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An introduction
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1“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”
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What is Machine Learning?
While there is no formal definition, an early attempt is the  following intuition:

“Machine learning programs can perform tasks 
without being explicitly programmed to do so.”

[Arthur Samuel, US computer pioneer 1901-1990]

An attempt at a more formal definition is:

"A computer program is said to learn from 
experience E with respect to some class of tasks T and 

performance measure P if its performance at tasks in T, as 
measured by P, improves with experience E.”

[T. Mitchell, “Machine Learning” 1997]

Under all circumstances, ML allows the analysis and understanding of data,
that is complex in terms of both size, dimensionality, quality, and relations [TP].
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Approximation Theorem
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Universal Approx. Theorems
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One main ingredient behind ML are Universal Approximation Theorems (UAT).

These imply that Neural Networks can approximate a very wide variety of 
functions given simple function constraints and enough degrees of freedom.

This typically entails a large amount of weights, for which the UATs give no 
recipe on how to find - only that such a construction is possible.
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One main ingredient behind ML are Universal Approximation Theorems (UAT).

These imply that Neural Networks can approximate a very wide variety of 
functions given simple function constraints and enough degrees of freedom.

This typically entails a large amount of weights, for which the UATs give no 
recipe on how to find - only that such a construction is possible.

Part of this course is learning how to find these!

Decision Trees and K-Nearest Neighbour algorithms are also capable of 
“universal approximation” (i.e. have forms of UATs).

A UAT has also been worked out for Graph Neural Networks… in 2020!
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Regarding UATs, as far as learning is concerned, whether the class is really 
universal or not is not overly important:

If one assumes that there is no noise in the training set, then there will still be 
infinitely many functions that passes through all training points and not all of 
them will have the same error on an unseen point (i.e. the test set).
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Regarding UATs, as far as learning is concerned, whether the class is really 
universal or not is not overly important:

If one assumes that there is no noise in the training set, then there will still be 
infinitely many functions that passes through all training points and not all of 
them will have the same error on an unseen point (i.e. the test set).

Thus, one can ask for what sort of functions the approximation applies.
All differentiable functions? Typically, NNs are restricted to this class.
All continuous functions ? All measurable functions? All computable functions? 

As it turns out, the real deal is characterising that class of functions that can be 
approximated.

However, we don’t really care about that - we simply assume, that with
enough liberty/complexity, the functions can approximate what we want.

Michael Bronstein (2021)



Stochastic Gradient Descent
The way to obtain the parameters/weights of ML algorithms,

is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss 
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from 
the last layer (avoiding redundancies). See Goodfellow et al. for details.

Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation 
Algorithms". Deep Learning. MIT Press. pp. 200–220. ISBN 9780262035613. 15

https://en.wikipedia.org/wiki/Ian_Goodfellow
https://en.wikipedia.org/wiki/Yoshua_Bengio
https://www.deeplearningbook.org/contents/mlp.html#pf25
https://www.deeplearningbook.org/contents/mlp.html#pf25
http://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780262035613


Stochastic Gradient Descent
The way to obtain the parameters/weights of ML algorithms,

is generally by Stochastic Gradient Descent.

This “back propagation” algorithm works by computing the gradient of the loss 
function (to be optimised) with respect to each weight using the chain rule.

One thus computes the gradient one layer at a time, iterating backwards from 
the last layer (avoiding redundancies). See Goodfellow et al. for details.

The gradient descent is made stochastic
(and fast) by only considering a fraction
(called a “batch”) of the data, when
calculating the step in the search for
optimal parameters for the algorithm.
This allow for stochastic jumping, that
avoids local (false) minima.
Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). "6.5 Back-Propagation and Other Differentiation 
Algorithms". Deep Learning. MIT Press. pp. 200–220. ISBN 9780262035613. 16

Ordinary 
Gradient Descent

Stochastic 
Gradient Descent
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https://www.deeplearningbook.org/contents/mlp.html#pf25
https://www.deeplearningbook.org/contents/mlp.html#pf25
http://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
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Ingredients for ML
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So now we know that at least in principle:
• a solution exists (Universal Approximation Theorem) and
• that it can be found (Stochastic Gradient Descent).

But this does not in reality make us capable of getting ML results.

