### **Dimensionality Reduction**

Principal Component Analysis (PCA)

t-Stochastic Neighbor Embedding (t-SNE)

Uniform Manifold Approximation and Projection (UMAP)







Quick review

We've learned several useful methods already. What sorts of things are we now good at?



Quick review

We've learned several useful methods already. What sorts of things are we now good at?

Can I always use these? If not, what are the requirements in order to run these methods?



Quick review

We've learned several useful methods already. What sorts of things are we now good at?

Can I always use these? If not, what are the requirements in order to run these methods?

What should we do if we don't have labels?



# What should we do if we don't have labels?



https://setosa.io/ev/principal-component-analysis/







https://setosa.io/ev/principal-component-analysis/







https://setosa.io/ev/principal-component-analysis/







https://setosa.io/ev/principal-component-analysis/





COSMIC DAWN GENTER

#### PCA in 17D

https://setosa.io/ev/principal-component-analysis/

|                    | England | N Ireland | Scotland | Wales              |
|--------------------|---------|-----------|----------|--------------------|
| Alcoholic drinks   | 375     | 135       | 458      | 475                |
| Beverages          | 57      | 47        | 53       | 73                 |
| Carcase meat       | 245     | 267       | 242      | 227                |
| Cereals            | 1472    | 1494      | 1462     | 1582               |
| Cheese             | 105     | 66        | 103      | 103                |
| Confectionery      | 54      | 41        | 62       | 64                 |
| Fats and oils      | 193     | 209       | 184      | 235                |
| Fish               | 147     | 93        | 122      | 160                |
| Fresh fruit        | 1102    | 674       | 957      | <mark>1</mark> 137 |
| Fresh potatoes     | 720     | 1033      | 566      | 874                |
| Fresh Veg          | 253     | 143       | 171      | 265                |
| Other meat         | 685     | 586       | 750      | 803                |
| Other Veg          | 488     | 355       | 418      | 570                |
| Processed potatoes | 198     | 187       | 220      | 203                |
| Processed Veg      | 360     | 334       | 337      | 365                |
| Soft drinks        | 1374    | 1506      | 1572     | 1256               |
| Sugars             | 156     | 139       | 147      | 175                |



#### PCA in 17D

#### https://setosa.io/ev/principal-component-analysis/

|                    | England | N Ireland | Scotland | Wales              |
|--------------------|---------|-----------|----------|--------------------|
| Alcoholic drinks   | 375     | 135       | 458      | 475                |
| Beverages          | 57      | 47        | 53       | 73                 |
| Carcase meat       | 245     | 267       | 242      | 227                |
| Cereals            | 1472    | 1494      | 1462     | 1582               |
| Cheese             | 105     | 66        | 103      | 103                |
| Confectionery      | 54      | 41        | 62       | 64                 |
| Fats and oils      | 193     | 209       | 184      | 235                |
| Fish               | 147     | 93        | 122      | 160                |
| Fresh fruit        | 1102    | 674       | 957      | <mark>1</mark> 137 |
| Fresh potatoes     | 720     | 1033      | 566      | 874                |
| Fresh Veg          | 253     | 143       | 171      | 265                |
| Other meat         | 685     | 586       | 750      | 803                |
| Other Veg          | 488     | 355       | 418      | 570                |
| Processed potatoes | 198     | 187       | 220      | 203                |
| Processed Veg      | 360     | 334       | 337      | 365                |
| Soft drinks        | 1374    | 1506      | 1572     | 1256               |
| Sugars             | 156     | 139       | 147      | 175                |







1. Standardization



- 1. Standardization
- 2. Compute covariance matrix

$$\begin{array}{cccc} Cov(x,x) & Cov(x,y) & Cov(x,z) \\ Cov(y,x) & Cov(y,y) & Cov(y,z) \\ Cov(z,x) & Cov(z,y) & Cov(z,z) \end{array}$$



- 1. Standardization
- 2. Compute covariance matrix

 $\left[\begin{array}{ccc} Cov(x,x) & Cov(x,y) & Cov(x,z) \\ Cov(y,x) & Cov(y,y) & Cov(y,z) \\ Cov(z,x) & Cov(z,y) & Cov(z,z) \end{array}\right]$ 

3. Compute eigenvectors and eigenvalues





- 1. Standardization
- 2. Compute covariance matrix

 $\left[\begin{array}{ccc} Cov(x,x) & Cov(x,y) & Cov(x,z)\\ Cov(y,x) & Cov(y,y) & Cov(y,z)\\ Cov(z,x) & Cov(z,y) & Cov(z,z) \end{array}\right]$ 

