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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

The Trouble with RNN

Slide 2/35 — James Avery (avery@nbi.dk) — Echo State Networks and Anomaly Detection in Simulation Data — Big Data Analysis 6/5/2020



u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Difficulties in Training RNN

RNN are extremely versatile, but the high expressiveness comes at cost.

Under the right definition, RNN are:
Turing complete =⇒ universal ( =⇒ training uncomputable).

In practice:
Restricted but very large expressiveness, with expensive but (usually)
computable training.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Difficulties in Training RNN

Back-Propagation Through Time (BPTT) unrolls recurrent network graph
(like unrolling a loop in a computer program), yielding static but very deep
network.

Two problems arise:
1 Optimizing becomes extremely resource intensive
2 ...and can fail completely (due to e.g. vanishing gradients, bifurcations

in the state space).
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

What are state space bifurcations?
Consider an RNN with just a single variable:

xt+1 = tanh(wxt + b)
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What are state space bifurcations?
Consider an RNN with just a single variable:

xt+1 = tanh(wxt + b)
Stable and unstable fixed-points (attractors and repellers):

Slide 5/35 — James Avery (avery@nbi.dk) — Echo State Networks and Anomaly Detection in Simulation Data — Big Data Analysis 6/5/2020



u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

What are state space bifurcations?
Consider an RNN with just a single variable:

xt+1 = tanh(wxt + b)
Bifurcations happen when attractors split into two (or more):

Slide 5/35 — James Avery (avery@nbi.dk) — Echo State Networks and Anomaly Detection in Simulation Data — Big Data Analysis 6/5/2020
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What are state space bifurcations?
Consider an RNN with just a single variable:

xt+1 = tanh(wxt + b)
Bifurcations happen when attractors split into two (or more):

Resulting huge gradients can destroy hundreds of learning steps in a single
iteration.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Echo State Networks
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Comparison between LSTM and ESN

ESN are much weaker than general RNN, and weaker than LSTM, but are
simple, extremely fast to train, and most importantly: stable.

RNN LSTM ESN
Expressive Power ∞ Very strong Medium
Vanishing Gradients Yes No No
Many local minima Yes Yes No
Training Bifurcations Yes Yes No
Convergence can fail Yes Yes Nothing to Converge
Training time ∞ Very Slow Very Fast
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

How is it Done?

Only output matrix Wout is trained. If ψ is identity, training is just solving a
least-squares problem!
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

An ESN Metaphor: Pattern Recognition in a Bucket

Only output matrix Wout is trained. If ψ is identity, training is just solving a
least-squares problem!
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Hidden matrix W must be sparse, but connected:
1 Sparsity provides “locality” condition: Every hidden variable gets a

“neighbourhood” of its neighbours, from which information can
gradually propagate.

2 Connectedness makes sure that information eventually reaches
everywhere.

3 Bonus: Sparsity makes matrix-vector multiplication O(n) instead of
O(n2).
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

The eigenvalues of the hidden matrix W control how memory attenuates.

In particular, we need to scale W to have a desired spectral radius
ρ(W) ' 1, so that it neither explodes (ρ� 1) or dies out (ρ� 1).

In the “waves in a bucket” metaphor, ρ is like the viscosity of the fluid.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Performance
The main selling point of ESN is how efficiently they can be trained:

Instead of gradient descent (heavy, can fail to converge), training is a single
deterministic least-squares calculation.

The predictions are: yt = Woutxt , where x is the input concatenated with
the current state.

We can write X = [x1, . . . , xT ], and the desired outputs as: WoutX ' D.

This can be optimized in a single step by solving the Nhidden × Nout
least-squares problem

Wout = arg minW‖WX−D‖2 + β2‖W‖2

This is so fast, that we can do online training!
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

An Example: A Chaotic Time Sequence
Mackey-Glass sequence:

∂y(t)
∂t = β

y(t − τ)
1 + yn(t − τ) − γy(t)
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Anomaly Detection in Climate Simulations
We’ll look at discovering weird phenomena in climate simulation data:

Challenge:

Enormous data sets, gigabytes per time step, terabytes in total.
High-dimensional; ESN only really work for 1D sequences

.
MSc Students: Niklas Heim, Jacob Ungar Felding
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Anomaly Detection in Climate Simulations
We’ll look at discovering weird phenomena in climate simulation data:

Challenge: Enormous data sets, gigabytes per time step, terabytes in total.
High-dimensional; ESN only really work for 1D sequences.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Extending ESN to Finite-Difference Simulations
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Extending ESN to Finite-Difference Simulations

Finite-difference simulations are:
1 Simulation of fields with values on a regular grid, similar to images.
2 Generally smooth or close to it: few, localized discontinuities, if any.
3 Spatially and temporally correlated: guided by differential equations

that determine value from neighbours in time and space.

