
Applying ML on
simulations of
the Milky Way

Clotilde, Kathrine, Frederikke and Sophia

AML final project 14.06.2023

Introduction

Simulation: Infer dark matter
from 2D images of galactic center

Our goal: Apply various ML
methods on the images

AML final project 14.06.2023 1/20

Introduction: Data

AML final project 14.06.2023 Simulator made by Adam Coogan, Montréal University 2/20

64 x 64

Part a Part b

Parameter
estimation
using CNNs

Part c

Semantic
segmentation
using U-net

Denoising
images using
autoencoding

AML final project 14.06.2023

Introduction: Methods

 3/20

CNN DM = 0.89

Input Output

AML final project 14.06.2023

Part a: Method

Goal: Estimate the amount of dark matter with a CNN

 4/20

Parameter

Single output CNN

AML final project 14.06.2023

Part a: Result

 5/20

Single output CNN

CNN

DM

N point sources
disk

N point sources
Galactic center

Input Output

AML final project 14.06.2023

Part a: Method

Goal: Estimate the amount of dark matter and
the number of points sources with a CNN

 6/20

Parameters

Multiple output CNN

AML final project 14.06.2023

Part a: Result

 7/20

RMAE = 0.03538

Two outputs
DM & total number of point sources

Multiple output CNN

RMAE = 0.1093

AML final project 14.06.2023

Part a: Result

 7/20

RMAE = 0.04526

RMAE = 0.1364

Two outputs
DM & total number of point sources

Three outputs
(DM) & separate estimates of point sources

Multiple output CNN

RMAE = 0.03538

RMAE = 0.1093

AML final project 14.06.2023

Part a: Result

 8/20

N outputs / parameter DM N PS total N PS disk N PS center

One 0.0807 - - -

Two 0.1093 0.0354 - -

Three 0.1175 - 0.0453 0.1364

Table with mean relative errors

Multiple output CNN

DM = dark matter, N = number, PS = point sources

Semantic Segmentation with U-net

AML final project 14.06.2023

Part b: Method

 9/20

Goal: Detect point sources by categorizing
each pixel in an image into a class (y/n)

……

……

……

CONV2D

CONV2D

MAXPOOL

CONV2D

CONV2D

……

……

……

……

……

……

……

……

……

……

OUTPUT
IMAGE

CNN U-net architecture

Encoding/Downsizing

Reducing image size

Increasing depth

We learn WHAT

Decoding/Upsizing

 Increasing image size

 Decreasing depth

 We learn WHERE

AML final project 14.06.2023

Part b: Method

 10/20

SKIP CONNECTIONS

INPUT
IMAGE

CONCATENATION

UPCONV2D

……

……

Normalized flux Probability
AML final project 14.06.2023

Part b: Result

 11/20

AML final project 14.06.2023

Part b: Result

12/20

Target 1: ALL Target 2: SELECTED

All point source pixels

Prediction mask

N brightest point sourcesPixels above cut value 0.02

Target 1: ALL Target 2: SELECTED
AUC = 0.97

Part b: Result

AML final project 14.06.2023 13/20

AUC = 0.92

AML final project 14.06.2023

Part b: Result

14/20

Provides OK overall picture Good at identifying the brightest sources

Target 1: ALL Target 2: SELECTED

Goal: Denoise corrupted images using autoencoding

64 x 64
corrupted image

64 x 64
reconstructed image

1 x 6
compressed image

ENCODER DECODER

64 x 64
original image

AML final project 14.06.2023

Part c: Method

15/20

ENCODER

Learning rate

Architecture of CNN

Loss function

Size of latent space

Parameters to optimize:

AML final project 14.06.2023

Part c: Method

16/20

ENCODER

Goal: Denoise corrupted images using autoencoding

1 x 6

Type of noise:

Gaussian

Poisson

Masked (fraction of pixels set to 0)

Salt&Pepper (fraction of pixels set to 0 or 1)

AML final project 14.06.2023

Part c: Method

17/20

Goal: Denoise corrupted images using autoencoding

Gaussian noiseEpoch 20 Minimum reached: MSE = 0.0011

AML final project 14.06.2023

Part c: Result

18/20

Masking 50% MSE: 0.0010 Salt&Pepper 50% MSE: 0.0019Poisson MSE: 0.0012

AML final project 14.06.2023

Part c: Result

19/20

min MAE values
DM:
PS (total):
PS (disk):
PS (GC):

