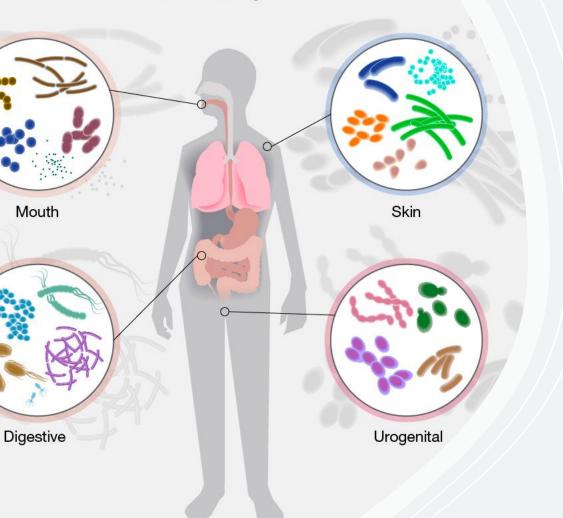
Human microbiome

Archaea, bacteria, fungi and viruses

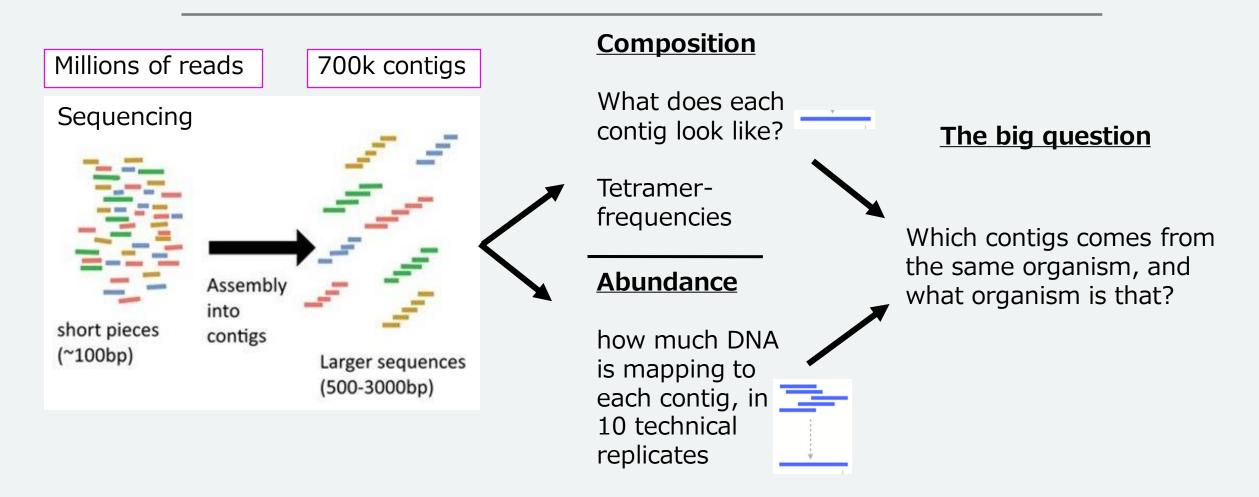


Metagenomic Binning

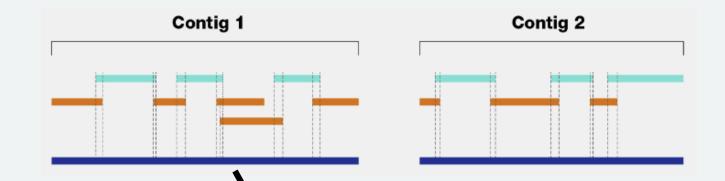
Mads: Preprocessing and clustering David: Variational Autoencoder and clustering Panagiotis: NN classifier Jie: Treebased classifier

Metagenomics data

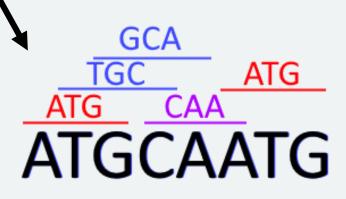
Dataset from Critical Assessment of Metagenome Interpretation (CAMI 2) challenge