We (at least) also need:
• actual functions/algorithms for making approximations
• knowledge about how to tell them what to learn
• a scheme for how to use the data we have available
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So now we know that at least in principle:
• a solution exists (Universal Approximation Theorem) and
• that it can be found (Stochastic Gradient Descent).

But this does not in reality make us capable of getting ML results.

We (at least) also need:
• actual functions/algorithms for making approximations 

Boosted Decision Trees (BDTs) & Neural Networks (NNs)
• knowledge about how to tell them what to learn 

Loss functions (and now to minimise these)
• a scheme for how to use the data we have available 

Training, validation, and testing samples & Cross Validation



Why ML?
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Why Machine Learning?
Part of the “rising” of Machine Learning has been the explosion in 
data volume, and the easy access to mine it (i.e. internet-of-things), 
but also the growth in data storage and processing capabilities.
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In a digital world, both academia and business has an 
advantage in understanding their (growing) data volumes. 
Machine Learning is a powerful tool to do exactly that!



Dimensionality and Complexity

22

Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of 
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans: 
Computers:

Humans: 
Computers:

Non-
linear

Humans: 
Computers:

Humans: 
Computers:

Computers, on the other hand, are OK with high dimensionality, albeit the 
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!
That is essentially what Machine Learning has enabled!
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Humans are good at seeing/understanding data in few dimensions!
However, as dimensionality grows, complexity grows exponentially (“curse of 
dimensionality”), and humans are generally not geared for such challenges.

Low dim. High dim.

Linear Humans: ✓ 
Computers: ✓

Humans: ÷ 
Computers: ✓

Non-
linear

Humans: ✓ 
Computers: (✓)

Humans: ÷ 
Computers: (✓)

Computers, on the other hand, are OK with high dimensionality, albeit the 
growth of the challenge, but have a harder time facing non-linear issues.

However, through smart algorithms, computers have learned to deal with it all!
That is essentially what Machine Learning has enabled!
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Unsupervised vs. Supervised
Classification vs. Regression
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Machine Learning can be supervised (you have correctly labelled examples) or 
unsupervised (you don’t)… [or reinforced]. Following this, one can be using ML 
to either classify (is it A or B?) or for regression (estimate of X).
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Machine Learning can be supervised (you have correctly labelled examples) or 
unsupervised (you don’t)… [or reinforced]. Following this, one can be using ML 
to either classify (is it A or B?) or for regression (estimate of X).

We will be mostly on this side!

Unsupervised vs. Supervised
Classification vs. Regression



Target of ML
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Classification

Null Hypothesis Alternative Hypothesis
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Classification

Null Hypothesis Alternative Hypothesis

30

Machine Learning typically enables
a better separation between hypothesis



Hypothesis testing
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Hypothesis testing is like a criminal trial. The basic “null” hypothesis is Innocent 
(called H0) and this is the hypothesis we want to test, compared to an 
“alternative” hypothesis, Guilty (called H1).

Innocence is initially assumed, and this hypothesis is only rejected, if enough 
evidence proves otherwise, i.e. that the probability of innocence is very small
(“beyond reasonable doubt”). This is summarised in a Contingency Table:

Truly innocent
(H0 is true)

Truly guilty
(H1 is true)

Acquittal
(Accept H0)

Right decision
True Positive (TP)

Wrong decision
False Negative (FN)

Conviction
(Reject H0)

Wrong decision
False Positive (FP)

Right decision
True Negative (TN)

The rate of FP and FN are correlated, and one can only choose one of these!



Measuring separation
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Which of these four distributions are most separated?
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Simple case
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ROC curves
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The Receiver Operating Characteristic curve or just ROC-curve is a
graphical plot of true positive rate (TPR) vs. false positive rate (FPR).

It is calculated as the integral of the two hypothesis distributions,
and is used to evaluate the performance of a test.

Dividing data, it can also detect overtraining!

http://en.wikipedia.org/wiki/Graph_of_a_function
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Which metric to use?
There are a ton of metrics in hypothesis testing, see below. However, 
those in the boxes below are the most central ones.

One metric - not mentioned here - is the Area Under the Curve (AUC), 
which is simply an integral of the ROC curve (thus 1 is perfect score). 
This is sometimes used to optimise performance (loss), but not great!