AML final project 14.06.2023 20/20

Part a Part b

Parameter
estimation
using CNNs

Part c

Semantic
segmentation
using U-net

Denoising
images using
autoencoding

Conclusion

80% accuracy for
ALL point sources

94% accuracy for
BRIGHTEST point

sources

0.0807
0.0354
0.0453
0.1364

min MSE values
Gaussian:
Poisson:
Masked:
S&P:

0.0011
0.0012
0.0010
0.0019

Thank you for listening :-)

Appendix 0
Introduction to topic and data

Contributions
We all contributed evenly in this project.

The main responsibles in the different parts were: a) Sophia and Frederikke, b) Clotilde and Kathrine and c) Sophia

Topic
Our goal is to infer dark matter and other astrophysical contributions from simulated images of the gamma-ray sky around
the Galactic Center. We aim at applying several algorithms reviewed in class but not utilized earlier in the Initial Project. We
approach the dataset with several different goals in mind:

A. To predict parameters in the images using CNN.
B. To classify and locate sources in the image using a modified U–net CNN architecture.
C. To denoise the images using auto-encoding.

Data simulator
The data used in the project is generated images of the Galactic Center, generated from a simulator created by Adam Coogan
in connection with a summer school Sophia attended at Montréal University in 2022.

Below is a description of the different components sampled in the simulator:
● Point sources distributed symmetrically around the Galactic Center (n_ps_gc), with related fluxes describing the point

source contribution in each pixel (flux_ps_gc). The positions and fluxes of the point sources are randomly sampled for
each run of the simulator.

● Point sources distributed in the galactic disk (n_ps_disk), with related fluxes describing the point source contribution in
each pixel (flux_ps_disk). The positions and fluxes of the point sources are randomly sampled for each run of the
simulator.

● Dark matter emission spherically-symmetric and sharply peaked towards the Galactic Center (A_dm).
● Emission tracing the gas distribution, arising from e.g. 𝜋^0→𝛾𝛾 decay and bremsstrahlung (A_pi0).
● Inverse Compton emission from high-energy cosmic rays Compton upscattering low-energy cosmic microwave

background (CMB) and starlight photons to higher energies (A_ic).
● Fermi bubbles which consists of two huge, faint lobes extending far above and below the galactic plane (A_bubbles).

The simulator generates an observation by constructing a grid of pixels and sampling the components mentioned above.
Other parameters are defined such as the observation size, distance to the galactic center, pixel resolution, dimensions of the
disk, smoothing factor and containment radius. It then applies a point spread function (PSF) that slightly blurs the image.
Finally it samples the observation from a Poisson distribution with mean equal to the blurred image.

Appendix 1
Predicting parameters using CNNs

CNNs
Goal
The goal was to make a CNN that could predict the amount of dark matter parameter in a simulated image. The idea is that
if we succeed in creating this algorithm based on simulations, one could feed the algorithm an image of the real Universe
from where the algorithm could predict the amount of dark matter. Unfortunately, we don’t have an image of the real
Universe that corresponds to the simulations. After creating a solid CNN for predicted the dark matter parameter, we
expanded the CNN to be able to predict other parameters too.

Normalization
The dark matter parameter is already normalized to be between 0 and 1. For the CNN that predicts more than one
parameter, the other parameters were normalized to be between 0 and 1 in order for the loss function to weigh the
accuracy of all parameters equally.

Size of dataset (one output)
Training: 8192 simulated images with size 1x64x64
Validation: 1966 simulated images with size 1x64x64
Testing: 3072 simulated images with size 1x64x64

** We used Google Colab (free version) in all parts of this project and therefore the size of the generated datasets are
limited to the RAM that follows when using Googles GPU **

Size of dataset (multiple outputs)
Training: 8192 simulated images with size 1x64x64
Validation: 1024 simulated images with size 1x64x64
Testing: 1024 simulated images with size 1x64x64

One output
The network architecture is build from a set of convolutional
layers followed by fully connected layers. Both using
Sequential modules from PyTorch.

