A simple ML example Data set: Housing Prices

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!"

Data, goal, and misc.

The data:
About 50.000 real estate sales, including the final sales price along with several descriptive variables, many incomplete or missing.

The goal:
To determine the final sales price as accurately as possible. NOTE: "As accurately" is not a well determined measure, and we will discuss this.

Miscellaneous:
While the dataset is on the border of "Big Data", we have chosen it, as it fits all the ML methods well, and since its analysis can be done in finite time.

Dataset variables - 90 in total

O MI_OBJ_OIS_PROPERTY_ID
1 MI OBJ OIS PROPERTY NUMBER 2 MI_OBJ_OIS_MOTHER_ID
3 MI_OBJ_OIS_MUNICIPALITY_NUMBER
4 MI_OBJ_OIS_POSTAL_CODE
5 MI_OBJ_OIS_RENTED_PLOT
6 MI_OBJ_OIS_OWNERSHIP_CODE_PROPERTY 7 MI_OBJ_OIS_OWNERSHIP_CODE_UNIT 8 MI_OBJ_OIS_PROPERTY_APPLICATION_CODE_UNIT 9 MI_OBJ_OIS_PROPERTY_APPLICATION_CODE_BUILDING 10 MI _OBJ_OIS_PROPERTY_USE_CODE
11 MI_OBJ_OIS_SALES_PRICE
12 MI OBJ OIS DATE OF SALES PRICE
13 MI_OBJ_OIS_PREVIOUS_SALES_PRICE_FIRST
14 MI_OBJ_OIS_DATE_OF_PREVIOUS_SALES_PRICE_FIRST
15 MI_OBJ_OIS_PREVIOUS_SALES_PRICE_SECOND
16 MI_OBJ_OIS_DATE_OF_PREVIOUS_SALES_PRICE_SECOND
17 MI_OBJ_OIS_PREVIOUS_SALES_PRICE_THIRD
18 MI_OBJ_OIS_DATE_OF_PREVIOUS_SALES_PRICE_THIRD
19 MI_OBJ_OIS_PREVIOUS_SALES_PRICE_FOURTH
20 MI _OBJ_OIS_DATE_OF_PREVIOUS_SALES_PRICE_FOURTH 21 MI_OBJ_OIS_TAXATION_VALUE
22 MI_OBJ_OIS_TAXATION_VALUE_PLOT
23 MI_OBJ_OIS_TAXATION_VALUE_FARMHOUSE 24 MI _OBJ_OIS_DATE_OF_TAXATION_VALUE
25 MI _OBJ_OIS_PROPERTY_ADDRESS
26 MI_OBJ_OIS_HOUSE_NUMBER 27 MI_OBJ_OIS_HOUSE_LETTER 28 MI_OBJ_OIS_DOOR_CODE 29 MI_OBJ_OIS_FLOOR_NUMBER 30 MI_OBJ_OIS_MAX_FLOOR_NUMBER_BUILDING 31 MI_OBJ_OIS_LAND_ZONE 32 MI_OBJ_OIS_SIZE_OF_HOUSE
33 MI_OBJ_OIS_SIZE_OF_BUSINESS_AREA
34 MI OBJ_OIS_SIZE_OF_PLOT
35 MI _OBJ_OIS_SIZE_OF_INTEGRATED_CARPORT
36 MI_OBJ_OIS_SIZE_OF_NOT_INTEGRATED_CARPORT
37 MI OBJ OIS SIZE OF OUTDOOR LIVING ROOM 38 MI _OBJ_OIS_SIZE_OF_INTEGRATED_OUTHOUSE
39 MI_OBJ_OIS_SIZE_OF_INTEGRATED_GARAGE
40 MI_OBJ_OIS_SIZE_OF_LEGAL_BASEMENT
41 MI_OBJ_OIS_SIZE_OF_BASEMENT
42 MI_OBJ_OIS_SIZE_OF_ATTIC
43 MI_OBJ_OIS_SIZE_OF_USED_ATTIC
44 MI_OBJ_OIS_SIZE_OF_HOUSE_EXCL_UTILIZED_ATTIC

