Dimensionality Reduction

Principal Component Analysis (PCA)
t-Stochastic Neighbor Embedding (t-SNE)

Uniform Manifold Approximation and Projection (UMAP)

Quick review

Wednesday May 3, 2023

Quick review

We've learned several useful methods already. What sorts of things are we now good at?

Quick review

We've learned several useful methods already. What sorts of things are we now good at?

Can I always use these? If not, what are the requirements in order to run these methods?

Quick review

We've learned several useful methods already. What sorts of things are we now good at?

Can I always use these? If not, what are the requirements in order to run these methods?

What should we do if we don't have labels?

What should we do if we don' \dagger have labels?

Principal Component Analysis (PCA)

https://setosa.io/ev/principal-component-analysis/

PCA in 3D

https://setosa.io/ev/principal-component-analysis/

PCA in 3D

https://setosa.io/ev/principal-component-analysis/

Wednesday May 3, 2023

PCA in 17D

https://setosa.io/ev/principal-component-analysis/

Alcoholic drinks
Beverages
Carcase meat
Cereals
Cheese
Confectionery
Fats and oils
Fish
Fresh fruit
Fresh potatoes
Fresh Veg
Other meat
Other Veg
Processed potatoes
Processed Veg
Soft drinks
Sugars

England	N Ireland	Scotland	Wales
375	135	458	475
57	47	53	73
245	267	242	227
1472	1494	1462	1582
105	66	103	103
54	41	62	64
193	209	184	235
147	93	122	160
1102	674	957	1137
720	1033	566	874
253	143	171	265
685	586	750	803
488	355	418	570
198	187	220	203
360	334	337	365
1374	1506	1572	1256
156	139	147	175

PCA in 17D

https://setosa.io/ev/principal-component-analysis/

OK, so how can we find the right basis?

1. Standardization

OK, so how can we find the right basis?

1. Standardization
2. Compute covariance matrix

$$
\left[\begin{array}{ccc}
\operatorname{Cov}(x, x) & \operatorname{Cov}(x, y) & \operatorname{Cov}(x, z) \\
\operatorname{Cov}(y, x) & \operatorname{Cov}(y, y) & \operatorname{Cov}(y, z) \\
\operatorname{Cov}(z, x) & \operatorname{Cov}(z, y) & \operatorname{Cov}(z, z)
\end{array}\right]
$$

OK, so how can we find the right basis?

1. Standardization
2. Compute covariance matrix

$$
\left[\begin{array}{ccc}
\operatorname{Cov}(x, x) & \operatorname{Cov}(x, y) & \operatorname{Cov}(x, z) \\
\operatorname{Cov}(y, x) & \operatorname{Cov}(y, y) & \operatorname{Cov}(y, z) \\
\operatorname{Cov}(z, x) & \operatorname{Cov}(z, y) & \operatorname{Cov}(z, z)
\end{array}\right]
$$

3. Compute eigenvectors and eigenvalues

OK, so how can we find the right basis?

1. Standardization
2. Compute covariance matrix

$$
\left[\begin{array}{ccc}
\operatorname{Cov}(x, x) & \operatorname{Cov}(x, y) & \operatorname{Cov}(x, z) \\
\operatorname{Cov}(y, x) & \operatorname{Cov}(y, y) & \operatorname{Cov}(y, z) \\
\operatorname{Cov}(z, x) & \operatorname{Cov}(z, y) & \operatorname{Cov}(z, z)
\end{array}\right]
$$

3. Compute eigenvectors and eigenvalues
4. Discard vectors that are not important enough

Example: Handwritten Digits

$$
\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9
\end{array}
$$

Group "similar" things together

Principal Component Analysis

Example: Handwritten Digits

$$
\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9
\end{array}
$$

Some things aren'† linear!

Wikimedia Commons

Group "similar" things together

Pezzotti 2019

Group "similar" things together

"Fashion MNIST" datasets, t-SNE

Group "similar" things together

Example: Separate Short and Long GRBs

R. Mallozzi, updated Aug 2018 at https://gammaray.msfc.nasa.gov/batse/grb/duration/

t-SNE map for Swift light curves

Kragh Jespersen et al. 2020

t-SNE map for Swift light curves

Kraah Jespersen et al. 2020

t-SNE map for Swift light curves

Kragh Jespersen et al. 2020

Embeddings, colored by duration

Embeddings, colored by duration

Hardness distribution

Redshift distribution

Kragh Jespersen et al. 2020
redshift

Wednesday May 3, 2023

Possible subgroupings?

