Group “similar” things together

Wang et al. 2020
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I-SNE map for Swift light curves

Kragh Jespersen et al. 2020
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OK, but can you
fell me how t-SNE
actually workse

oooooooooooooooooo




t-Stochastic Neighbor Embedding (1-SNE)

N. Oskolkov, towardsdatascience.com
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Wait...I'm a visual
learner. Maybe
IN O carfoone

oooooooooooooooooo




Here's a basic 2-D scaftter ‘

plot. ‘ . ‘
- o o
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Here's a basic 2-D scaftter
plot.

Let's do a walk through of
how t-SNE would fransform
this graph...

Copyright 2017 Joshua Starmer,

httnec//ctAtATiact ArA
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Here's a basic 2-D scaftter ‘

plot. Q ‘ -
® @ 0

Let's do a walk through of
how t-SNE would transform

this graph...
...into a flat, 1-D plot on
a number line.

COSMIC DAWN CENTER

_Dawn |
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COSMIC DAWN CENTER

DAWN

NOTE: If we just projected the data onto one
of the axes, we'd just get a big mess that
doesn’t preserve the original clustering.
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Instead of two
distinct clusters, we .

just see a
JrL:]Sisrfr?nosh. “ ‘ ‘
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Same here...
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What t-SNE does is find a way to project data into a low dimensional
space (in this case, the 1-D number line) so that the clustering in the high
dimensional space (in this case, the 2-D scatter plot) is preserved.
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So let’s step through the basic ideas of how t-SNE does this.

Wednesday May 3, 2023




We'll start start with the original ‘
scatter plof...

Wednesday May 3, 2023




We'll start start with the original ‘
scatter plof...

... then we'll put the points on
the number line in a random

order.
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From here on out, t-SNE moves these points, a little bit at a time,
until it has clustered them.
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Let’s figure out where to move this first point...

N\
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Let’s figure out where to move this first point...

\ Should it move a little to the left or to the righte
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Because it is part of this cluster...
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Because it is part of this cluster...

N

...It wants to move closer to these points.
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But at the same time, these points...

/N
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But at the same time, these points...

A ...are far away in the scatter plot.

00 000000000 O
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)

But at the same time, these points...

A ...are far away in the scatter plot.

Mhey push back.
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These points attract...
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These points attract...
00 000000000 O

Mhile these points repel.
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In this case, the attraction is strongest, so the point moves a little
to the right.

1

o= 000000000 O
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In this case, the attraction is strongest, so the point moves a little
to the right.

1
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BAMI
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Now let’s move this point a little bit...

/
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These points attract...
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o
®® 0:0
~

QOQ

These points attract...

00000000000 O
v

...and this point repels a little bit.
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So it moves a little to closer to the other orange points.

l
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Double BAMI
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At each step, a point on the line is attracted to points it is near in the scatter
plot, and repelled by points it is far from...

Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023




Wednesday May 3, 2023

Copyright 2017 Joshua Starmer,

httnec//ctAtATiact ArA



Now that we've seen the what t-
SNE tries to do, let's dive info the
nitty-gritty details of how it does
what it does.
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Step 1: Determine the “similarity” of ‘

all the points in the scatter ploft. ‘ ‘ ‘
o e
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Step 1: Determine the “similarity” of

all the points in the scatter ploft. G ‘. ‘ ‘

For this example, let’s focus
on determining the
similarities between this
point and all of the other
points.

COSMIC DAWN CENTER

_Dawn |
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@) ® ®
First, measure the
distance between two \i‘ ‘ ‘
poinfs... e g
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First, measure the % % . .
distance between two /\ . .
points...

Then plot that distance

on a normal curve that

is centered on the point
of interest...
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First, measure the % Q . .
distance between two /\ . .
points...

Then plot that distance
on a normal curve that
is centered on the point ...lastly, draw a line from the point to
of inferest... the curve. The length of that line is the
“unscaled similarity”.
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Now we calculate the ‘

“unscaled similarity” fQrmpr “ -

this pair of points.
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Now we calculate the ‘

*unscaled similarity” Q- ‘

this pair of points. ‘
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Now we calculate the

*unscaled similarity” Q-

this pair of points.
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Now we calculate the

*unscaled similarity” Q-

this pair of points.
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Now we calculate the
“unscaled similarity” for
this pair of points.

—
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Now we calculate the
“unscaled similarity” for
this pair of points.

—
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Now we calculate the
“unscaled similarity” for
this pair of points.