45 MI_OBJ_OIS_SIZE_OF_BUSINESS_AREA_BUILDING 46 MI OBJ_OIS_SIZE_OF_NOT_INTEGRATED_GARAGE 47 MI_OBJ_OIS_NUMBER_OF_FLOORS
48 MI_OBJ_OIS_CONSTRUCTION_YEAR
49 MI_OBJ_OIS_CONSTRUCTION_MATERIAL
50 MI _OBJ_OIS_REBUILD_YEAR
51 MI_OBJ_OIS_ROOF_MATERIAL
52 MI_KNN_PROPERTY_CONDITION
53 MI_KNN_TOP_FLOOR_INDICATOR
54 MI_KNN_GROUND_FLOOR_INDICATOR 55 MI_KNN_GROUP_VALID_REGRESSION_INPUT 56 MI_KNN_GRP_PERCENTILE_MIN_WEIGHTED_SIZE_OF_HOUSE 57 MI_KNN_GROUP_PERCENTILE_MIN_SIZE_OF_PLOT 58 MI_KNN_GROUP_PERCENTILE_MIN_CONSTRUCTION_YEAR 59 MI_KNN_GROUP_PERCENTILE_MIN_TAXATION_VALUE 60 MI_KNN_GROUP_PERCENTILE_MIN_TAXATION_VALUE_PLOT 61 MI_KNN_GRP_PERCENTILE_MAXX_WEIGHTED_SIZE_OF_HOUSE 62 MI_KNN_GROUP_PERCENTILE_MAX_SIZE_OF_PLOT 63 MI_KNN_GROUP_PERCENTILE_MAX_TAXATION_VALUE 64 MI_KNN_GROUP_PERCENTILE_MAX_TAXATION_VALUE_PLOT 65 MI_KNN_M2_P_PREDIC
66 MI_KNN_STD_SALES_PRICE_NEIGHBORS
67 MI_KNN_AVG_GEO_DISTANCE_NEIGHBORS
68 MI_KNN_AVG_CONSTRUCTION_YEAR_NEIGHBORS 69 MI_KNN_AVG_WEIGHTED_SIZE_OF_HOUSE_NEIGHBORS 70 MI_KNN_AVG_SIZE_OF_PLOT_NEIGHBORS 71 MI_KNN_APARTMENTS_NEIGHBORS_INDICATOR 72 MI_KNN_MATERIAL_TYPE
73 MI_KNN_APARTMENTS_ACTUAL_NUM_OF_NEIGHBORS 74 MI_KNN_STATUS
75 MI_OBJ_NUMBER_OF_EXTERNAL_MATRS
76 MI_OBJ_OIS_SUM_OF_TAXATION_VALUES
77 MI_OBJ_OIS_N_COORDINATE
78 MI_OBJ_OIS_E_COORDINATE
79 C20_1MONTH\%
80 C20_3MONTH\%
81 C20_6MONTH\%
82 C20_12MONTH\%
83 SCHOOL_DISTANCE_1
84 SCHOOL_DISTANCE_2
85 SCHOOL_DISTANCE_3
86 SUPERMARKET_DISTANCE_1 87 SUPERMARKET_DISTANCE_2 88 SUPERMARKET_DISTANCE_3 89 KOEBESUM_BELOEB

Dataset variables - 90 in total

0 MI_OBJ_OIS_PROPERTY_ID
1 MI OBJ OIS PROPERTY NUMBER
2 MI_OBJ_OIS_MOTHER_ID
3 MI_OBJ_OIS_MUNICIPALITY_NUMBER 4 MI_OBJ_OIS_POSTAL_CODE
5 MI_OBJ_OIS_RENTED_PLOT

Postal code

6 MI OBJ OIS OWNERSHIP CODE PROPERTY
7 MI_OBJ_OIS_OWNERSHIP_CODE_UNIT
8 MI_OBJ_OIS_PROPERTY_APPLICATION 9 MI_OBJ_OIS_PROPERTY_APPLICATION 10 MI_OBJ_OIS_PROPERTY_USE_CODE
 Sales price
11 MI_OBJ_OIS_SALES_PRICE
12 MI_OBJ_OIS_DATE_OF_SALES_PRICE 13 MI_OBJ_OIS_PREVIOUS_SALES_PRICE
14 MI_OBJ_OIS_DATE_OF_PREVIOUS_SAL
Sales date
15 MI_OBJ_OIS_PREVIOUS_SALES_PRICE_SECOND
16 MI_OBJ_OIS_DATE_OF_PREVIOUS_SALES_PRICE_SECOND
17 MI_OBJ_OIS_PREVIOUS_SALQ 18 MI_OBJ_OIS_DATE_OF_PREVI 19 MI_OBJ_OIS_PREVIOUS_SALE

Taxation value 20 MI OBJ_OIS_DATE_OF_PREV 21 MI_OBJ_OIS_TAXATION_VALU 22 MI _OBJ_OIS_TAXATION_VALU
 Taxation value plot 23 MI OBJ_OIS_TAXATION_VALU 24 MI _OBJ_OIS_DATE_OF_TAXATION_VALUE 25 MI OBJ_OIS_PROPERTY_ADDRESS

