
Group “similar” things together
Wang et al. 2020



t-SNE map for Swift light curves
Kragh Jespersen et al. 2020



OK, but can you 
tell me how t-SNE 
actually works?



t-Stochastic Neighbor Embedding (t-SNE)
N. Oskolkov, towardsdatascience.com



Wait…I’m a visual 
learner.  Maybe 

in a cartoon?
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Here’s a basic 2-D scatter 
plot. 
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Here’s a basic 2-D scatter 
plot.

Let’s do a walk through of 
how t-SNE would transform 
this graph…
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…into a flat, 1-D plot on 
a number line.

Here’s a basic 2-D scatter 
plot. 

Let’s do a walk through of 
how t-SNE would transform 
this graph…

Copyright 2017 Joshua Starmer, 
https://statquest.org
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NOTE: If we just projected the data onto one 
of the axes, we’d just get a big mess that 
doesn’t preserve the original clustering.
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Instead of two 
distinct clusters, we 
just see a 
mishmash.
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Same here...
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What t-SNE does is find a way to project data into a low dimensional 
space (in this case, the 1-D number line) so that the clustering in the high 

dimensional space (in this case, the 2-D scatter plot) is preserved. 
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So let’s step through the basic ideas of how t-SNE does this.
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We’ll start start with the original 
scatter plot…
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We’ll start start with the original 
scatter plot…

… then we’ll put the points on 
the number line in a random 
order.
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From here on out, t-SNE moves these points, a little bit at a time, 
until it has clustered them.
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Let’s figure out where to move this first point…
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Should it move a little to the left or to the right?

Let’s figure out where to move this first point…
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Because it is part of this cluster…
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Because it is part of this cluster…
…it wants to move closer to these points.
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But at the same time, these points…
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But at the same time, these points…

…are far away in the scatter plot.
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But at the same time, these points…

…are far away in the scatter plot.

…so they push back.
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These points attract…
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These points attract…

…while these points repel.
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In this case, the attraction is strongest, so the point moves a little
to the right.
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In this case, the attraction is strongest, so the point moves a little
to the right.
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BAM!
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Now let’s move this point a little bit…
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These points attract…
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These points attract…

…and this point repels a little bit.
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So it moves a little to closer to the other orange points.
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Double BAM!
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At each step, a point on the line is attracted to points it is near in the scatter 
plot, and repelled by points it is far from…
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Triple BAM!!!!!

Copyright 2017 Joshua Starmer, 
https://statquest.org
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Now that we’ve seen the what t-
SNE tries to do, let’s dive into the 
nitty-gritty details of how it does 
what it does.
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Step 1: Determine the “similarity” of 
all the points in the scatter plot. 
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For this example, let’s focus 
on determining the 
similarities between this 
point and all of the other 
points. 

Step 1: Determine the “similarity” of 
all the points in the scatter plot. 
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First, measure the 
distance between two 
points…
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First, measure the 
distance between two 
points…

Then plot that distance 
on a normal curve that 
is centered on the point 
of interest…



72

…lastly, draw a line from the point to 
the curve. The length of that line is the 
“unscaled similarity”.

First, measure the 
distance between two 
points…

Then plot that distance 
on a normal curve that 
is centered on the point 
of interest…
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Now we calculate the 
“unscaled similarity” for 
this pair of points. 
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Now we calculate the 
“unscaled similarity” for 
this pair of points. 
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Now we calculate the 
“unscaled similarity” for 
this pair of points. 
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Now we calculate the 
“unscaled similarity” for 
this pair of points. 
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Now we calculate the 
“unscaled similarity” for 
this pair of points. 
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Now we calculate the 
“unscaled similarity” for 
this pair of points. 
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Etc. etc…

Now we calculate the 
“unscaled similarity” for 
this pair of points. 
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Using a normal distribution means 
that distant points have very low 
similarity values….
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… and close points have high 
similarity values.
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Ultimately, we measure the 
distances between all of the 

points and the point of 
interest…
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Ultimately, we measure the 
distances between all of the 

points and the point of 
interest…

Plot them on the normal 
curve…
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Ultimately, we measure the 
distances between all of the 

points and the point of 
interest…

…and then measure the 
distances from the points to the 
curve to get the unscaled 
similarity scores with respect to 
the point of interest.

