
Mads R. B. Kristensen, NVIDIA

GPU Accelerated Data
Analytics in Python

2

3

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

Sc
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale out / Parallelize

4

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Sc
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale out / Parallelize

5

History of the GPU

DOI: https://doi.org/10.1007/978-3-319-17885-1_1606

https://doi.org/10.1007/978-3-319-17885-1_1606

6

CPU vs GPU

DOI: 10.1016/j.cam.2013.12.032.

7

GPU-Accelerated ETL
The average data scientist spends 90+% of their time in ETL as opposed to training

models

8

Data Processing Evolution
Faster data access, less data movement

25-100x Improvement
Less code

Language flexible
Primarily In-Memory

HDFS

Read

HDFS

Write

HDFS

Read

HDFS

Write

HDFS

Read
Query ETL ML Train

HDFS

Read
Query ETL ML Train

HDFS

Read
GPU

Read
Query

CPU

Write

GPU

Read
ETL

CPU

Write

GPU

Read

ML

Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

11

Data Processing Evolution
Faster data access, less data movement

25-100x Improvement
Less code

Language flexible
Primarily In-Memory

HDFS

Read

HDFS

Write

HDFS

Read

HDFS

Write

HDFS

Read
Query ETL ML Train

HDFS

Read
Query ETL ML Train

HDFS

Read
GPU

Read
Query

CPU

Write

GPU

Read
ETL

CPU

Write

GPU

Read

ML

Train

Arrow

Read
ETL

ML

Train

5-10x Improvement
More code

Language rigid
Substantially on GPU

50-100x Improvement
Same code

Language flexible
Primarily on GPU

RAPIDS

Traditional GPU Processing

Hadoop Processing, Reading from disk

Spark In-Memory Processing

Query

12

cuDF

13

cuDF
A GPU DataFrame library in Python with a pandas-like API built into the PyData ecosystem

Pandas-like API on the GPU Best-in-Class Performance (Benchmark)

>>> import pandas as pd
>>> df = pd.read_csv("filepath")
>>> df.groupby(“col”).mean()
>>> df.rolling(window=3).sum()

>>> import cudf
>>> df = cudf.read_csv("filepath")
>>> df.groupby(“col”).mean()
>>> df.rolling(window=3).sum()

GPU

CPU

pandas

cuDF

Average Speed-Ups: 10-100x 10 Minutes to cuDF

Groupby Time SeriesStrings and Regex

Missing DataIndexing

Nested Types

Rolling WindowsCuPy Interoperability

UDFs

NVIDIA A100 vs. AMD EPYC 7642 48-Core Processor

cuDF Python vs. Pandas

https://github.com/rapidsai/cudf/tree/branch-23.02/python/cudf/benchmarks
https://docs.rapids.ai/api/cudf/stable/user_guide/10min.html

14

KvikIO

15

RAPIDS KvikIO

Accelerating IO to GPUs SC’21 BoF139 11/16/21

KvikIO is a C++ and Python frontend for cuFile that provide
features such as an object-oriented API, exception handling,
RAII semantic, multithreading IO, fallback mode, and a Zarr
backend.

Using KvikIO should feel natural to C++ and Python developers.

Comparing KvikIO's Zarr backend versus manually copying between GPU and
host memory before accessing the Zarr array using POSIX

NVIDIA DGX A100 (using one of the GPUs)

2x AMD EPYC 7742 64-Core@3.4GHz (max boost)
1x NVMe Samsung PM1733 SSD (MZWLJ3T8HBLS-00007)

KvikIO: https://github.com/rapidsai/kvikio

https://github.com/rapidsai/kvikio

16

cuML

17

cuML
Accelerated Machine Learning with a scikit-learn API

>>> from sklearn.ensemble import
RandomForestClassifier
>>> clf = RandomForestClassifier()
>>> clf.fit(x, y)

>>> from cuml.ensemble import
RandomForestClassifier
>>> clf = RandomForestClassifier()
>>> clf.fit(x, y)

GPU

CPU

Scikit-learn

cuML

50+ GPU-Accelerated Algorithms &
Growing

Time Series PreprocessingClassification

Tree ModelsCross Validation

Clustering

ExplainabilityDimensionality Reduction

Regression

A100 GPU vs. AMD EPYC 7642 (96 logical cores)

cuML 23.04, scikit-learn 1.2.2, umap-learn 0.5.3

20

RAPIDS matches common Python APIs

from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons

import pandas

X, y = make_moons(n_samples=int(1e2),

 noise=0.05, random_state=0)

