc.gov/brfss/annual_data/annual_2020.html?fbclid=IwAR072yYfrbYrfTkYHbB-auzfdhGAHHk2zfoN69SDEbaDKPHu-ilU61583F8
https://www.cdc.gov/brfss/annual_data/annual_2020.html?fbclid=IwAR072yYfrbYrfTkYHbB-auzfdhGAHHk2zfoN69SDEbaDKPHu-ilU61583F8
https://www.kaggle.com/datasets/anasmohammedtahir/covidqu


Appendix
(Heart disease)



Technical details
➢ All Boosted Decision tree parameters were tuned with Optuna.

➢ Binary cross entropy was used as a loss function for the Neural Network.

➢ Many models were deleted since they were poor predictors, i.e basic tree algorithms, svms and 

logistic regression. 

➢ Making models for each sex did not work any better.

➢  Verstack was used to estimate the performance of F1, AUC and weighted F1. They did not 

perform well.

➢ Features were selected using SHAP and feature importance on LightGBM. 



Metric comparison: Average Precision vs F2 
(validation set)

Heart diseaseAppendix



Calibration comparison: CatBoost

Heart diseaseAppendix



Calibration comparison LightGBM

Heart diseaseAppendix



Optimization results: Verstack (AUC)

Appendix Heart disease



Optimization results: Verstack (F1)

Heart diseaseAppendix



Optimization results: Verstack (Weighted F1)

Heart diseaseAppendix



Best 18 features (LightGBM as Base 
model)

Heart disease

['PNEUVAC4', 'COLNTEST', 'CHECKUP1', 'LASTPAP2', 'DIABETE4', '_DRDXAR2', 'EMPLOY1', 'SLEPTIM1', 

'WEIGHT2', 'CHCCOPD2', 'PERSDOC2', 'FLSHTMY3', 'POORHLTH', 'CVDINFR4', 'GENHLTH', 'WTKG3', 

'_BMI5', '_AGE80']

Appendix



Discussion

➢ All Boosted Decision Trees have identical performance on the test set. 

➢ Undersampling was the preferred method to deal with imbalance, but it also introduces bias.

➢ Average Precision score was the preferred metric score, it reduced the tradeoff between false 

positives and false negatives. 

➢ The performance of the Neural Network was poor, high bias - high variance tradeoff.. 

➢ Achieved better feature choice with features extracted from model compared to SHAP values. 

➢ Final hyperparameter optimization was redundant. Base classifiers with small adjustments 

worked better.

Heart diseaseResults



Appendix
(COVID-19)



How we normalized the image data

The following three slides show the distribution of means and standard deviations across all 33.920 images 

divided in train, validation, and test data splits.

The ‘mean of the means’ is subtracted from all pixel values in each image and divided by the ‘mean of the 

standard deviations’ to normalize the data to values of order 1 and to match the pre-trained networks.

There clearly is already some information that can separate the classes – this is preserved by this simple 

transformation (the distributions are identically looking, just on a different scale).

The distributions are similar across the 3 splits: train, validation, test. This is, of course, a good sign that they 

don’t seem to be biased – at least not when studying means and standard deviations.

Appendix



Before normalization
COVID-19Appendix



Before normalization COVID-19Appendix



After normalization
COVID-19Appendix



‘Simple model’ architecture

Appendix COVID-19

PyTorch implementation:

from torch import nn

simple_model = nn.Sequential(nn.Conv2d(1, 128, 3),

   nn.ReLU(),

   nn.MaxPool2d(2),

   nn.Dropout(0.3),

   nn.Conv2d(128, 64, 3),

   nn.ReLU(),

   nn.MaxPool2d(2),

   nn.Dropout(0.5),

   nn.Conv2d(64, 64, 3),

   nn.ReLU(),

   nn.Flatten(),

   nn.Linear(64 * 60 * 60, 3)

  ) PyTorch nn documentation: https://pytorch.org/docs/stable/nn.html

https://pytorch.org/docs/stable/nn.html


‘Simple model’ architecture

Appendix COVID-19

Produced with: https://alexlenail.me/NN-SVG/

https://alexlenail.me/NN-SVG/


Technical details 
The optimizer ‘Adam’ was used for all the models during training and the best models stated in the table on slide 24 are 
therefore using this optimizer.

The loss function ‘Cross Entropy Loss’ was chosen as this is commonly used and well suited for multi classification 
problems. 

Due to high memory requirement we were forced to load the images onto the GPU in batches with a batch size of 32 
images, which contributed to a fairly long training duration. In addition, the pre-trained CNNs were fairly large, which 
contributed further. The epoch duration was approximately 5-10 minutes depending on the particular model and image 
augmentation used.

We employed early stopping during training with a patience of 10 epochs, meaning that we continue training as long as 
the cross entropy loss on the validation set has decreased in the last 10 epochs. The best model (lowest loss on 
validation set) was saved. Early stopping seemed to be the best regularization/overfitting preventative method, we tried.

Appendix COVID-19



Binary Classification (Covid or no Covid)

Negative label ➝ Normal and 

Pneumonia 

Positive label ➝ Covid

Appendix COVID-19



Binary Classification (Pneumonia or no Pneumonia)

Negative label ➝ Normal and Covid 

Positive label ➝ Pneumonia

Appendix COVID-19



Comparison of image augmentations

Appendix COVID-19

Model Cross entropy loss Accuracy
Image 

augmentation

ConvNeXt-Tiny 0.152 94.7% None

ConvNeXt-Tiny 0.154 94.9% AugMix

ConvNeXt-Tiny 0.156 94.4% RandAugment

ConvNeXt-Tiny 0.180 93.5% AutoAugment

ConvNeXt-Tiny 0.189 93.3% TrivialAugmentWide

We compared different image augmentation 
techniques from the PyTorch library. The best 
cross entropy loss was with no image 
augmentation but AugMix gave higher 
accuracy. 

The top three are all pretty close and would 
probably fall within the margin of error if we 
cross-validated or reran the experiments but 
due to hour long training times this was not 
done.

NB: We used the same scheduler for all: 
CosineAnnealingWarmRestarts(lr_init=1e-4, 
lr_min=0, T_0 = 3, T_mult = 2, gamma = 1)



Effect of image augmentation on training
On the two figures below, the ConvNeXt-Tiny pre-trained network is trained with scheduler StepLR(lr_init=1e-4, 
step_size=3, gamma=0.5) but with no image augmentation on the left and the ‘AugMix’ augmentation scheme on the right.
We see that without augmentations, the loss converges faster towards zero (eventually reaching almost 100% accuracy); 
the network needs to learn more images with AugMix (though the generated images are very similar). The validation loss 
during the AugMix model training tends to be lower, indicating less overfitting, though more data is needed to draw that 
conclusion in general.

Appendix COVID-19

(No augmentation) (AugMix)



Effect of initializing pre-trained weights

When training from the ImageNet weights in the pre-trained CNNs, we noticed that

➢ training required lower learning rate,

➢ loss was initially lower and converged faster, meaning faster overall training

Appendix COVID-19


