Applied ML

Generative Adversarial Networks

“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”



Variational Auto-Encoders



Variational AutoEncoders

An auto-encoder (AE) is a method (typically based on neural networks) to learn
efficient data codings in an unsupervised manner (hence the “auto”). The idea is
“old” (80ies) and closely related to (the basis of) Generative Networks.

However, the latent space of AutoEncoders are “complex”, which means that you
can not simply choose a “random number” from this space, and expect it to
represent something “realistic” when decoded:

Thus, due to non-regularized latent space AE, the decoder can not be used
to generate valid input data from vectors sampled from the latent space.



Variational AutoEncoders

An auto-encoder (AE) is a method (typically based on neural networks) to learn
efficient data codings in an unsupervised manner (hence the “auto”). The idea is
“old” (80ies) and closely related to (the basis of) Generative Networks.

Here is one natural strategy for generating images. Build an autoencoder. Now
generate random codes, and feed them into the decoder. It’s worth trying this
to reassure vourself that it really doesn’t work. It doesn’t work for two reasons.

First, the codes that come out of a decoder have a complicated distribution, and
generating codes from that distribution is difficult because we don’t know it. Notice

that choosing one code from the codes produced by a training dataset isn’t good
enough—the decoder will produce something very close to a training image, which

isn’t what we’re trying to achieve. Second, the decoder has been trained to decode
the training codes only. The training procedure doesn’t force it to produce sensible

outputs for codes that are near training codes, and most decoders in fact don’t do
SO.

[David Forsyth, 19.3.1, why AEs are not VAEs]




Variational AutoEncoders

An auto-encoder (AE) is a method (typically based on neural networks) to learn
efficient data codings in an unsupervised manner (hence the “auto”). The idea is
“old” (80ies) and closely related to (the basis of) Generative Networks.

However, the latent space of AutoEncoders are “complex”, which means that you
can not simply choose a “random number” from this space, and expect it to
represent something “realistic” when decoded:

Thus, due to non-regularized latent space AE, the decoder can not be used
to generate valid input data from vectors sampled from the latent space.

This requires a special type of AE, so-called variational autoencoder (VAE).
Here, the encoder outputs parameters of a pre-defined distribution (multi-dim
Gaussian) in the latent space for every input.

The constraint imposed by the VAE ensures that the latent space is regularised.
This in turn allows one to take a value from the latent space and produce a
realistic output.



Variational AutoEncoders

A variational autoencoder thus uses a Gaussian-like latent space distribution. It is

probabilistic in nature - it produces random cases close (i.e. € away from) to the

original.
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Variational AutoEncoders

A VAE thus uses a Gaussian-like latent space distribution. It is probabilistic in
nature - it produces random cases close (i.e. € away from) to the original. This is
achieved by a “smart” loss function with the Kullback-Leibler (KL) divergence.
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Variational AutoEncoders

A VAE thus uses a Gaussian-like latent space distribution. It is probabilistic in
nature - it produces random cases close (i.e. € away from) to the original. This is
achieved by a “smart” loss function with the Kullback-Leibler (KL) divergence.
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Latent space illustration

The below animation shows how VAE latent spaces are a simplified
representation of the more complex objects, containing the main features of these.

For this reason, one can do arithmetics (typically interpolate) between the inputs:
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Latent space illustration

The below animation shows how VAE latent spaces are a simplified

representation of the more complex objects, containing the main features of these.

For this reason, one can do arithmetics (typically interpolate) between the inputs:

Interpolation in Latent Space
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Generative Adversarial Networks
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Generative Adversarial Networks

Invented (partly) by Ian Goodfellow in 2014, Generative Adversarial Networks
(GANSs) is a method for learning how to produce new (simulated) datasets from
existing data.

The basic idea is, that two networks “compete” against each other:
e Generative Network: Produces new data trying to make it match the original.

e Adversarial (Discriminatory) Network: Tries to classify original and new data.

Typically, the generator is a de-convolutional NN, while the discriminating
(adversarial) is convolutional NN.

The concept is related to (Variational) Auto-Encoders.

“The coolest idea in machine learning in the last twenty years”
[Yann LeCun, French computer scientist]
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GAN drawing

Imagine that you want to write numbers that looks like hand writing.

Given a large training set, you can ask you GAN to produce numbers. At first it
will do poorly, but as it is “punished” by the discriminator, it improves, and at the
end it might be able to produce numbers of equal quality to real data:
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GAN drawing

The discriminator/adversarial can also be seen as an addition to loss function,
penalising (with A) an ability to see differences between real and fake:
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GANs producing face images

In 2017, Nvidia published the result of their “Al” GANs for producing celebrity
faces. There is of course a lot of training data... here are the results:




Evolution in facial GANs

There is quiet a fast evolution in GANs, and their ability to produce realistic
results....
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MNist data: Handwritten numbers

A “famous case” has been hand written numbers. The data consists of 28x28 gray
scale images of numbers. While that spans a large space, the latent space is
probably (surely!) much smaller, as far from all combinations of pixels and
intensities are present.
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MNist data: Handwritten numbers
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Reinforcement Learning
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Classification vs. Regression
Unsupervised learning vs. supervised

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).
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Reinforcement Learning
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Reinforcement Learning
Game Al is considered the third
paradigm in ML.
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Reinforcement Learning

Reinforcement Learning (RL) does not need data per se, but rather an
environment/set of rules in which it needs to optimise it’s actions /behaviour.

In doing so, the RL needs to find a balance between exploration (of uncharted
territory) and exploitation (of current knowledge).

The environment can be formulated as a Markov Decision Process (MDP), as
shown below.

Reinforcement Learning does not assume
knowledge of the MDP (i.e. it doesn’t
know what environment it is in - all it
needs is a score).

And typically RF has great success in
(potentially very) large environments,
such as “real life”. 1
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The Snake/Worm Game

A classic “old school” video game is Snake (or Worm) Game, which due to its
simplicity has been made in 100s of versions since the first inception in 1976.

Below is the untrained Al (left) and the same Al after training for 150 games.

SCORE: 0 HIGHEST SCORE: 1 SCORE: 0 HIGHEST SCORE: 0

Towards Data Science: How to teach Al to play Games
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https://towardsdatascience.com/how-to-teach-an-ai-to-play-games-deep-reinforcement-learning-28f9b920440a

The Snake/Worm Game

A classic “old school” video game is Snake (or Worm) Game, which due to its
simplicity has been made in 100s of versions since the first inception in 1976.

Below is the untrained Al (left) and the same Al after training for 150 games.

In 150 games (5 min.)
the Al learned to play
the game well.

SCORE: 0 HIGHEST SCORE: 1 SCORE: 0 HIGHEST SCORE: 0

Towards Data Science: How to teach Al to play Games
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One program to rule them all

In December 2018, AlphaZero was introduced to play three classic strategy board
games...

A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play
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In December 2018, AlphaZero was introduced to play three classic strategy board
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After four hours of training it beat the best chess program in the world at the
time: 72 draws, 28 wins, and... 0 losses.

Within 24 hours AlphaZero achieved a superhuman level of play in ALL three
games by defeating world-champion programs.... using only the rules!
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