Address
26 MI_OBJ_OIS_HOUSE_NUMBER 27 MI _OBJ_OIS_HOUSE_LETTER 28 MI_OBJ_OIS_DOOR_CODE 29 MI_OBJ_OIS_FLOOR_NUMBER 30 MI _OBJ_OIS_MAX_FLOOR_NUMBER Floor number 31 MI_OBJ_OIS_LAND_ZONE 32 MI_OBJ_OIS_SIZE_OF_HOUSE 33 MI _OBJ_OIS_SIZE_OF_BUSINE Floor number max 34 MI_OBJ_OIS_SIZE_OF_PLOT 35 MI OBBJ_OIS_SIZE_OF_INTEGRATED_ \varnothing 36 MI OBJ_OIS_SIZE_OF_NOT_INTEGRA 37 MI OBJ_OIS_SIZE_OF_OUTDOOR_LIV Size indoor 38 MI _OBJ_OIS_SIZE_OF_INTEGRATED_ 39 MI _OBJ_OIS_SIZE_OF_INTEGRATED 40 MI _OBJ_OIS_SIZE_OF_LEGAL_BASE Size outdoor 41 MI_OBJ_OIS_SIZE_OF_BASEMENT 42 MI OBJ_OIS_SIZE_OF_ATTIC 43 MI_OBJ_OIS_SIZE_OF_USED_ATTIC 44 MI_OBJ_OIS_SIZE_OF_HOUSE_EXCL_UTILIZED_ATTIC

45 MI_OBJ_OIS_SIZE_OF_BUSINESS_AREA_BUILDING 46 MI_OBJ_OIS_SIZE_OF_NOT_INTEGRATED_GARAGE 47 MI_OBJ_OIS_NUMBER_OF_FLOORS 48 MI_OBJ_OIS_CONSTRUCTION_YEAR 49 MI_OBJ_OIS_CONSTRUCTION_MATERIL

Construction year

 50 MI _OBJ_OIS_REBUILD_YEAR51 MI_OBJ_OIS_ROOF_MATERIAL 52 MI_KNN_PROPERTY_CONDITION

Property condition

 53 MI_KNN_TOP_FLOOR_INDICATOR TOR 55 MI_KNN_GROUP_VALID_REGRESSION_INPUT 56 MI_KNN_GRP_PERCENTILE_MIN_WEIGHTED_SIZE_OF_HOUSE 57 MI_KNN_GROUP_PERCENTILE_MIN_SIZE_OF_PLOT 58 MI_KNN_GROUP_PERCENTILE_MIN_CONSTRUCTION_YEAR 59 MI_KNN_GROUP_PERCENTILE_MIN_TAXATION_VALUE 60 MI_KNN_GROUP_PERCENTILE_MIN_TAXATION_VALUE_PLOT 61 MI_KNN_GRP_PERCENTILE_MAX_WEIGHTED_SIZE_OF_HOUSE 62 MI_KNN_GROUP_PERCENTILE_MAX_SIZE_OF_PLOT 63 MI_KNN_GROUP_PERCENTILE_MAX_TAXATION_VALUE 64 MI_KNN_GROUP_PERCENTILE_MAX_TAXATION_VALUE_PLOT 65 MI_KNN_M2_P_PREDIC66 MI_KNN_STD_SALES_PRICE_NEIGHBORS
67 MI_KNN_AVG_GEO_DISTANCE_NEIGHBORS 68 MI_KNN_AVG_CONSTRUCTION_YEAR_NEIGHBORS 69 MI_KNN_AVG_WEIGHTED_SIZE_OF_HOUSE_NEIGHBORS 70 MI_KNN_AVG_SIZE_OF_PLOT_NEIGHBORS 71 MI_KNN_APARTMENTS_NEIGHBORS_INDICATOR 72 MI_KNN_MATERIAL_TYPE
73 MI_KNN_APARTMENTS_ACTUAL_NUM_OF_NEIGHBORS 74 MI_KNN_STATUS
75 MI_OBJ_NUMBER_OF_EXTERNAL_MATRS
76 MI_OBJ_OIS_SUM_OF_TAXATION_VALUES
77 MI_OBJ_OIS_N_COORDINATE
78 MI_OBJ_OIS_E_COORDINATE
79 C20_1MONTH\%
80 C20_3MONTH\%
81 C20_6MONTH\%
82 C20_12MONTH\%
83 SCHOOL_DISTANCE_1 84 SCHOOL_DISTANCE_2 85 SCHOOL_DISTANCE_3 86 SUPERMARKET_DISTANC

Distance to supermarket 87 SUPERMARK 88 SUPERMARK 89 KOEBESUM PRICE PAID FOR PROPERTY

Information available

While there are in principle 90 pieces of information on each property sale, it is in practice not the case! As it turns out, most entries are empty!!!