—

6 Etc. etc...
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Using a normal distribution means
that distant points have very low
G similarity values....
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... and close points have high
similarity values.
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Ultimately, we measure the
distances between all of the
points and the point of
interest...
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Ultimately, we measure the ‘ ‘

distances between all of the
points and the point of
interest...

Plot them on the normal
Curve...

lk)
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Ultimately, we measure the
distances between all of the
points and the point of
interest...

Plot them on the normal
Curve...

...and then measure the
distances from the points to the
curve to get the unscaled
similarity scores with respect to
the point of interest.
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The next step is to scale the
unscaled similarities so that they add
up to 1.

Umm... Why do the similarity scores
need to add up to 12
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I’r.hos fo do with sqme’rhing I ‘ . .
didn't tell you earier... ® Q ®
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It has to do with something | ‘ ‘ ‘

didn’t tell you earlier...

...and to illustrate the concept, | need
to add a cluster that is half as dense as
the others.
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The width of the normal
curve depends on the Q
density of data near the

point of interest. - Q

COSMIC DAWN CENTER

_Dawn |
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@
The width of the normal
curve depends on the Q
density of data near the
point of inferest. O G
O Less dense
regions have
wider curves.
A O

Wednesday May 3, 2023




...50 if these points...
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...50 if these points... have
half the density as these
points...

O
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...50 if these points... have
half the density as these
points... Q

4_...ond this curve...
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...50 if these points... have
half the density as these
points... CD

...and this curve...
is half as wide as
this curve...
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...50 if these points... have
half the density as these
points... Q

4_...ond this curve...
is half as wide as
this curve...

"

@ (O

O

...then scaling the similarity scores will make them the same for both clusters.
Wednesday May 3, 2023
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Here's an example...
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Here's an example...

This curve has astd = 1.
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Here's an example...

The “unscaled” similarity
values

This curve has astd = 1.
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Here's an example...

The “unscaled” similarity
values

This curve has astd = 1.

This curve has a std = 2.
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Here's an example...

The “unscaled” similarity
values

This curve has astd = 1.

These points are twice as far from the middle.

This curve has a std = 2.
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Here's an example...

The “unscaled” similarity
values

This curve has astd = 1.

These points are twice §s far from the middle.

The “unscaled” similarity
values are half of the

This curve has a std = 2. other ones.
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To scale the similarity scores so they sum to 1:

Score
= Scaled Score

Sum of all scores

=0.05
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To scale the similarity scores so they sum to 1: 0.24

=0.82
0.24 + 0.05
Score 0.05
= Scaled Score ' =0.18
Sum of all scores 0.24 + 0.05

=0.05
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To scale the similarity scores so they sum to 1: 0.24

=0.82
0.24 +0.05
Score -
= Scaled Score : 0.05 =0.18
Sum of all scores : 0.24 + 0.05
- =0.05
0.12
=0.82
0.12 +0.024
0.024
=0.18
0.12 +0.024
COSMIC DAWN CENTER ;3“1"‘?;23 WedneSdoy Moy 3. 2023
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To scale the similarity scores so they sum to 1:

Score

Sum of all scores

= Scaled Score

=0.05

0.24

=(§.82
0.24 +0.05
0.05
=§.18
0.24 +0.05

Same values!

0.12

=(§.82
0.12+0.024
0.024
=§.18
0.12+0.024
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That implies that the scaled similarity scores
for this relatively tight cluster...

0.24
=0.82
0.24+0.05
0.05
=0.18
0.24+0.05
g B @ o 0.12
i =0.82
o 0.12+0.024
0.024
=0.18
0.12+0.024
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That implies that the scaled similarity scores
for this relatively tight cluster...

0.24
=0.82
0.24 + 0.05
...are the same for this
i | 0.05
‘ relatively loose cluster! _0.18
‘ ‘ 0.24 + 0.05
0.12
=0.82
0.12 +0.024
0.024
=0.18
0.12 +0.024

COSMIC DAWN CENTER

_Dawn |
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The reality is a little more complicated, but only
slightly.

COSMIC DAWN CENTER
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The reality is a little more complicated, but only
slightly.

expect.

COSMIC DAWN CENTER

_Dawn |
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©
Now back to the original
scatter plof... ‘ “ ‘
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We've calculated similori’ry/ ' “
scores for this point. )
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Now we do it for this poin’r../
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Now we do it for this poin’r../

...and we do it for all the
points.
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One last thing and the scatter
plot will be all set with similarity
scoresll!
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Because the width of the distribution Q
is based on the density of the Q .
surrounding data points, the similarity O .

score to this node... . .
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@, -~ ‘.