Let’s exploit this structure!
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Extending ESN to Finite-Difference Simulations

Recall: In standard ESN, we need to map input to a much
higher-dimensional hidden space, where the recurrence happens.

This map, Win is uniformly random, and throws away all information about
spatial and temporal locality, and other interdependence between variables.
Let’s not do that!

Idea: Replace random map with one that preserve meaningful features.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Extending ESN to Finite-Difference Simulations
We stack convolutions, derivatives, cosine transform. Other useful maps
could be divergence, curl, turbulence, etc.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Video of Blob in Periodic Lissajous Pattern

(x , y) = (cos(αt), sin(βt))

Trained on 2000 steps, predicting 300 into the future.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Video of Blob in Chaotic Mackey-Glass Pattern

(x , y) = (mackey(t), sin(t))

Trained on 2000 steps, predicting 300 into the future.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Kuroshio Ocean Current off the Coast of Japan
MSc thesis: Niklas Heim, Automated Anomaly Detection in Chaotic Time
Series
(Best Danish CS Thesis in 2018 - won by a physicist! :) )

Trained on first 10 years of 5-day means (30×30 by 730 steps), predict one
year (73 steps) into the future for 5 remaining years (365 times). Training
time: 40 minutes.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Making Spatial ESN Scale to Cover the Earth

MSc thesis: Jacob, A Scalable Spatially Aware ESN

Trained on first 10 years of 5-day means (290×440 by 730 steps), predict 4
years (300 steps) into the future. Training time: 4 minutes!

Slide 22/35 — James Avery (avery@nbi.dk) — Echo State Networks and Anomaly Detection in Simulation Data — Big Data Analysis 6/5/2020



u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Anomaly Detection
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Anomaly Detection

Once we have an RNN that can “understand” a sequence well enough to
predict it somewhat reliably, we can use it to automatically discover when it
starts behaving strange.

Knowing that something weird is going on, even a little bit in advance, can
save lives and resources. . .

everywhere!

E.g.: Detecting failure in nuclear reactors, engine break down, weather
events, etc. before they happen.
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Anomaly Detection in Climate Simulations
We’ll look at discovering weird phenomena in climate simulation data:

Challenge:

Enormous data sets, gigabytes per time step, terabytes in total.
High-dimensional; ESN only really work for 1D sequences

.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Anomaly Detection from Predictions

Idea: Given a good method for prediction, we quantify normal behaviour as
how well we were able to predict it.

Choose a window size T at the same scale as the anomalies we wish to
discover. To evaluate the normality of step t, start at t − T/2, and predict
T steps, until t + T/2.

Now compare yt−T/2, . . . , yt+T/2 to the real data. The integral of the error
is used to calculate a normality score. If the error suddenly becomes much
bigger than usual, we may have discovered an anomaly.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Example in 1D: Mackey-Glass

We use the chaotic equation from before

∂y(t)
∂t = β

y(t − τ)
1 + yn(t − τ) − γy(t)

and train on 2000 steps with γ = 0.10.
In the anomaly-detection phase, we change γ to 0.13 for 50 steps at random
steps.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Result:
The difference is imperceptible to humans, but we catch both instances with
our ESN predictor.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Finding Anomalies in Ocean Simulation Data
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

We trained on 10 years of simulation data, and then evaluated normality
through 5 years. For each step, we predicted a year into the future, and
calculated a normality score from the total error during the period.

The goal was to automatically discover a known ocean phenomenon: The
Kuroshio (“Black Tide”).
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Localizing an anomaly in space

Figure: Left: a “heat map” of low normality scores, accumulated over the 5 year
prediction period. Right: Known localization if the Kuroshio phenomenon.
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Localizing an anomaly in time
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

Making Spatial ESN Scale to Cover the Earth
MSc thesis: Jacob Ungar Felding, Automated Anomaly Detection in Chaotic
Time Series

290× 440 = 127600 variables! Trained on first 10 years of 5-day means (730
steps), predict 4 years (300 steps) into the future. Training time: 4 minutes!
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u n i v e r s i t y o f c o p e n h a g e n n i e l s b o h r i n s t i t u t e

The Next Stage
Jacob’s new development allow us to scale up the methods to large regions
of the world.
Time to scour the (simulated) Seven Seas for new oceanographic
phenomena!

Possibility for new MSc project shared between eScience and Team Ocean.
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