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Matthew’s Correlation Coefficient
Given a Contingency Table: 

One of the commonly used measures of separation the MCC, which 
(in this case) is the Pearson ρ, and related to the ChiSquare:

Read more at:
https://en.wikipedia.org/wiki/Phi_coefficient 

However, when optimising an algorithm and giving continuous 
scores in the range ]0,1[, there are other things to consider (see talk on 
Loss Functions).

Got well Remained ill
Medicin 28 5

No Medicin 19 9

https://en.wikipedia.org/wiki/Phi_coefficient


The linear analysis case
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Simple Example
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Problem: You want to figure out a method for getting sample that is mostly male!
Solution: Gather height data from 10000 people, Estimate cut with 95% purity!



Simple Example
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Additional data: The data you find also contains shoe size!
How to use this? Well, it is more information, but should you cut on it?

The question is, what is the best way to use this (possibly correlated) information!



Simple Example
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So we look if the data is correlated, and consider the options:

Cut on each var?
Poor efficiency!

Advanced cut?
Clumsy and

hard to implement

Combine var?
Smart and
promising

The latter approach is the Fisher discriminant!
It has the advantage of being simple and applicable in many dimensions easily!



Simple Example

44

So we look if the data is correlated, and consider the options:

Cut on each var?
Poor efficiency!
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hard to implement
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Smart and
promising

The latter approach is the Fisher discriminant!
It has the advantage of being simple and applicable in many dimensions easily!

We will start by
considering the

linear case.
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So we look if the data is correlated, and consider the options:

Cut on each var?
Poor efficiency!

Advanced cut?
Clumsy and

hard to implement

Combine var?
Smart and
promising

The latter approach is the Fisher discriminant!
It has the advantage of being simple and applicable in many dimensions easily!

We will start by
considering the

linear case.

This is actually
how the tree based

methods works!



Separating data
Fisher’s friend, Anderson, came home from picking Irises in the Gaspe peninsula...
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Fisher’s Linear Discriminant
You want to separate two types/classes (A and B) of events using several 
measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

Q: How to choose the values of w?
A: Inverting the covariance matrices:

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.

47

F = w0 + ~w · ~x

~w = (⌃A +⌃B)
�1 (~µA � ~µB)



You want to separate two types/classes (A and B) of events using several 
measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

Q: How to choose the values of w?
A: Inverting the covariance matrices:

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.
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F = w0 + ~w · ~x

~w = (⌃A +⌃B)
�1 (~µA � ~µB)

Fisher’s Linear Discriminant



Executive summary:
Fisher’s Discriminant uses a linear combination of variables to give a single
variable with the maximum possible separation (for linear combinations!).

It is for all practical purposes a projection (in a Euclidian space)!

49

Fisher’s Linear Discriminant



The details of the formula are outlined below:
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~w = (⌃A +⌃B)
�1 (~µA � ~µB)

F = w0 + ~w · ~x F is what you base 
your decision on.

Given weights (w), 
you take your input 
variables (x) and 
combine them 
linearly as follows:

For each input variable (x), 
you calculate the mean (µ), 
and form a vector of these.

Using the input variables (x), 
you calculate the covariance 
matrix (Σ) for each species 
(A/B), add these and invert.

You have two samples, A and B, 
that you want to separate.

Fisher’s Linear Discriminant



The non-linear case
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Non-linear cases
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While the Fisher Discriminant uses all separations and linear correlations,
it does not perform optimally, when there are non-linear correlations present:

If the PDFs of signal and background are known, then one can use a likelihood.
But this is very rarely the case, and hence one should move on to the Fisher.
However, if correlations are non-linear, more “tough” methods are needed...



(Boosted) Decision Trees

Can become very complex.

Good for discrete problems.
“Good for all problems!!!”

Not always highest efficiency,
though…

Boosting adds to separation.

53

* Example decision tree on a simple algorithm for predicting survival of Titanic!



Boosted Decision Trees (BDT)
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Decision tree learning uses a decision tree as a predictive model which maps 
observations about an item to conclusions about the item's target value. It is one of 
the predictive modelling approaches used in statistics, data mining and machine 
learning.
                                            [Wikipedia, Introduction to Decision Tree Learning]



Boosted Decision Trees
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A decision tree divides the parameter 
space, starting with the maximal 
separation. In the end each part has a 
probability of being signal or 
background.
• Works in 95+% of all problems!
• Fully uses non-linear correlations.