In the figure we consider the most crucial variables (see page before), and check what fraction of entries have information available here.

The conclusions is, that if we wanted all entries filled, we would only have $<1 \%$ of data remaining... not a great way forward!

Information

 availa

One could choose to require that e.g. the first six variables are valid, and then only add the ones with While there are in pring of information on each it is in practice not the out, most entries are en

In the figure we consid crucial variables (see p check what fraction of information available h

The conclusions is, that all entries filled, we wo $<1 \%$ of data remaining ... not a great way forward! (almost) full availability:

- Price paid (of course)
- Address
- Postal Code
- Size inside
- Sales date
- Condition
- Size outside
- Taxation value
- Floor number
- School distance
- Supermarket distance

This leaves about 50% of the data, which is a fair choice...

Information

 availa

One could choose to require that e.g. the first six variables are valid, and then only add the ones with While there are in pring of information on each it is in practice not the out, most entries are en In the figure we consid crucial variables (see p check what fraction of information available h

The conclusions is, that all entries filled, we wo $<1 \%$ of data remaining... not a great way forward! (almost) full availability:

- Price paid (of course)
- Address
- Postal Code
- Size inside
- Sales date
- Condition
- Size outside
- Taxation value
- Floor number
- School distance
- Supermarket distance

This leaves about 50% of the data, which is a fair choice...

Discuss shortly, what to do to include all variables?

Price vs. time

Just to gauge the data, we try to plot the average price over time:

Clearly, the data is corrected for inflation, but not much else, since 2008 doesn't clearly show up.

Price per square meter

As a first step, one would estimate the price from the size, i.e. assume that the price per square meter was constant, and so we plot price vs. size:

As can be seen from the figure, this does not seem to be the case, and even after filtering away the worst outliers, we don't get any reasonable estimate!

Price per square meter

Looking at the price/m2, most values are reasonable, but there are exceptions:

I don't know who paid $1.000 .000+\mathrm{Kr} . / \mathrm{m} 2$, but that is not a normal value! Similarly, $<100 \mathrm{Kr} . / \mathrm{m} 2$ seems odd, and also needs further investigation.

Price per square meter

Dividing according to condition, one might expect a higher price/m2, but...

...the pattern is rather, that the basic price is higher!

Price per square meter

Dividing according to condition, one might expect a higher price/m2, but...

...the pattern is rather, that the basic price is higher! And condition 1 is best!!!

Price per square meter

Dividing according to condition, one might expect a higher price/m2, but...

...the pattern is rather, that the basic price is higher! And condition 1 is best!!!

Considering Østerbro only

If we restrict ourselves to Østerbro, the pattern suddenly becomes more clear:

The number of square meters suddenly become a much better indicator, and a condition suddenly also becomes a better variable.

So clearly, district/ postal code is also a factor, as should be no surprise.

Comparing districts

Now we consider the various postal codes (Østerbro, Nørrebro og Amager):

Amager has small apartments and lower price $/ \mathrm{m} 2$, and the linear model (price $=$ price $/ \mathrm{m} 2 *$ size $)$ holds OK for each district.

Floor vs. price

One can continue with all sorts of variables, such as e.g. floor:
Figure 11: Price paid as function of floor number

Floor vs. price

One can continue with all sorts of variables, such as e.g. floor:
Figure 11: Price paid as function of floor number

A "measure-of-goodness"

Q: How do we know, that we are improving our price estimates?
A: Well, consider how close the predictions are compared to actual price.

A "measure-of-goodness"

Q: How do we know, that we are improving our price estimates?
A: Well, consider how close the predictions are compared to actual price.

The path forward

Clearly, we could continue in this way, and produce a more and more refined model, which would give a rough estimate for most cases, but...

- The model gets more and more complicated to update or improve.
- There is no "system" by which the model can be improved.
- The process is very manpower intensive.

The solution is of course to use Machine Learning (ML) on large datasets (what in industry is often called Big Data analysis), which in an automated and often very powerful way can combine many variables into one "optimal" prediction (or separation, if categorising).

Discussion of path forward

Which considerations do you have in mind regarding doing an ML approach?

- Data size and splitting.
- Current and potential input variables.
- ML algorithms.
- Loss function.
- Output(s).

Discuss first with your collaborators (5 min), and then we'll do it in plenum.