The convolutional layers uses Conv2d layers, ReLU activation
functions, and MaxPool2d layers. The fully connected layers
consists of Linear layers, which perform matrix multiplication
on the input and apply a linear transformation. The first
Linear layer takes the flattened input and produces an output
of size 512. The subsequent Linear layers reduce the size to
128 and then to 1, which is the final output size of the
network.

Performing “architecture” and HP optimization we
concluded:

● ReLU activation performed better than LeakyReLU
● Batch size: 64 (examined alternatives: 32 and 128)
● Learning rate: 0.001

CNNs: Architecture and HP optimization

Multiple output
The architecture for the CNN with multiple outputs is deeper
and more narrow compared to the CNN with a single output.
It has approximately ⅓ number of parameters. We tried
wider networks with more parameters and the result was
approximately the same and therefore not worth the extra
computational expense.

The same network architecture was used for the model with
two and three outputs. One could expect the results of the
three parameters would increase if the network was made
even deeper.

CNNs: Architecture and HP optimization

CNNs: Evaluation
Own evaluation
Overall we were very impressed with the CNNs and their ability to predict the dark matter parameter as the
amount of dark matter in the images is impossible to asses with the human eye (shout out to ML!). We also
succeeded in creating a model that could determine the total number of points sources with a satisfying MAE
score. We were, however, disappointed that the model could not predict the number of points sources in the
Galactic center decently. We believe that one of the reasons that the CNN struggles with the number of points
sources in the Galactic center is because this number is between 200 and 800 while the number of point sources
in the disk is between 1000 and 4000. The intensity of the point sources in the disk is therefore a lot brighter.

Next steps / Improvements
Buying more RAM on google Colab would allow us to generate more training data which most likely would
improve our results and maybe even be enough to reach a decent MAE score for the number of points sources in
the Galactic center. Alternatively, one could build an ever deeper network and tune the architecture even more.

Appendix 2
Semantic segmentation using U-net

References for Appendix 2:
https://aditi-mittal.medium.com/introduction-to-u-net-and-res-net-for-image-segmentation-9afcb432ee2f
https://medium.com/analytics-vidhya/what-is-unet-157314c87634
https://medium.datadriveninvestor.com/an-overview-on-u-net-architecture-d6caabf7caa4

https://aditi-mittal.medium.com/introduction-to-u-net-and-res-net-for-image-segmentation-9afcb432ee2f
https://medium.com/analytics-vidhya/what-is-unet-157314c87634
https://medium.datadriveninvestor.com/an-overview-on-u-net-architecture-d6caabf7caa4

U-net
Goal
The goal was to construct a Fully Convolutional Neural Network using the U-net architecture, in order to categorize which
pixels in the simulated images originate from source points. This could eg. be useful for astrophysicists, for identifying point
sources from telescope images. In this case it is used as part of the problem of distinguishing light from dark matter and
point sources.

Normalization
All the simulated images were normalized by dividing the pixel values in each image with the maximum pixel value in that
image. Alternative types of normalization were also tested e.g. dividing all pixel values in all images with the maximum pixel
value across all images. Since the maximum value varies by approximately a factor of 100 in a dataset of N images the
latter method did not give optimal results, and was therefore not used.

Size of dataset
Training: 6592 simulated images with size 1x64x64
Validation: 800 simulated images with size 1x64x64
Testing: 800 simulated images with size 1x64x64

U-net: Architecture
The U-net Convolutional Neural Network architecture consists of two symmetric paths: An encoder and a decoder path
separated by a bridge (‘bottle-neck layer’). An overview of layer type and output shape for each layer is presented in two slides.

The encoder (contraction) path consists of four blocks and is used to capture the context of the image. Each block gets an
input, applies two 3x3 convolutional Leaky Relu layers with a Dropout layer in between, batch normalization, Leaky ReLU
activation functions followed by a 2x2 maxpooling layer.

The bridge connects the encoder and decoder paths. It consists of two 3x3 convolutional Leaky Relu layers separated by batch
normalisation and a leaky relu activation function.

The decoder (expansion) path also consists of four blocks and enables precise locations of pixels. Each block gets an input,
applies a 3x3 transposed convolutional layer, then includes a concatenation with the correspondingly cropped feature map from
the contracting path (skip-connections), batch normalization, and a Leaky ReLU activation function. The output of the last
decoder block passes through a 1x1 convolutional layer with a sigmoid function, to give the segmentation mask representing
the pixel-wise classification.