3. Compute eigenvectors and eigenvalues

4. Discard vectors that are not important enough





#### Example: Handwritten Digits

MNIST dataset





Principal Component Analysis



#### Example: Handwritten Digits

MNIST dataset





#### Some things aren't linear!

Wikimedia Commons





Pezzotti 2019





"Fashion MNIST" datasets, t-SNE





Wang et al. 2020



COSMIC DAWN CENTER

#### Example: Separate Short and Long GRBs

R. Mallozzi, updated Aug 2018 at https://gammaray.msfc.nasa.gov/batse/grb/duration/



COSMIC DAWN CENTER

#### t-SNE map for Swift light curves

Kragh Jespersen et al. 2020





#### t-SNE map for Swift light curves

Kraah Jespersen et al. 2020





#### t-SNE map for Swift light curves

Kragh Jespersen et al. 2020





#### Embeddings, colored by duration





#### Embeddings, colored by duration



#### Hardness distribution





#### Redshift distribution

Kragh Jespersen et al. 2020





#### Possible subgroupings?

Kragh Jespersen et al. 2020





#### Structure is durable, not location!

Steinhardt, Mann, Rusakov, and Kragh Jespersen 2023





#### Objects can "jump"

Steinhardt, Mann, Rusakov, and Kragh Jespersen 2023





#### Example: Photometry



#### Example: Photometry





COSMIC DAWN



no detection

detection

3, 2023

#### Example: Galaxy spectra

SDSS/Galaxy Zoo





Wednesday May 3, 2023

#### Spectra have similar features!

Zaroubi et al. 2013



Wednesday May 3, 2023



~

#### Maybe limited information is enough

Zaroubi et al. 2013



COSMIC DAWN CENTER

DAWN

W dnesd y May 3, 2023

### Our goal:





#### Two Fundamental Assumptions for Photometry



### Two Fundamental Assumptions for Photometry

1. If an object is sufficiently well-measured, there is a surjective (one-to-one or many-to-one, but not one-to-many) mapping from photometric fluxes to astrophysical properties



### Our goal:





#### Two Fundamental Assumptions for Photometry

- 1. If an object is sufficiently well-measured, there is a surjective (one-to-one or many-to-one, but not one-to-many) mapping from photometric fluxes to astrophysical properties.
- 2. Objects with sufficiently similar photometry should be mapped to similar astrophysical properties.



### Our goal:





### Our goal:



### Approach 1: Color space map using two colors (three bands)

COSMOS2015 catalog, objects at z≈1





### Approach 1: Color space map using two colors (three bands)

COSMOS2015 catalog, objects at z≈1





#### Approach 2: Color space map using all bands



### Two Three Fundamental Assumptions for Photometry

- 1. If an object is sufficiently well-measured, there is a surjective (one-to-one or many-to-one, but not one-to-many) mapping from photometric fluxes to astrophysical properties.
- 2. Objects with sufficiently similar photometry should be mapped to similar astrophysical properties.
- 3. We can map objects from the full, n-dimensional space with all bands to a smaller one with many neighbors, and the other two assumptions will continue to hold.



### Two Three Fundamental Assumptions for Photometry

- 1. If an object is sufficiently well-measured, there is a surjective (one-to-one or many-to-one, but not one-to-many) mapping from photometric fluxes to astrophysical properties.
- 2. Objects with sufficiently similar photometry should be mapped to similar astrophysical properties.
- 3. We can map objects from the full, n-dimensional space with all bands to a smaller one with many neighbors, and the other two assumptions will continue to hold.



Can we somehow decide what information is "important" even without labels?

## Approach 2: First, make a t-SNE map reducing to two dimensions

COSMOS2015 catalog, objects at z≈1





#### Approach 2: Similar galaxies are nearby

COSMOS2015 catalog, objects at z≈1





#### Approach 2: Similar galaxies are nearby

WARNING: positions are neither fixed nor meaningful. Topology is meaningful.



## Approach 2: Arranging by photometry also calculates other useful things!

COSMOS2015 catalog, objects at z≈1

 $Log_{10}(M_*)$ 

COSMIC DAWN CENTER

DAWN



#### projector.tensorflow.org

#### **Embedding Projector**





BOOKMARKS (0) 🕜

~