Composition

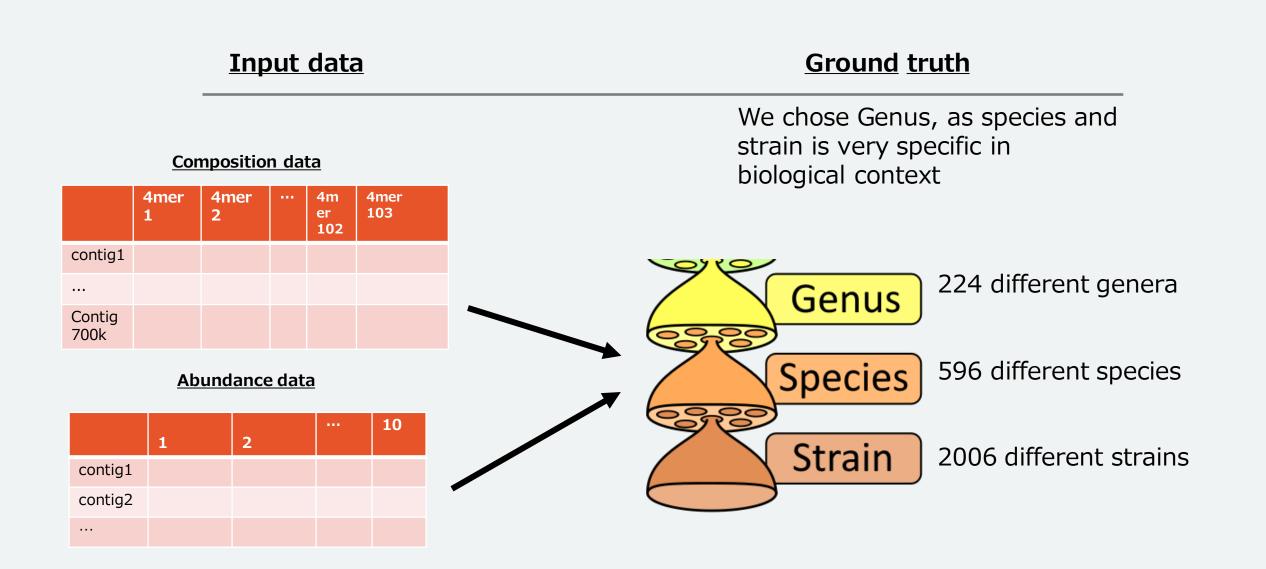


- Binning genomics data based on entire sequences requires immense computational power
 - Can be simplified by using tetramercomposition
 - 103 combinations of A, T, C, and G
- Ratios of nucleotides and tetramer-composition varies between species, and can be used as a "fingerprint".



K-mer	Frequencies	
ATG	0.4	
GCA = TGC	0.4	
CAA	0.2	

Metagenomics data



Metagenomics -Scientific application

Why is it important?



Objectives - outline

 Unsupervised – Use dimensionality reduction and clustering to pool organisms together based on composition and abundance (Metagenomic Binning)

Methods:

- Variational Autoencooder, PCA, UMAP Kmeans, DBSCAN
- SupervisedAnnotate taxonomy of contig, can we predict the genus or species of a contig based on composition alone? (Annotation)

Methods:

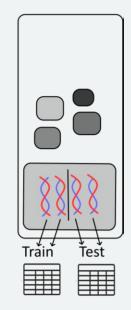
- LightGBM and Neural Network classifiers

The perfect start - 99% accuracy

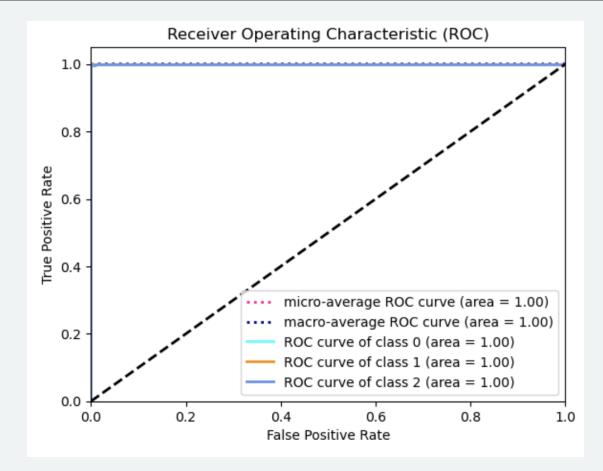
Classification on small dataset to test the feasibility and model performance using different methods.