Plot them on the normal 
curve…
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The next step is to scale the 

unscaled similarities so that they add 
up to 1.

Umm… Why do the similarity scores 
need to add up to 1?
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It has to do with something I 
didn’t tell you earlier…
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It has to do with something I 
didn’t tell you earlier…

…and to illustrate the concept, I need 
to add a cluster that is half as dense as 
the others.
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The width of the normal 
curve depends on the 
density of data near the 
point of interest.
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Less dense 
regions have 
wider curves.

The width of the normal 
curve depends on the 
density of data near the 
point of interest.
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…so if these points… have 
half the density as these 
points…
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…so if these points… have 
half the density as these 
points…
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…and this curve…
is half as wide as 

this curve…

…so if these points… have 
half the density as these 
points…
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…and this curve…
is half as wide as 

this curve…

…so if these points… have 
half the density as these 
points…
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…and this curve…
is half as wide as 

this curve…

…so if these points… have 
half the density as these 
points…

…then scaling the similarity scores will make them the same for both clusters.
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Here’s an example…
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Here’s an example…

This curve has a std = 1.
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Here’s an example…

This curve has a std = 1. The “unscaled” similarity 
values

= 0.24

= 0.05
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Here’s an example…

This curve has a std = 1.

This curve has a std = 2.

= 0.24

= 0.05

The “unscaled” similarity 
values
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Here’s an example…

This curve has a std = 1.

This curve has a std = 2.

= 0.24

= 0.05

The “unscaled” similarity 
values

These points are twice as far from the middle.
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Here’s an example…

This curve has a std = 1.

This curve has a std = 2.

These points are twice as far from the middle.

= 0.24

= 0.05

= 0.12

= 0.024

The “unscaled” similarity 
values

The “unscaled” similarity 
values are half of the 

other ones.
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= 0.24

= 0.05

= 0.12

= 0.024

To scale the similarity scores so they sum to 1: 

Score

Sum of all scores
= Scaled Score
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= 0.24

= 0.05

= 0.12

= 0.024

0.24

0.24 + 0.05
= 0.82

0.05

0.24 + 0.05
= 0.18

To scale the similarity scores so they sum to 1: 

Score

Sum of all scores
= Scaled Score
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= 0.24

= 0.05

= 0.12

= 0.024

0.24

0.24 + 0.05
= 0.82

0.05

0.24 + 0.05
= 0.18

0.12

0.12 + 0.024
= 0.82

0.024

0.12 + 0.024
= 0.18

To scale the similarity scores so they sum to 1: 

Score

Sum of all scores
= Scaled Score
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= 0.24

= 0.05

= 0.12

= 0.024

0.24

0.24 + 0.05
= 0.82

0.05

0.24 + 0.05
= 0.18

0.12

0.12 + 0.024
= 0.82

0.024

0.12 + 0.024
= 0.18

To scale the similarity scores so they sum to 1: 

Score

Sum of all scores
= Scaled Score

Same values!
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0.24

0.24 + 0.05
= 0.82

0.05

0.24 + 0.05
= 0.18

0.12

0.12 + 0.024
= 0.82

0.024

0.12 + 0.024
= 0.18

That implies that the scaled similarity scores 
for this relatively tight cluster…
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0.24

0.24 + 0.05
= 0.82

0.05

0.24 + 0.05
= 0.18

0.12

0.12 + 0.024
= 0.82

0.024

0.12 + 0.024
= 0.18

That implies that the scaled similarity scores 
for this relatively tight cluster…