X = pandas.DataFrame({'fea%d'%i: X[:, i]

 for i in range(X.shape[1])})

CPU-Based Clustering

21

RAPIDS matches common Python APIs

from cuml import DBSCAN

dbscan = DBSCAN(eps = 0.3, min_samples = 5)

dbscan.fit(X)

y_hat = dbscan.predict(X)

Find Clusters

from sklearn.datasets import make_moons

import cudf

X, y = make_moons(n_samples=int(1e2),

 noise=0.05, random_state=0)

X = cudf.DataFrame({'fea%d'%i: X[:, i]

 for i in range(X.shape[1])})

GPU-Accelerated Clustering

22

CLUSTERING
Benchmark

23

Benchmarks: single-GPU cuML vs scikit-learn

1x V100
 vs.

2x 20 core CPU

24

XGBoost

25

● One line of code change to unlock up to 20x
speedups with GPUs

● Scalable to the world’s largest datasets with
Dask and PySpark

● Built-in SHAP support for model explainability

● Deployable with Triton for lighting-fast inference
in production

● RAPIDS helps maintain the XGBoost project

Accelerated XGBoost
“XGBoost is All You Need” – Bojan Tunguz, 4x Kaggle Grandmaster

>>> from xgboost import XGBClassifier
>>> clf = XGBClassifier()
>>> clf.fit(x, y)

>>> from xgboost import XGBClassifier
>>> clf =
XGBClassifier(tree_method=”gpu_hist”)
>>> clf.fit(x, y)

GPU

CPU

XGBoost

XGBoost

Up to 20x Speedups

26

libcudf

27

libcudf

The engine powering GPU-accelerated Apache Spark, Dask, cuDF, and high-performance data
analytics

Documentation

● libcudf is the CUDA/C++

framework for tabular data

analysis
○ Data ingestion and parsing, joins,

aggregations, filters, window

functions, regular expressions,

nested types, and more

○ Built on the Apache Arrow

memory specification

○ Consistent C++17 RAII-based APIs

● Fastest library for joins,

aggregations, sorting, and more
○ Traditional and conditional joins

○ Nested-type sorting and

aggregations

Up to 100x faster joins than DuckDB

https://docs.rapids.ai/api/libcudf/nightly/index.html
https://github.com/rapidsai/cudf

28

cuSignal

29

Convolution

Filtering and Filter Design Waveform Generation

Window FunctionsSpectral Analysis Wavelets

Peak Finding

cuSignal
A GPU signal processing library interoperable with PyTorch with a SciPy Signal API

>>> from scipy import signal
>>> cf = signal.resample_poly(cy,
up, down, window=(“kaiser”, 0.5)

>>> import cusignal
>>> cf = cusignal.resample_poly(cy,
up, down, window=(“kaiser”, 0.5)

GPU

CPU

SciPy Signal

cuSignal

Average Speed-Ups: 10-100x

Method
SciPy Signal

(ms)
cuSignal (ms) Speedup (xN)

fftconvolve 27300 46.6 585.8

correlate 4020 28.3 142.0

resample 14700 15.4 954.5

resample_poly 2360 4.6 513.0

welch 4870 23.5 207.2

spectrogram 2520 13.2 190.9

convolve2d 8410 6.04 1392.3

Drop-in Replacement for Real and
Complex Numbers

Getting Started NotebookAPI Documentation

https://github.com/rapidsai/cusignal/blob/branch-22.12/notebooks/E2E_Example.ipynb
https://docs.rapids.ai/api/cusignal/stable/

30

Data Visualization

31

cuxfilter and Node-RAPIDS

● cuxfilter makes it possible for Python
users to visualize billions of points in real
time without pre-processing

● Node-RAPIDS enables browser-based ETL
and data visualization with Node.js

● Integration with common PyViz libraries

Visual Insight into the Largest Datasets

https://github.com/rapidsai/cuxfilter
https://github.com/rapidsai/node

32

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

Sc
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale out / Parallelize

33

Dask

34

Scale up and out with RAPIDS and Dask

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

Sc
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale out / Parallelize

35

• Support existing data science libraries
• Built on top of NumPy, Pandas, Scikit-Learn, … (easy to migrate)
• With the same APIs (easy to train)

• Scales
• Scales out to thousand-node clusters
• Easy to install and use on a laptop