...might not be the same as the /
similarity to fhis node. Is anybody reading these slides? I'll have a
small prize for the first student who emails
G me (steinhardt@nbi.ku.dk) about this, as
long as you email by midnight, May 1.

o N6
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So t-SNE just averages the two similarity
scores from the two directions...

e
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Ultimately, you end up with a matrix of similarity scores.
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Hooray!!ll We're done doing calculating similarity scores for the scatter plot!
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Now we randomly project the
data onto the number line...
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Now we randomly project the
data onto the number line... ‘

... and calculate similarit
scores for ’rh: poinl’rs <I>n I’rk»\/e . . . ... .. . “ .

number line.
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Just like before, that means
picking a point...

AN

Wednesday May 3, 2023




Just like before, that means
picking a point...

...measuring a distance...
i

@0 000000000 O
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...and lastly, drawing a line from
‘ the point to a curve. However,
‘ this time we're using a “1-
‘ distribution”.

Just like before, that means
picking a point...

...measuring a distance...

—i—
@0 000000000 O
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A “t-distribution”...
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A “t-distribution”...

...Is a lot like a normal distribution

ﬁ
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A “t-distribution”...

...Is alot like a normal distribution... ...except the “t" isn’'t as tall in the

/ middle...
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A “t-distribution”...

...Is alot like a normal distribution... ...except the “t" isn’'t as tall in the
middle...

... and the tails are taller on the ends.
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A “t-distribution”...

...Is alot like a normal distribution... ...except the “t" isn’'t as tall in the
middle...

... and the tails are taller on the ends.

The "“t-distribution” is the "“t" in 1-SNE.
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A “t-distribution”...

...Is alot like a normal distribution... ...except the “t" isn’'t as tall in the
middle...

... and the tails are taller on the ends.

The "“t-distribution” is the "“t" in 1-SNE.

We'll talk about why the t-distribution is used in a bit...
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So, using a t-distribution, we
calculate “unscaled” similarity
scores for all the points and then
scale them like before.

@ 00000000 O
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Like before, we end up with
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look like this row.

we want fo make this row...

\

RN e |

The goal of moving this point is...
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t-SNE moves the points a little bit at a time, and each step it chooses a direction that makes

the matrix on the left more like the matrix on the right.
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t-SNE moves the points a little bit at a time, and each step it chooses a direction that makes

the matrix on the left more like the matrix on the right.

It uses small steps, because it's a little bit like a chess game and can’t be solved all at

once. Instead, it goes one move at at tfime.
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Now to finally tell you why the *“t-distribution™ is used...
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Originally, the “SNE” algorithm used a normal distribution throughout and the clusters clumped up in the

middle and were harder to see.
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The t-distribution forces some space between the points.
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t-Stochastic Neighbor Embedding (1-SNE)

N. Oskolkov, towardsdatascience.com
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t-Stochastic Neighbor Embedding (1-SNE)

N. Oskolkov, towardsdatascience.com

Defines distance probability as Gaussian

2
e"p(—”‘t" =) /20"2) Pai +Pi )y
Pji = : ; Pij =
Zkg.-exp(-llws - n-ll’/%?) N
iju log, Pjli
Perplexity =2 ) (2)
2\~
(1 + |lyi — ¥l )
qij = 1 (3)

D kil (1 + ||y = yl||2)

i OKL -
KL(PI|Q) = Y > vy log%, Dy = 42— )i — ) (1 + llye — 1°) g
i J . ' j
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t-Stochastic Neighbor Embedding (1-SNE)

N. Oskolkov, towardsdatascience.com

Defines distance probability as Gaussian
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t-Stochastic Neighbor Embedding (1-SNE)

N. Oskolkov, towardsdatascience.com

Defines distance probability as Gaussian

em(_“'t" —zj|i'-’/2a§) Pij + Pji (1)
Pai = : y Pij = !
Zuiem(-ﬂxi —ZkHz/zU?) 4
Determines optimal o, Z Pji log; pjj
global vs. local Perplexity =2/ : (2)
(1+ 113 — w4
- 1 (3)
2
Zk;’l (l + |lye — wll )

KUPIQ) = Yoo, B =4S - a)-w)(1+lw-ul?)" @
3 i | ]
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t-Stochastic Neighbor Embedding (1-SNE)

N. Oskolkov, towardsdatascience.com

Defines distance probability as Gaussian

—lz: — z:11° B
Hat exp(~lai - 2;1*/20) by PUTPE
S 3 ’ 8= G AT
usi exp(—|lei — zil[*/207) =l
Determines optimal o, Z Pji log; Py
global vs. local Perplexity =2/ : (2)
(1 + |lw — yj||2)
qij = . (3)
2ok (l 1ok = wll ) Student t distribution (with heavy tails!)