…are the same for this 
relatively loose cluster!
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The reality is a little more complicated, but only 
slightly.
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The reality is a little more complicated, but only 
slightly.

t-SNE has a “perplexity” parameter equal to the 
expected density, and that comes into play, but 

these clusters are still more “similar” than you might 
expect.
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Now back to the original 
scatter plot…
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We’ve calculated similarity 
scores for this point.
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Now we do it for this point…
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Now we do it for this point…

…and we do it for all the 
points.
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One last thing and the scatter 
plot will be all set with similarity 
scores!!!
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Because the width of the distribution 
is based on the density of the 

surrounding data points, the similarity 
score to this node…
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…might not be the same as the 
similarity to this node. Is anybody reading these slides?  I’ll have a 

small prize for the first student who emails 
me (steinhardt@nbi.ku.dk) about this, as 

long as you email by midnight, May 1.

mailto:steinhardt@nbi.ku.dk
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So t-SNE just averages the two similarity 
scores from the two directions…
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= High similarity
= Low similarity

Ultimately, you end up with a matrix of similarity scores.
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= High similarity
= Low similarity
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Hooray!!! We’re done doing calculating similarity scores for the scatter plot!

= High similarity
= Low similarity
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Now we randomly project the 
data onto the number line…
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Now we randomly project the 
data onto the number line…

… and calculate similarity 
scores for the points on the 
number line.
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Just like before, that means 
picking a point…
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Just like before, that means 
picking a point…

…measuring a distance…
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Just like before, that means 
picking a point…

…measuring a distance…

…and lastly, drawing a line from 
the point to a curve. However, 
this time we’re using a “t-
distribution”.
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A “t-distribution”…
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A “t-distribution”…

…is a lot like a normal distribution
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A “t-distribution”…

…is a lot like a normal distribution… …except the “t” isn’t as tall in the 
middle…
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A “t-distribution”…

…is a lot like a normal distribution… …except the “t” isn’t as tall in the 
middle…

… and the tails are taller on the ends. 
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A “t-distribution”…

…is a lot like a normal distribution… …except the “t” isn’t as tall in the 
middle…

… and the tails are taller on the ends. 

The “t-distribution” is the “t” in t-SNE.
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A “t-distribution”…

…is a lot like a normal distribution… …except the “t” isn’t as tall in the 
middle…

… and the tails are taller on the ends. 

The “t-distribution” is the “t” in t-SNE.

We’ll talk about why the t-distribution is used in a bit…
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So, using a t-distribution, we 
calculate “unscaled” similarity 

scores for all the points and then 
scale them like before. 
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= High similarity
= Low similarity

Like before, we end up with 
a matrix of similarity scores, 
but this matrix is a mess…
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= High similarity
= Low similarity

Like before, we end up with 
a matrix of similarity scores, 
but this matrix is a mess…

= High similarity
= Low similarity

…compared to the original matrix.
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The goal of moving this point is…
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The goal of moving this point is…

we want to make this row…
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The goal of moving this point is…

we want to make this row…

look like this row.
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t-SNE moves the points a little bit at a time, and each step it chooses a direction that makes 
the matrix on the left more like the matrix on the right.
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t-SNE moves the points a little bit at a time, and each step it chooses a direction that makes 
the matrix on the left more like the matrix on the right.

It uses small steps, because it’s a little bit like a chess game and can’t be solved all at 
once. Instead, it goes one move at at time.
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BAM!!!
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Now to finally tell you why the “t-distribution” is used…
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Originally, the “SNE” algorithm used a normal distribution throughout and the clusters clumped up in the 
middle and were harder to see.
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The t-distribution forces some space between the points.
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Triple Bam!!!



t-Stochastic Neighbor Embedding (t-SNE)
N. Oskolkov, towardsdatascience.com
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Defines distance probability as Gaussian

Determines optimal s, 
global vs. local

Student t distribution (with heavy tails!)



t-Stochastic Neighbor Embedding (t-SNE)
N. Oskolkov, towardsdatascience.com



t-Stochastic Neighbor Embedding (t-SNE)
N. Oskolkov, towardsdatascience.com

Defines distance probability as Gaussian

Determines optimal s, 
global vs. local

Student t distribution (with heavy tails!)