Data preprocessing:

- subset samples: n = 5,560
- Limited dimensions: #label = 5
- Train/test split: completely random



The perfect start - 99% accuracy



Real journey

with data.2.0

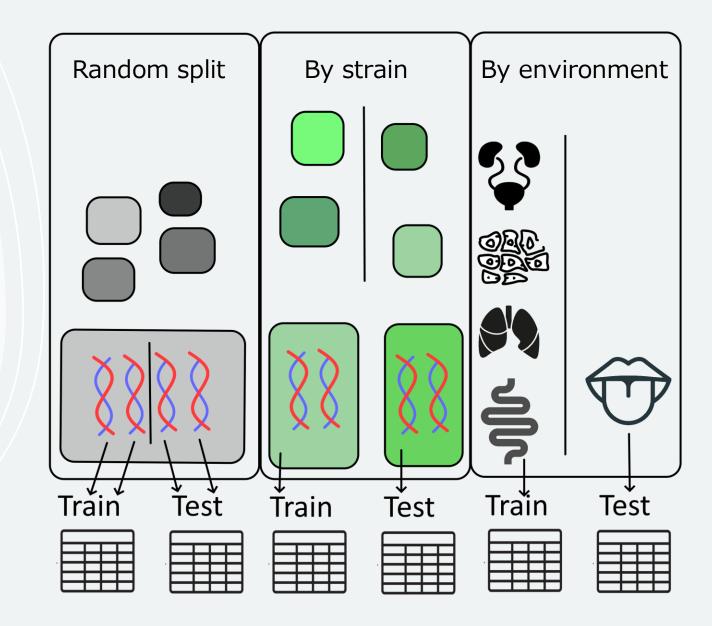
Splitting in the correct way

Random split: Splitting completely random Problem: DNA from the same strain wind up in both training and test sets, very similar (perfect score)

By strain:

Splitting strain for each species into training and test datasets. Problem: in some cases testing on unseen data (for dissimilar strains)

By environment: Training on known species, but unseen strains.



Unsupervised clustering

Problem: Which pieces of DNA comes from the same organism/species/genus.

Included composition data and abundance data:

Urogenitalia: 112 dimensions (Composition: 103 & Abundance: 9).

Methods:

PCA, UMAP and clustering

Creating a Variational Autoencoder (VAE) for dimensionality reduction using pytorch and to allow for flexibility and variations in contigs.