KL(R”Q:) - Ezpjli log %: %’ - 42(1’!) qU)(yl y))(l x b Ilyl y}” ) (4)
i J i i
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t-Stochastic Neighbor Embedding (1-SNE)

N. Oskolkov, fowardsdatascience.com

0-40 1 I I I | 1
Gaussian
distribution
0.35F g
0.30 ¥
025} Points close in high 7
dims get even closer
< in low dims
=0.20} -
0.15F :
0.10f g
Student
t-distribution
0.05F Points far in high ¥
dims get even
. further in Ilow dimsI

B SR AL R R N -

X - distance between points
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t-Stochastic Neighbor Embedding (1-SNE)

N. Oskolkov, towardsdatascience.com

Defines distance probability as Gaussian

—lz: — z:11° B
e exp( ||z zJ” /201) . Pij + Pji (1)
ik = 3 ’ -\ e
epi exp(—llei — 2| /207) e
Determines optimal o, | Z Pjji logz Py
global vs. local Perplexity =2/ : (2)
(1 + |lw — yj||2)
e ! (3)
2ok (l + g = il ) Student t distribution (with heavy tails!)

KLPIQ) = Smilogrr, 5t =43 -0 —u) (1 +lw-wl?) " @
o i i 7

Defines loss function for gradient descent
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Problem 1: Preprocessing/Standardization

MNIST, raow data
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Problem 3: Hyperparameters

Cortale 2017

Perplexity: 5

2 -

15 9

@
O 0N A WN -0

10 o

&
1
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1
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Can we do bettere
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Can we do bettere

« 1-SNE is slow and scales poorly

Barnes-Hut approximation!

« Difficult tfradeoff between global and local
stfructure

« Lack of mathematical formalism
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Can we do bettere

« 1-SNE is slow and scales poorly
Barnes-Hut approximation ONLY IN 2D OR 3D!

« Difficult tfradeoff between global and local
stfructure

Perplexity!

« Lack of mathematical formalism
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Can we do bettere

« 1-SNE is slow and scales poorly
Barnes-Hut approximation ONLY IN 2D OR 3D!

« Difficult tfradeoff between global and local
stfructure

« Lack of mathematical formalism
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UMAP

UMAP builds on using Riemannian manifolds! Within differential geometry, this
allows the definition of angles, hyper-area, and curvature in high dimensionality.

Abstract

UMAP (Uniform Manifold Approximation and Projection) is a novel
manifold learning technique for dimension reduction. UMAP is constructed
from a theoretical framework based in Riemannian geometry and algebraic
topology. The result is a practical scalable algorithm that is applicable to
real world data. The UMAP algorithm is competitive with t-SNE for visu-
alization quality, and arguably preserves more of the global structure with
superior run time performance. Furthermore, UMAP has no computational
restrictions on embedding dimension, making it viable as a general purpose
dimension reduction technique for machine learning.

UMAP paper, arXiv 1802.03426, Sep. 2020
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UMAP

As in the t-SNE case, UMAP tries to find a metric in both the original (large) space
X, and the lower dimension output space Y, which can be (topologically) matched:

At a high level, UMAP uses local manifold approximations and patches
together their local fuzzy simplicial set representations to construct a topo-
logical representation of the high dimensional data. Given some low dimen-
sional representation of the data, a similar process can be used to construct

an equivalent topological representation. UMAP then optimizes the layout
of the data representation in the low dimensional space, to minimize the
cross-entropy between the two topological representations.

UMAP paper, arXiv 1802.03426, Sep. 2020

However, the metrics in X and Y used by UMAP and t-SNE differ:

For t-SNE these metrics are as follows:

—1
2 2
oji = exp(— las — 213 /202) | | wiy = (14 llyi — w3l
For UMAP they are:
—1
v;|; = exp|(—d (zi, x;) — p;) /0 w;; = (1 +ally; — yj||§b>
COSMIC DAWN GENTER fl‘i ”g-, Wednesday May 3, 2023
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First million integers in UMAP

Prime-factorizing the
first million integers,
and drawing them
(artfully) gives the
following image.

If nothing else, it’s a
great piece of ML art.