Kragh Jespersen et al. 2020

Structure is durable, not location!

Steinhardt, Mann, Rusakov, and Kragh Jespersen 2023

Objects can "jump"

Steinhardt, Mann, Rusakov, and Kragh Jespersen 2023

Example: Photometry

Example: Photometry

Example: Galaxy spectra

SDSS/Galaxy Zoo

Spectra have similar features!

Zaroubi et al. 2013

Maybe limited information is enough

Our goal:

Two Fundamental Assumptions for Photometry

Two Fundamental Assumptions for Photometry

1. If an object is sufficiently well-measured, there is a surjective (one-to-one or many-to-one, but not one-to-many) mapping from photometric fluxes to astrophysical properties

Our goal:

Two Fundamental Assumptions for Photometry

1. If an object is sufficiently well-measured, there is a surjective (one-to-one or many-to-one, but not one-to-many) mapping from photometric fluxes to astrophysical properties.
2. Objects with sufficiently similar photometry should be mapped to similar astrophysical properties.

Our goal:

Our goal:

Approach 1: Color space map using two colors (three bands)

COSMOS2015 catalog, objects at $\mathrm{z} \approx 1$

Approach 1: Color space map using two colors (three bands)

COSMOS2015 catalog, objects at $\mathrm{z} \approx 1$

Approach 2: Color space map using all bands

Two Three Fundamental Assumptions for Photometry

1. If an object is sufficiently well-measured, there is a surjective (one-to-one or many-to-one, but not one-to-many) mapping from photometric fluxes to astrophysical properties.
2. Objects with sufficiently similar photometry should be mapped to similar astrophysical properties.
3. We can map objects from the full, n-dimensional space with all bands to a smaller one with many neighbors, and the other two assumptions will continue to hold.

Iwo Three Fundamental Assumptions for Photometry

1. If an object is sufficiently well-measured, there is a surjective (one-to-one or many-to-one, but not one-to-many) mapping from photometric fluxes to astrophysical properties.
2. Objects with sufficiently similar photometry should be mapped to similar astrophysical properties.
3. We can map objects from the full, n-dimensional space with all bands to a smaller one with many neighbors, and the other two assumptions will continue to hold.

Approach 2: First, make a t-SNE map reducing to two dimensions

Approach 2: Similar galaxies are nearby

COSMOS2015 catalog, objects at $\mathrm{z} \approx 1$

Approach 2: Similar galaxies are nearby

WARNING: positions are neither fixed nor meaningful. Topology is meaningful.

Approach 2: Arranging by photometry also calculates other useful things!

COSMOS2015 catalog, objects at $\mathrm{z} \approx 1$
$\log _{10}\left(M_{*}\right)$

- $\mathrm{S} / \mathrm{N}_{\text {MIPS }}<5$
- $\mathrm{S} / \mathrm{N}_{\text {MIPS }}>5$

projector.tensorflow.org

| DATA |
| :--- | :--- | :--- |
| Stensors found |
| Word2Vec 10 K |

Run

For faster results, the data will be sampled down to 5,000 points.

Learn more about UMAP

(?)

-.... 7 A \mid Points: $10000 \mid$ Dimension: $200 \mid$ Selected 101 points

Show All Data	Isolate 101 points	Clear selection
		by
Search		word
neighbors (?		10C
distance	COSINE	EUCLIDEAN

Nearest points in the original space:

| chicago | 0.40 |
| :--- | :--- | :--- |
| massachusetts | 0.40 |
| philadelphia | 0.41 |
| atlanta | 0.49 |
| harvard | 0.50 |
| london | 0.50 |
| illinois | 0.51 |
| baltimore | 0.51 |
| maryland | 0.54 |
| york | 0.55 |
| cincinnati | 0.55 |
| toronto | 0.55 |
| seattle | 0.56 |
| brooklyn | 0.57 |
| miami | 0.58 |
| cambridge | 0.58 |
| pennsylvania | 0.58 |
| pittsburgh | 0.58 |
| detroit | 0.59 |
| california | 0.59 |
| sox | 0.60 |
| kansas | 0.60 |

