Applied ML

Results and Scores of Initial Project

“Statistics is merely a quantisation of common sense - Machine Learning is a sharpening of it!”



Overall comments

Opening comment from 2021:
The name “Small Project” is misleading, and should have been “Initial project”,
because it is by no means small.



Overall comments

Opening comment from 2021:
The name “Small Project” is misleading, and should have been “Initial project”,
because it is by no means small.

You did very well, and so let me start by gently stating,
that you have little/nothing to fear - in fact, you did really great!

Grading it was perhaps comparable to the project itself, but we have done our
best to be as open as possible about the scoring. And to give you a maximum of
feedback, we have produced a report for each of you.



The motivation

We wanted you to try the very real challenge of optimising models, without
knowing their performance on the data it is applied to.

We also wanted you to individually run ML algorithms, so that you have the
machinery in place after the course.

We insisted that you tried both tree- and NN-based algorithms, to get a feel for
their differences and similarities.

We also wanted you to feel the “insecurity” about not knowing if you had gotten
everything out of the data.

The description file was meant to trigger you to think about your models, and
what you tried. Also, considerations of size and performance are in place.

Finally, we wanted to ensure that you yourself tried all the work and things to
consider, to put together ML models and apply them.



Classification Results



Classification variable usage

Many (most?) of you have made a good variable ranking. Below you find a
variable usage frequency plot, showing how often a variable was used.
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Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

Distribution of classification LogLoss:

LogLoss (ALL solutions)
Emm Logloss (BEST solutions)
50 A
40
>
(e}
b
2 30 A
g
'S
20 A
10 1
0 i h | S| 11 . '




Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:
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Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

LogLoss (ALL solutions)
W Logloss (BEST solutions)

The distribution shows a very clear minimum,
which is likely the point of best possible separation.

Notice how closely the “good” solutions are
9 around, what is probably the information limit.
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Classification score distribution

The distribution of the (Cross-Entropy) LogLoss values obtained was:

LogLoss (ALL solutions)
W Logloss (BEST solutions)
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Regression Results
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Regression variable usage

The variables have changed drastically from the classification case. There is NO
overlap at all for the top 10-15 variables! Classification and Regression are in this
case two very different tasks.
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:

Distribution of regression relative MAE:
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:
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Regression score distribution

The distribution of the relative MAE (i.e. MAE((E-T)/T)) values obtained was:
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Clustering Results
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Clustering variable usage

I would have thought, that the clustering variable usage would be near-identical
to that of the (supervised) classification task. However, it is not entirely...
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Clustering
housing

While postal codes
are good, they are not
very useful in
clustering Denmark.

However, using just a
few variables (X, y,
density, price/m2),
one can cluster villas
in Denmark very
efficiently.

In this way, one can
follow trends for a
type of house much
better.
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Clustering accuracy distribution

The accuracy of the clustering (when assigned either electron or not) was:

Distribution of clustering accuracies:
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Clustering accuracy distribution

The accuracy of the clustering (when assigned either electron or not) was:

Distribution of clustering accuracies:
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Clustering accuracy distribution

The accuracy of the clustering (when assigned either electron or not) was:

Distribution of clustering accuracies:

Accuracy (ALL solutions)
mEmm Accuracy (BEST solutions)

40 -

Otherwise, distribution tends towards
similar accuracy values as the supervised
1 classification did, though missing a bit.

Frequency

The fact that it doesn’t reach as far is simply
that unsupervised training is weaker in
performance.

N
o
!

10

0 T T T
0.70 0.75 0.80 0.85 0.90 0.95 1.00
Clustering accuracy of solutions




Scoring your solutions
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How do we grade your projects?

Final Score:
You submitted a full solution, from which you get: 67 points

Your choice of methods based on your description was scored as follows [0, 6]:
Your solution entailed N different algorithms, which gives you a score of [0, 6]:

Your best performance for classification gave: max(0, (-log(CrossEntropy — 0.12)) x 1.4):
Your variable choice for classification was scored 4 x ( VarFreq(you) / VarFreq(top)):
Your classification had 0 penalties, totalling to:

Your best performance for regression gave: max(0,—log(MAD((E-T)/T)/7500-1)x1.8):
Your variable choice for regression was scored 5 x ( VarFreq(you)/ VarFreq(top)):
Your regression had 0 penalties, totalling to:

Your best performance for clustering gave: max(0, (Accuracy — 0.75) x 20):
Your variable choice for clustering was scored ( VarFreq(you) / VarFreq(top)):
Your clustering had 0 penalties, totalling to:

Thus your total number of points was:
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Your variable choice

Assuming, that the variable frequency reflected the actual ranking very well,
your variable choice was scored as follows (factors were 4, 5, and 1):

8 X (Z Freq(Your variables)/ Z Freq(Top Variables))

...s0 if you picked the top variables, you would get full points.