Group “similar” things together

Wang et al. 2020

t-SNE(perplexity=10) UMAP(n_neighbors=10) TriMAP(n_inliers=8)

UMAP(n_neighbors=20) TriMAP(n_inliers=10) PaCMAP

t-SNE(perplexity=40) UMAP(n_neighbors=40) TriMAP(n_inliers=15)

’,
“.. ¥
¥ <
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I-SNE vs. UMAP

Kragh Jespersen et al. 2020

Fermi

500 A .
250 A .
0 T T 1—1 T T |—I
-2 0 2 -2 0 2
|OgT90 |Ongo
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Approach 2: Finding "dead” galaxies

COSMOS2015 catalog, objects at z=1

| e Test galaxy 2!
—~ e Star-forming —
"~ o Quiescent i
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Which is a better separatione

Number

t-SNE UMAP
1200 1 1000 A
1000 - 800 A
800 A
600 A
@
£
600 E
400 H
400
200 - 200 A
0- 0 -
0.0 02 0.4 0.6 0.8 10 0.0 0.2 04 0.6 0.8 10

Probability (alive) Probability (alive)
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Number

1200 A

1000 A

800 -

600

400 -

200 A

Which is a better separatione

t-SNE UMAP
1000 -
800 -
w600
L
LQ
£
z
400 -
200 -
0 4
0.0 0.2 04 0.6 0.8 10 0.0 0.2 04 0.6 08 10
Probability (alive) Probability (alive)
10 A
0.8 1
0.6 1
o
B
0.4 1
0.2 1
— t-SNE
0?0 0.'2 0.’4 0.|6 0.'8 ZLIO

FPR
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Our goal:

Filters

"V band”
"I band”

"z band” Choose a few good
") band” | =gy examples

"H band”

etc.

(Stellar) Mass
Star formation rate —

Star formation history 3 D
Distance/Redshift | <G -l ymupiall,
Age

etc.

COSMIC DAWN GENTER e1gri' Wednesday May 3, 2023




Approach 2: Similar galaxies are nearby

WARNING: positions are neither fixed nor meaningful. Topology is meaningful.
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Approach 2: Arranging by photometry
also calculates other useful things!

COSMOS2015 catalog, objects at z=1
Log10(Mx)
9.5 10.0 10.5 11.0 11.5 *  S/Nmips<5

N el

I BT BT ET T BT AT BT A AT A B
ll'llllllllllllllllllllllll

COSMIC DAWN CENTER

_DAWN FaA:§
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Photometric Redshifts Usually Work...

Hovis-Afflerbach, Steinhardt et al. 2020

8 —
N=22978
: 0=0.0078 .
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Photometric Redshifts Usually Work...

Hovis-Afflerbach, Steinhardt et al. 2020

N=22978
0=0.0078

Zphot

o

5
w
o Q

|
w
Q

AZ[1 + Zspec
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Sometimes, sparse sampling can miss the

1 _
10 correct redshift by a large margin!
— Zphot
— Zspec
100 I | I I I
0 1 2 3 4 5 6
Redshift
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...But Not Always!

About 5% of objects fail template fitting’

Can we identify these objects without comparing with
spectroscopye

Can we fix these objects and determine the correct propertiese

Wednesday May 3, 2023
1Hildebrandt et al. 2010:

12 photo-z methods tested on objects with 18 bands, between 4.9% and 29% of objects had dz/(1+z) > 0.15




1.

continue to hold.

Pwo Three Fundamental

Assumptions for Photometry

If an object Is sufficiently well-measured, there is
a surjective (one-to-one or many-to-one, but not
one-to-many) mapping from photometric fluxes
to astrophysical properties.

Objects with sufficiently similar photometry
should be mapped to similar astrophysical
properties.

We can map objects from the full, n-dimensional

space with all bands to a smaller one with many
neighbors, and the other two assumptions will

Wednesday May 3, 2023



t-SNE Map for COSMOS/Spec-z Dataset

Hovis-Afflerbach, Steinhardt et al. 2020

Colored by Zzppot
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t-SNE Map for COSMOS/Spec-z Dataset

Hovis-Afflerbach, Steinhardt et al. 2020

Colored by Zppot

N WO
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Task: Make errors “look”™ wrong

Hovis-Afflerbach, Steinhardt et al. 2020

Colored by zppot

N WO
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ROC Curve for Catastrophic Errors

Hovis-Afflerbach, Steinhardt et al. 2020 al

0.2 1 —— P05: TROC=0.889
—— P20: ROC=0.884
—— P35: TROC=0.897
—— P50: TROC=0.912
0.0 +- . . . .
0.0 0.2 0.4 0.6 0.8 1.0
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