Defines loss function for gradient descent



Problem 1: Preprocessing/Standardization
MNIST, raw data



Problem 2 (or 1.5): Distance Metrics
MNIST



Problem 3: Hyperparameters
Cortale 2017



Can we do better?



Can we do better?

• t-SNE is slow and scales poorly
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Can we do better?

• t-SNE is slow and scales poorly

• Difficult tradeoff between global and local 
structure

• Lack of mathematical formalism

Barnes-Hut approximation!
Barnes-Hut approximation ONLY IN 2D OR 3D!

Perplexity! (well, if you have to pick)



UMAP
UMAP builds on using Riemannian manifolds! Within differential geometry, this 
allows the definition of angles, hyper-area, and curvature in high dimensionality.

UMAP paper, arXiv 1802.03426, Sep. 2020



UMAP
As in the t-SNE case, UMAP tries to find a metric in both the original (large) space 
X, and the lower dimension output space Y, which can be (topologically) matched:

UMAP paper, arXiv 1802.03426, Sep. 2020

However, the metrics in X and Y used by UMAP and t-SNE differ:

For t-SNE these metrics are as follows:

For UMAP they are:



First million integers in UMAP
Prime-factorizing the 
first million integers, 
and drawing them 
(artfully) gives the 
following image.

If nothing else, it’s a 
great piece of ML art.



Group “similar” things together
Wang et al. 2020



t-SNE vs. UMAP
Kragh Jespersen et al. 2020



Approach 2: Finding “dead” galaxies
COSMOS2015 catalog, objects at z≈1



Which is a better separation?



Which is a better separation?



Our goal:

”V band”
”i band”
”z band”
”J band”
”H band”

etc.

(Stellar) Mass
Star formation rate

Star formation history
Distance/Redshift

Age

etc.

Choose a few good
examples



Approach 2: Similar galaxies are nearby
WARNING: positions are neither fixed nor meaningful.  Topology is meaningful.



Approach 2: Arranging by photometry 
also calculates other useful things!

COSMOS2015 catalog, objects at z≈1



Photometric Redshifts Usually Work…
Hovis-Afflerbach, Steinhardt et al. 2020



Photometric Redshifts Usually Work…
Hovis-Afflerbach, Steinhardt et al. 2020



Sometimes, sparse sampling can miss the 
correct redshift by a large margin!



About 5% of objects fail template fitting1

Can we identify these objects without comparing with 
spectroscopy?

Can we fix these objects and determine the correct properties?

1Hildebrandt et al. 2010:
12 photo-z methods tested on objects with 18 bands, between 4.9% and 29% of objects had dz/(1+z) > 0.15

…But Not Always!



Two Three Fundamental 
Assumptions for Photometry

1. If an object is sufficiently well-measured, there is 
a surjective (one-to-one or many-to-one, but not 
one-to-many) mapping from photometric fluxes 
to astrophysical properties.  

2. Objects with sufficiently similar photometry 
should be mapped to similar astrophysical 
properties.

3. We can map objects from the full, n-dimensional 
space with all bands to a smaller one with many 
neighbors, and the other two assumptions will 
continue to hold.



t-SNE Map for COSMOS/Spec-z Dataset
Hovis-Afflerbach, Steinhardt et al. 2020



t-SNE Map for COSMOS/Spec-z Dataset
Hovis-Afflerbach, Steinhardt et al. 2020



Task: Make errors “look” wrong
Hovis-Afflerbach, Steinhardt et al. 2020



ROC Curve for Catastrophic Errors
Hovis-Afflerbach, Steinhardt et al. 2020 P05

P20

P35

P50