But BDTs require a lot of data for 
training, and is sensitive to 
overtraining.

Overtraining can be reduced by 
limiting the number of nodes and 
number of trees.



Boosting...
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There is no reason, why you can not 
have more trees. Each tree is a simple 
classifier, but many can be combined!

To avoid N identical trees, one assigns 
a higher weight to events that are hard 
to classify, i.e. boosting:

First classifier

Parameters in event N

Boost weight

Individual tree



Neural Networks
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Can become very complex.

Good for continuous problems.

Sometimes hard to train!

Very versatile approach that
can also be applied to images,
text, etc.

Easily produces multiple outputs.



In machine learning and related fields, artificial neural networks (ANNs) are 
computational models inspired by an animal's central nervous systems (in particular 
the brain) which is capable of machine learning as well as pattern recognition.
Neural networks have been used to solve a wide variety of tasks that are hard to 
solve using ordinary rule-based programming, including computer vision and 
speech recognition.
                                       [Wikipedia, Introduction to Artificial Neural Network]
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Neural Networks (NN)



Neural Networks
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t(x) = s
⇣
a0 +

X
aixi

⌘

t(x) = s
⇣
ai +

X
aihi(x)

⌘

hi(x) = s
⇣
wi0 +

X
wijxj

⌘

s(x) =
1

1 + e�a(x�x0)

Neural Networks combine the input 
variables using a “activation” function 
s(x) to assign, if the variable indicates 
signal or background.

The simplest is a single layer perceptron:

This can be generalised to a multilayer 
perceptron:

Activation function can be any
sigmoid function.



Training & Over-training
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Test for simple over-training
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In order to test for overtraining, half the sample is used for training, the other for testing:



Test for simple over-training
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In order to test for overtraining, half the sample is used for training, the other for testing:

However, over-training in itself is not a “sin”,
as long as one is aware that the performance
in a new dataset will follow that of the test
sample, NOT the training sample.



Real overtraining
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The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!
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The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

Why does the red
curve reach zero?



Real overtraining
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The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

Why does the red
curve reach zero?

From: Ian Goodfellow et al: “Deep Learning”

https://www.deeplearningbook.org/contents/ml.html


Real overtraining
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The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

So how can we know, when to stop
increasing the complexity of our
algorithm?
(i.e. including more trees for BDTs)



Real overtraining
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The “real” limit of overtraining, is when the (Cross) Validation (CV) error starts to grow!

From: Ian Goodfellow et al: “Deep Learning”

https://www.deeplearningbook.org/contents/ml.html


Methods (dis)advantages
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Method’s (dis-)advantages
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Another comparison is done in Elements of Statistical Learning II (ESL II), where linear 
methods are not included.

As can be seen,
Neural Networks are
“difficult” in almost
all respects, but
performant.

For trees, the case is
almost the opposite.

However, I don’t agree
with the evaluation
of the predictive power
of trees.
At least not for normal
structured data.

From ESL II, Chapter 10.7
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As can be seen,
Neural Networks are
“difficult” in almost
all respects, but
performant.

For trees, the case is
almost the opposite.

However, I don’t agree
with the evaluation
of the predictive power
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At least not for normal
structured data.

For tabular data, I disagree!

From ESL II, Chapter 10.7
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Another comparison is done in Elements of Statistical Learning II (ESL II), where linear 
methods are not included.

As can be seen,
Neural Networks are
“difficult” in almost
all respects, but
performant.

For trees, the case is
almost the opposite.

However, I don’t agree
with the evaluation
of the predictive power
of trees.
At least not for normal
structured data.

For tabular data, I disagree!

…and others do too [https://arxiv.org/abs/2110.01889] From ESL II, Chapter 10.7



Performance comparison
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Left figure shows the distribution of signal and background used for test.
Right figure shows the resulting separation using various MVA methods.

The theoretical limit is known from the Neyman-Pearson lemma using the
(known/correct) PDFs in a likelihood.
In all fairness, this is a case that is great for the BDT...

ROC curves:



How to choose method?
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Which method to use?
There is no good/simple answer to this, though people have tried, e.g.:
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