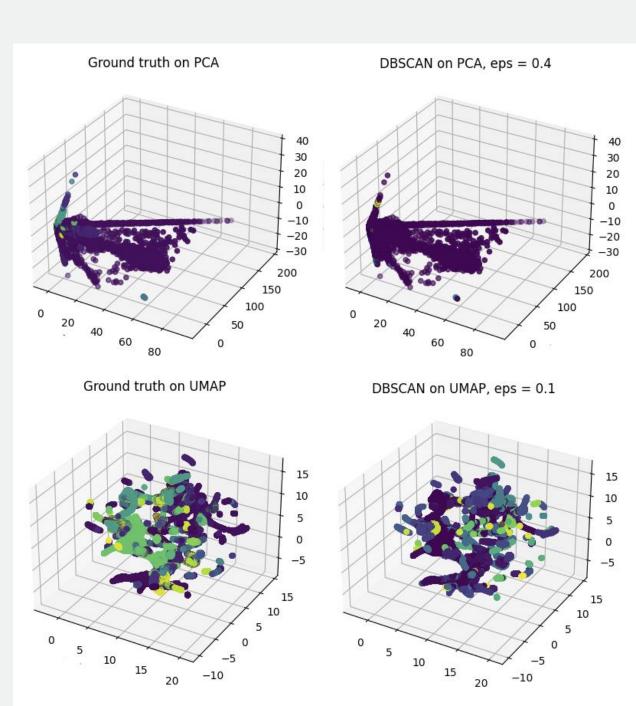
PCA & UMAP

<u>PCA</u>

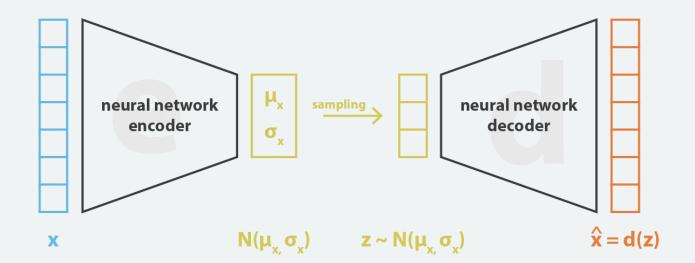
- Reduced to 10 dimensions, which were used for DBSCAN, but clustering did not capture the genera with high accuracy.
- Data is not linear

<u>UMAP</u>

- Reduced to 3 dimensions. Produces plots with clear "blobs".
- DBSCAN produces quite good clusters, with an accuracy of 80% of DBSCAN clusters labeled by the most common true value in that cluster.

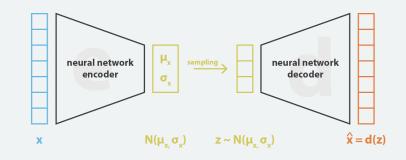


Creating the VAE

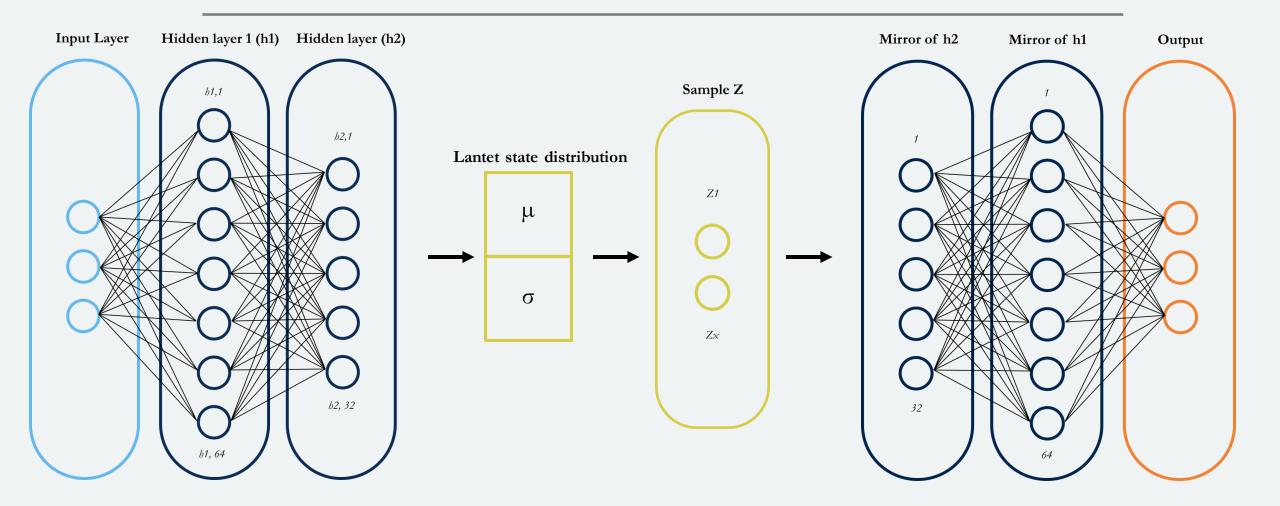


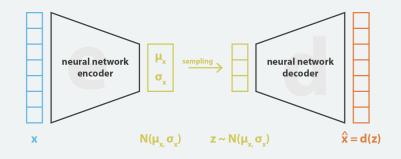
Loss = mean squared error (squared L2norm) + Kullback–Leibler divergence

Activation function: rectified linear unit (ReLU)



Architecture of VAE





Training of VAE

Optimizer: Adam with a learning rate of 0.001.