• Popular
• Most common parallelism framework today at PyData and SciPy conferences

• Deployable
• HPC: SLURM, PBS, LSF, SGE
• Cloud: Kubernetes
• Hadoop/Spark: Yarn

Dask Parallelizes
Natively

36

Parallel NumPy
For imaging, simulation analysis, machine learning

● Same API as NumPy

import dask.array as da
x = da.from_hdf5(...)
x + x.T - x.mean(axis=0)

● One Dask Array is built from

many NumPy arrays

Either lazily fetched from disk

Or distributed throughout a

cluster

37

Parallel Pandas
For ETL, time series, data munging

● Same API as Pandas

import dask.dataframe as dd
df = dd.read_csv(...)
df.groupby(‘name’).balance.max()

● One Dask DataFrame is built from many

Pandas DataFrames

Either lazily fetched from disk

Or distributed throughout a cluster

40

Parallel Python
For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

results = {}

for x in X:

 for y in Y:

 if x < y:

 result = f(x, y)

 else:

 result = g(x, y)

 results.append(result)

41

Parallel Python
For custom systems, ML algorithms, workflow engines

● Parallelize existing codebases

f = dask.delayed(f)

g = dask.delayed(g)

results = {}

for x in X:

 for y in Y:

 if x < y:

 result = f(x, y)

 else:

 result = g(x, y)

 results.append(result)

result = dask.compute(results)

M Tepper, G Sapiro “Compressed nonnegative

matrix factorization is fast and accurate”,

IEEE Transactions on Signal Processing, 2016

42

Dask Connects Python users to Hardware

User
Writes high level code

(NumPy/Pandas/Scikit-Learn)
Turns into a task graph Execute on distributed

hardware

43

Scale up and out with RAPIDS and Dask

Accelerated on single GPU

NumPy -> CuPy/PyTorch/..
Pandas -> cuDF
Scikit-Learn -> cuML
Numba -> Numba

RAPIDS and Others

NumPy, Pandas, Scikit-Learn
and many more

Single CPU core
In-memory data

PyData

Multi-GPU
On single Node (DGX)
Or across a cluster

Dask + RAPIDS

Multi-core and Distributed PyData

NumPy -> Dask Array
Pandas -> Dask DataFrame
Scikit-Learn -> Dask-ML
… -> Dask Futures

Dask

Sc
a
le

 U
p
 /

 A
c
c
e
le

ra
te

Scale out / Parallelize

46

Combine Dask with cuDF
Many GPU DataFrames form a distributed DataFrame

47

Combine Dask with cuDF
Many GPU DataFrames form a distributed DataFrame

cuDF

48

Dask + RAPIDS

49

END-TO-END BENCHMARKS

2,290

1,956

1,999

1,948

169

157

0 1,000 2,000 3,000

20 CPU
Nodes

30 CPU
Nodes

50 CPU
Nodes

100 CPU
Nodes

DGX-2

5x DGX-1

0 5,000 10,000

20 CPU
Nodes

30 CPU
Nodes

50 CPU
Nodes

100 CPU
Nodes

DGX-2

5x DGX-1

cuML / XGBoost

2,741

1,675

715

379

42

19

0 1,000 2,000 3,000

20 CPU
Nodes

30 CPU
Nodes

50 CPU
Nodes

100 CPU
Nodes

DGX-2

5x DGX-1

End-to-End
CuDF / Pandas —
Load and Data Preparation

Benchmark

200GB CSV dataset; Data preparation
includes joins, variable
transformations.

CPU Cluster Configuration

CPU nodes (61 GiB of memory, 8 vCPUs,
64-bit platform), Apache Spark

DGX Cluster Configuration

5x DGX-1 on InfiniBand network

Time in seconds — Shorter is better

cuIO / cuDF (Load and Data Preparation) Data Conversion XGBoost

50

Dask
The distributed computing framework built for the Python analytics ecosystem

● Foundational: Scales pandas, NumPy, Scikit-

learn, XGBoost, and more

● Familiar: Dask matches PyData library APIs

● Popular: 7M+ monthly downloads, 2x growth in

2022

● Observable: Real-time, interactive cluster

dashboards and profiling

● Deployable: Kubernetes, Yarn, SLURM, and all

cloud platforms

DataFrames Machine Learning

Arrays

Getting Started with Dask

SQL

https://www.dask.org/get-started

51

Dask and RAPIDS
Drop-In Acceleration for DataFrames, SQL, and Machine Learning

10 Minutes to Dask and cuDF

>>> import dask.dataframe as dd

>>> df = dd.read_parquet("file")
>>> df.groupby(“col”).mean()
>>> df.rolling(window=3).sum()