Classification

333333333333333333




Performance scoring

As mentioned, performance isn’t everything, and we certainly didn’t want it to
be for the small project. Getting close to the information limit is just great.

This was reflected by using a logarithmic scoring, which turned your best key
performance parameter into a score in the (open) range [0,5+]:

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

30000
LogLoss of solutions s

432 1 0 432 1 0
In all of this, you could of course not get negative points for an accepted solution!
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The resulting score distributions

Score distributions for classification performance and variable choice:
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The resulting score distributions

Score distributions for regression performance and variable choice:
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The resulting score distributions

Score distributions for clustering performance and variable choice:
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The resulting score distributions

The scores for descriptions and number of different algorithms (that work!) are:

Description grade distribution Number of algorithms used score distribution
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I read several of the “lower scoring” descriptions, but must say that I found them
“reasonably acceptable”, so in general the level was high (but don’t do
transformation of variables, when using a BDT!).

On algorithms, it was great to see that you both stuck with what you knew, but
also explored new algorithms and got them working.



Your description reports

We read through your descriptions, and did a manual scoring (the only) based on
choice of algorithms, hyperparameter optimisation, and data division (e.g. cross
validation). Each yielded a score of 0-2, giving a total score of 0-6 points.

Numbers from 2021 (where Carl and I did it):

Are we nice? Do we agree?
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0 1 2 3 4 5 6 0 1 2 3 4 5 6
Troels

As you can see, we were generally satisfied. The descriptions were short and to
the point, and give some insight into your line of thinking and working.
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Reporting back to you
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Feedback to you

We have created a small report back to you, which consists of:
e A certificate - for you to be proud of handing in...
e A summary - for you to know how you did...
e A solution scoring with key numbers and illustrations - for you to understand
how your model performed.

These are (hopefully) being mailed to you by all of us right now. Please sit down
after class and look through them.

Also, don't hesitate to discuss them with your peers. S—
Perhaps you have already done this (great), but this :

feedback and reflection is the process through which

Big Data Analysis

you learn the most... please use it.

luated to pass a satisfactory degree of answering,

Carl Johnsen

100

& {
/’%a S Jersgserr
Troels C. Petersen
Course responsibl




Classification report

By now you should know what all the different plots and number are...

The solution gave the following metrics:

Metric ‘ Equation | Value
Accuracy sklearn.metrics.accuracy_score | 0.940735
AUC sklearn.metrics.auc 0.976952
Cross entropy sklearn.metrics.log loss 0.153488

The solution produced the following plots:

Figure 1: Left: ROC curve for the tensorflow2 implementation. The orange curve should
be as close to the upper left corner as possible. Right: Confusion matrix for the ten-
sorflow2 implementation. The diagonal squares ((0,0) and (1,1)) should have the higher
values.
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Regression report

17500

15000

12500

2500

The solution gave the following metrics:

Metric

Value

MAE - Absolute
MAE - Relative
RMS
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sklearn.metrics.mean_absolute_error | 6953.2194
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Figure 2: Upper: Distribution plots for the xgboost1 implementation. The plots are for
absolute error (Left) and relative error (Right.). Both plots should have a tall narrow
curve, centered around 0. Lower: Diversion plot for the xgboostl implementation. The
dots should be scattered close to the line - especially for the 90th percentile.




Clustering report

The clustering report is
necessarily not very detailed, as
unsupervised learning carries a
great deal of uncertainty on
what you’re doing.

However, remember the remark
by Alexander Nielsen about
t-SNE & UMAP, but applied
more generally:

“I always start by throwing a
clustering algorithm at data,
just to see what structures turn
up, if any.

Even the latter result tells me
something valuable for the
further analysis.”

clustering - KMeans
The solution produced the following metrics:

Metric \ Equation \ Value
Accuracy ‘ sklearn.metrics.accuracy_score ‘ 0.7492

To compute the accuracy, the following mapping was used, based on the clusters resem-
blance to electron classification:

Cluster 0123
iselectron |1 |11 |1
The solution provided the following plot:
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Figure 6: Pairplot for the KMeans implementation. The variables chosen are the top 4
most used variables for clustering. There should be a clear distinction of the clusters.
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Thank you,

for all your
hard work