Epochs = 500

Multiple issues

Problem: The loss went to inf.

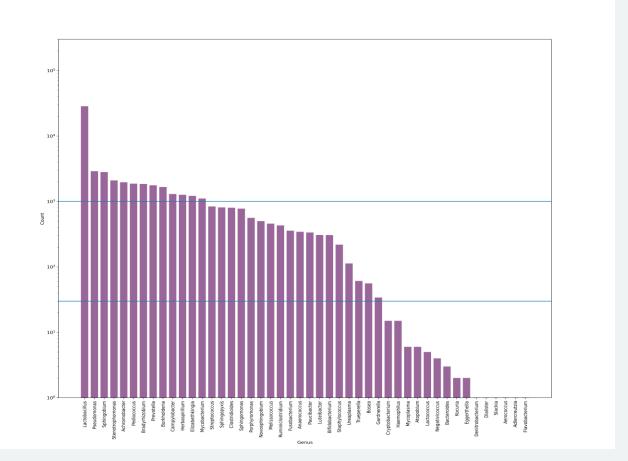
Solution: Batch Normalization (hidden layer two and latent space). Consider the hardware available and how the data is usually run (GPU cluster).

Problem: No converge

Solution: learning rate of 1e-3 to 1e-5 and increased epochs to 5000. Patience due to the two parts of the loss-function.

Problem: Model did not perform well on large dataset. Solution: Data curation was not done correctly. Test your model toy data or small datasets to test if it's a data problem or a model problem.

Data balanced and unbalanced



Creating two models

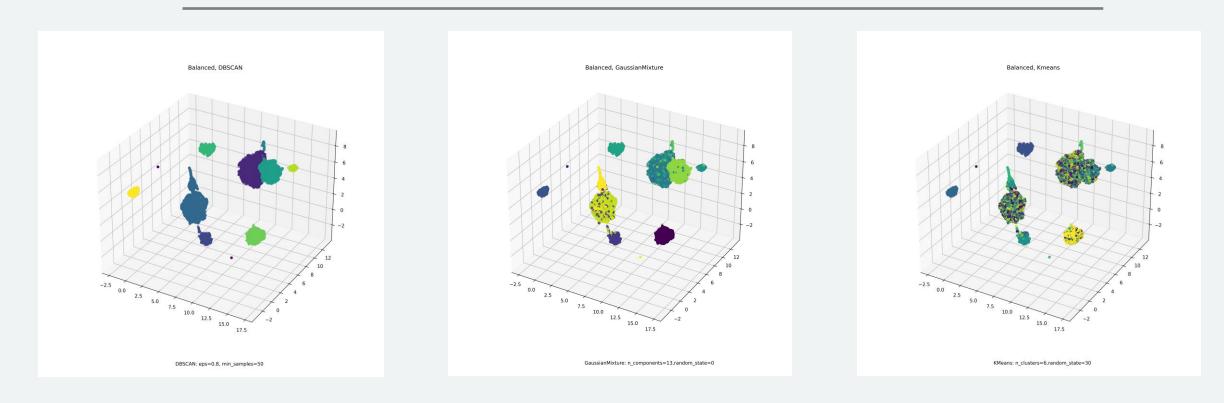
Balanced:

- ≥1000 contigs (13 genera)
- Sampled 1000 contigs per genera

Unbalanced

- ≥30 contigs (31 genera)
- Included everything

Balanced clustering & UMAP (z=8)