>>> import dask.dataframe as dd
>>> import dask
>>> dask.config.set(
{“dataframe.backend”: “cudf”})

>>> df = dd.read_parquet("file")
>>> df.groupby(“col”).mean()
>>> df.rolling(window=3).sum()

GPU

CPU

Dask DataFrame

Dask DataFrame

>>> from dask_sql import Context
>>> c = Context()
>>> c.create_table("timeseries", df)

>>> result = c.sql("""
SELECT name, SUM(x) as "sum"
FROM timeseries
GROUP BY name
""")

>>> from dask_sql import Context
>>> c = Context()
>>> c.create_table("timeseries", df,
gpu=True)

>>> result = c.sql("""
SELECT name, SUM(x) as "sum"
FROM timeseries
GROUP BY name
""")

Dask SQL

Dask SQL

>>> import xgboost as xgb

>>> dtrain = xgb.dask.DaskDMatrix(...)
>>> output = xgb.dask.train(...,
{'tree_method': “hist”})
>>> prediction = xgb.dask.predict(client,
output, dtrain)

>>> import xgboost as xgb

>>> dtrain = xgb.dask.DaskDMatrix(...)
>>> output = xgb.dask.train(...,
{'tree_method': “gpu_hist”})
>>> prediction = xgb.dask.predict(client,
output, dtrain)

Dask XGBoost

Dask XGBoost

Dask-SQL Getting Started Dask XGBoost Getting Started

Average Speedup: 10-20x Average Speedup: 10-20x Average Speedup: Up to 20x

https://docs.rapids.ai/api/cudf/nightly/user_guide/10min.html
https://dask-sql.readthedocs.io/en/latest/quickstart.html
https://xgboost.readthedocs.io/en/stable/tutorials/dask.html

52

Getting Started

53

Explore: RAPIDS Github
https://github.com/rapidsai

54

Easy Installation
Interactive Installation Guide

55

Explore: RAPIDS Code and Blogs
Check out our code and how we use it

https://github.com/rapidsai https://medium.com/rapids-ai

https://github.com/rapidsai
https://medium.com/rapids-ai

	Slide 1: GPU Accelerated Data Analytics in Python
	Slide 2
	Slide 3: Scale up and out with RAPIDS and Dask
	Slide 4: Scale up and out with RAPIDS and Dask
	Slide 5: History of the GPU
	Slide 6: CPU vs GPU
	Slide 7: GPU-Accelerated ETL
	Slide 8: Data Processing Evolution
	Slide 11: Data Processing Evolution
	Slide 12: cuDF
	Slide 13: cuDF
	Slide 14: KvikIO
	Slide 15
	Slide 16: cuML
	Slide 17: cuML
	Slide 20: RAPIDS matches common Python APIs
	Slide 21: RAPIDS matches common Python APIs
	Slide 22: Clustering
	Slide 23: Benchmarks: single-GPU cuML vs scikit-learn
	Slide 24: XGBoost
	Slide 25: Accelerated XGBoost
	Slide 26: libcudf
	Slide 27: libcudf
	Slide 28: cuSignal
	Slide 29: cuSignal
	Slide 30: Data Visualization
	Slide 31: cuxfilter and Node-RAPIDS
	Slide 32: Scale up and out with RAPIDS and Dask
	Slide 33: Dask
	Slide 34: Scale up and out with RAPIDS and Dask
	Slide 35: Dask Parallelizes
	Slide 36: Parallel NumPy
	Slide 37: Parallel Pandas
	Slide 40: Parallel Python
	Slide 41: Parallel Python
	Slide 42: Dask Connects Python users to Hardware
	Slide 43: Scale up and out with RAPIDS and Dask
	Slide 46: Combine Dask with cuDF
	Slide 47: Combine Dask with cuDF
	Slide 48: Dask + RAPIDS
	Slide 49: End-to-End Benchmarks
	Slide 50: Dask
	Slide 51: Dask and RAPIDS
	Slide 52: Getting Started
	Slide 53: Explore: RAPIDS Github
	Slide 54: Easy Installation
	Slide 55: Explore: RAPIDS Code and Blogs