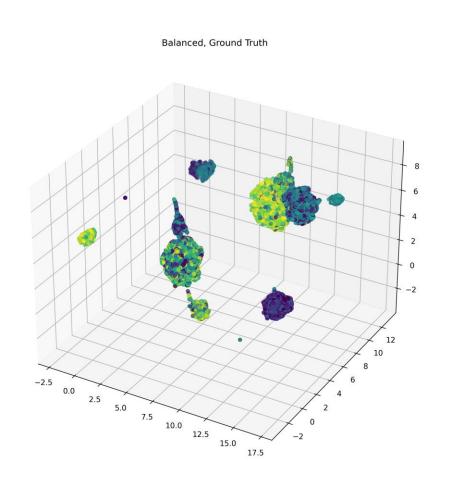


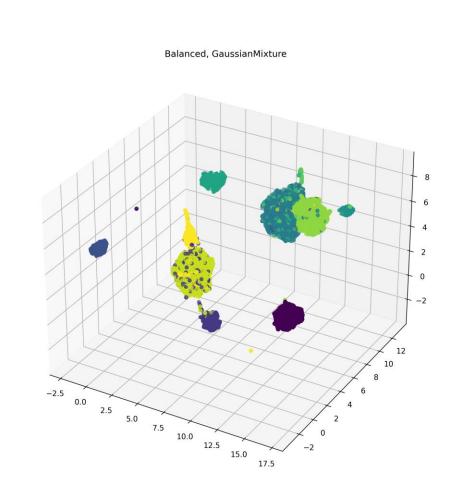
Homegeneity score: 16%

Homegeneity score: 23%

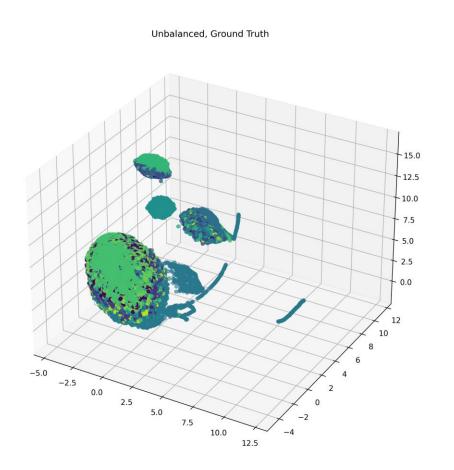
Homegeneity score: 3%

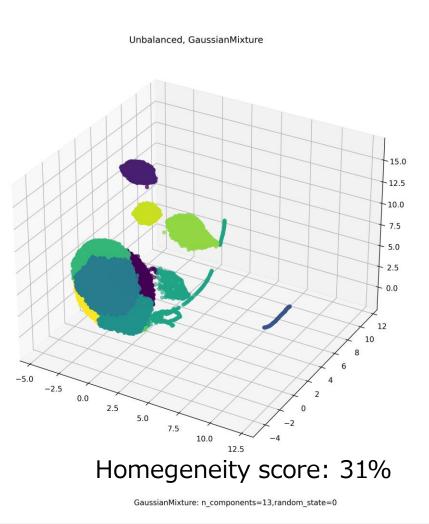
Balanced clustering & UMAP (z=8)





UNBalanced clustering & UMAP (z=8)



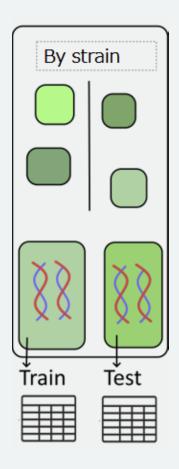


How well does it cluster?

Method dimensionality reduction	Method for clustering	Number of clusters	Number of correctly placed genera/species in clusters
PCA	DBSCAN	495	42% (Most of which was the same, huge cluster)
UMAP		619	82% (unbalanced data)
VAE (z=8) Balanced	DBSCAN	11 (Total genera: 13)	16%
VAE (z=8) Balanced	Gaussian Mixture	13 (predefined)	23%
VAE (z=8) Balanced	KMeans	13 (predefined)	3%
VAE (z=8) Unbalanced	DBSCAN	X	

Supervised: Decision trees

- Problem: Imbalanced classes
- LightGBM
- Bayesian hyperparameter optimization



Play around with parameters

Method	model	Learning_rate	Num_leaves	Depth	estimators	AUC
XGBoost	1	0.01	60	30	200	0.046
	2	0.01	60	40	200	0.046
	3	0.001	60	30	200	0.042
	4	0.004	56	30	100	0.043
LGBM	1	0.01	30	30	100	0.002
	2	0.004	56	30	100	0.22

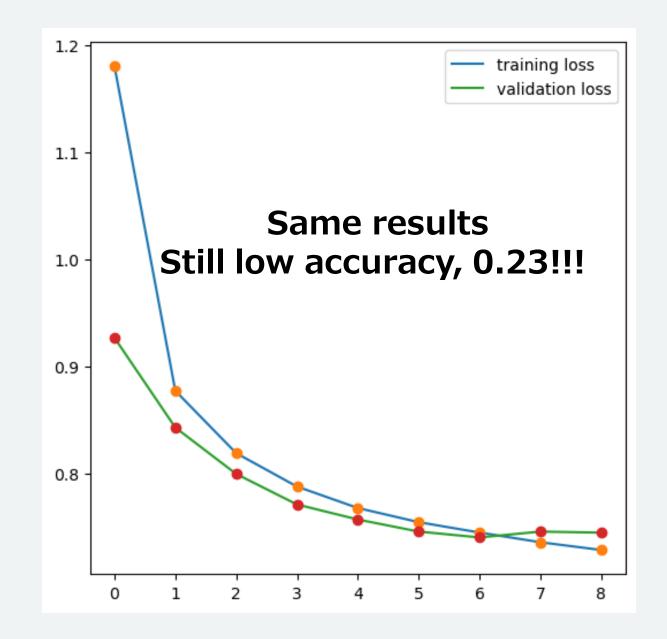
Problem: low accuracy

Top 3 AUC Scores			
Genus	AUC Score		
Citrobacter	1.0		
Campylobacter	0.97		
Arcanobacterium	0.96		

Worst 3 AUC Scores			
Genus AUC Score			
Croceibacter	0.46		
Treponema	0.40		
Tannerella	0.38		

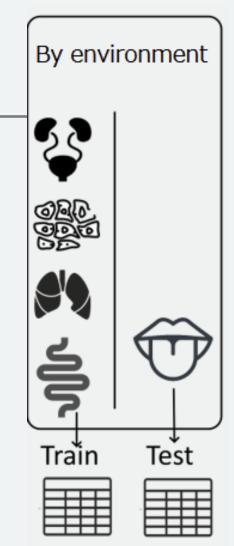
• Number of genus that we do not predict at all: 15

FFNN



Can we predict taxonomy in a new dataset?

- Predictor: LightGBM multiclassification
- Hyperparameters (Optuna):
 - Num_leaves: 25
 - learning_rate: 0.01
- Results:
 - Species level: 35% accuracy
 - Genus level: 68% accuracy
- Problem: Is this even biologically relevant?



Conclusion

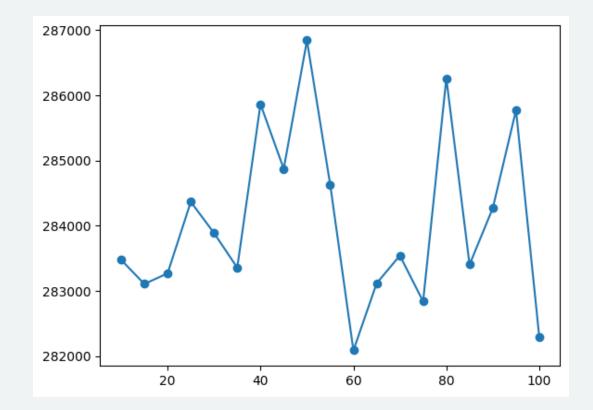
- Unsupervised Our current model is not sufficient in determining the genera of contigs and is therefore not applicable for metagenomic binning in its current form.
- Supervised Our model performs better than just a random guess and has been shown to predict species in an "unseen" environment. However, this model is not robust to generalize to new data and species and can only predict genera which it trained on.

Yeasa. 86 - 6x 3+ 6.31447 22 Va'+ B! = x 2 hx C(x, Y)y= 25+40 Thank you 29 +x + 02+32 men = 584. + nov 4=14! 130 Break slide

Supplementary

Searching for the optimal size of Z

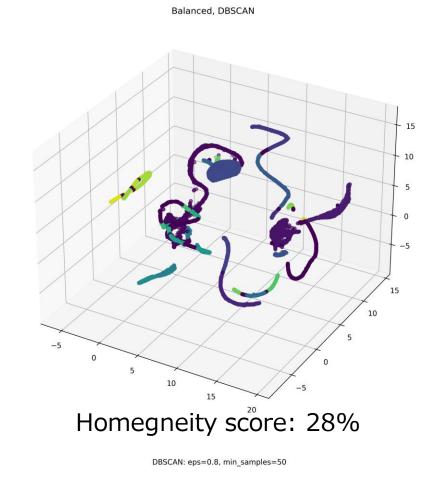
Using the "elbow method" finding the minimum loss (normalized)



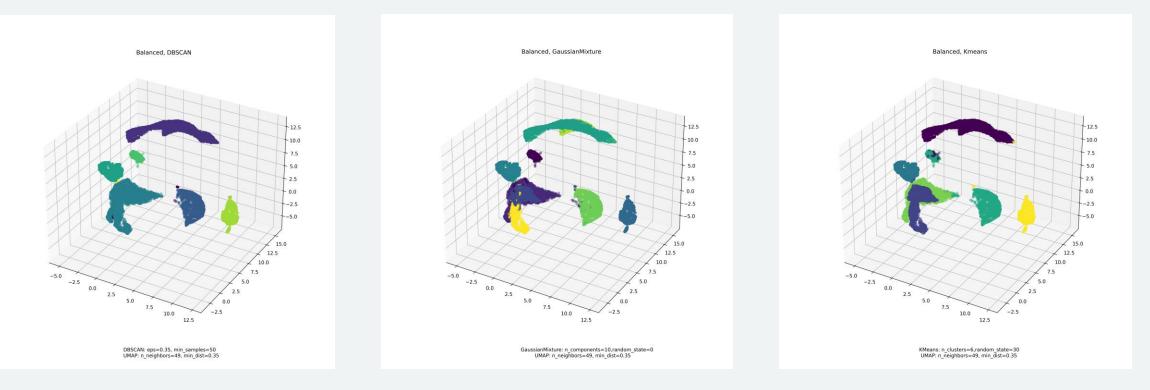
Direct UMAP and clustering

Only finds 4 clusters mist of which are snake structures

"Snakes" - It has been raised in the literature that it could be due to correlation

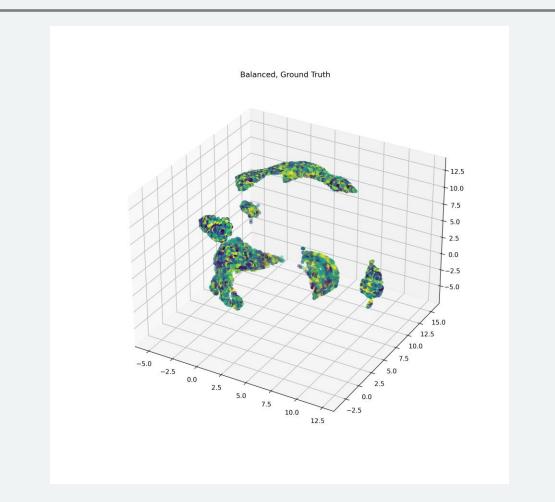


Balanced clustering (data) (z=8) Pytorch



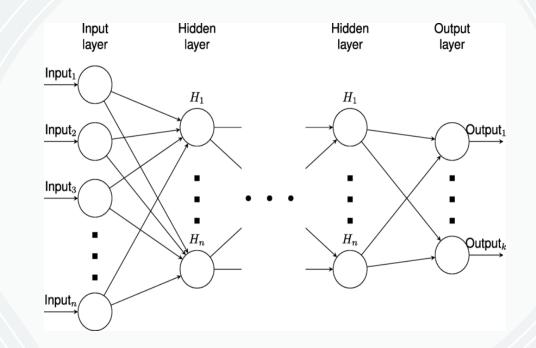
Homegeneity score: <1%

Balanced clustering (Pytorch)



FFNN

- TensorFlow and Keras
- Bayesian hyperparameter opt
 - learning_rate: 0.001
- Results: Baseline performance
- Problem: Imbalance classes



	Input_layer	Hidden_layer1	Hidden_layer2	Output_layer
Units	288	64	32	214
Activation	relu	relu	relu	sofmax