U-net: Architecture
We wish to highlight the use of skip-connections between encoder and decoder blocks as this is an important feature of the
network: By concatenating the output of the transposed convolution layers with the feature maps from the encoder at the same
level, the algorithm combines location information from the downsampling path with the contextual information in the
upsampling path, to finally obtain general information combining localization and context, to predict a good segmentation map.
So the skip-layers provide information on features from earlier layers that are sometimes lost due to the depth of the network.

Starting with the architecture from the original U-net and by doing ‘architecture optimization’ we concluded that
● Leaky ReLu improved the result compared to ReLu
● Dropout layers was a nice feature to introduce, to prevent overfitting by ignoring randomly selected pixels
● Batch normalization layers are included, because they make the network more steady while training

Why choose the U-net architecture for this problem?
The U-net architecture is a specific kind of CNN originally developed for biomedical image segmentation. It is known to be one
of the best networks for fast and precise segmentation of images, designed to learn from fewer training samples. This was
beneficial for us, as our training data was somewhat time-consuming to produce, took up a lot of memory, and we want the
algorithm to work as fast as possible. Furthermore the U-net only contains convolutional layers and not dense layers, meaning it
can accept images of any size (since only parameters to learn on convolution layers are size of kernel, which is independent
from input image size), making it more generalizable.
There are several other alternatives to the U-net architecture for doing semantic segmentation, which might work just as well or
even better than the algorithm we have worked with. This would be interesting to investigate in further work.

Encoder

Bridge

Decoder

U-net: Architecture overview

U-net: Optimization
Loss function
We wrote a customized loss function to implement a
penalty term that accounted for the algorithm
detecting more/less point source pixels than the
actual true amount (which we saw that it did).
The binary cross-entropy loss was used as a basis
since our target is binary (point source or non-point
source). The difference between i) the true amount of
point sources and ii) the predicted amount of point
sources with a score larger than 108% of minimum,
was scaled by a small factor and added to the basis
score, allowing us to penalize the algorithm for
detecting the wrong amount of point sources. The
value of 108% was optimized by trying values in teh
range 105-120 %.

Hyperparameter optimization
Performing hyperparameter-optimization we furthermore found optimal values for

● Batch size: 128 (examined alternatives: 64 and 256)
● Learning rate: 0.001 (examined range: 0.00001 - 0.1)

U-net: Result evaluation
How do we evaluate the results?
The output of the algorithm is a segmentation mask, representing the pixelwise classification (point source or non-point source)
as a float in the range]0,1]. As the algorithm assigns all pixels a value >0, there are different ways to compare this output to the
input image containing normalized fluxes. We choose two different approaches (denounced A and B) explored below, which will
be appropriate depending on the purpose of the problem. In both cases we choose a cut-off value on the probability, only
considering predictions with this probability or higher as point sources when comparing to the target pixels. The cut-off value
used here has to be carefully considered. We tested several different values taking into account which gives better/worse
accuracy as well as how much data we discard in the process for the accuracy measure. We ended up choosing a cut-off value
of 0.02 because a lower value would in many cases include very improbable pixels that added weird patterns in the mask. At the
same time a higher value would just discard pixels unnecessarily.

Approach A evaluation
All pixels from the true mask with a flux >0 are used in the target mask (including very low fluxes that are extremely difficult to
predict). Overall the U-net succeeds in identifying the point source pixels with a mean accuracy of 0.80+/-0.03. The result
furthermore reveals an average AUC-score of 0.92+/-0.01 (see histograms of AUC-scores on next page).

Approach B evaluation
We compare the N pixels from the prediction with a probability higher than the cut value to the N pixels with the largest flux in the
target image. This results in a mean accuracy of 0.94+/-0.01. The result furthermore reveals an average AUC-score of 0.97 + 0.01
-0.02.

U-net: AUC histogram
A B

U-net: Result evaluation
Comparing the two methods
Approach A including all points gives more of a full picture of the algorithm performance. A downside of this approach is that it
includes images with very faint point sources, which are very unlikely to be detected. This affects the accuracy considerably
compared to approach B.

Approach B includes only the N brightest point sources. This approach evaluates the performance of the algorithm on only the
‘most certain/bright points’ and results in much more accurate predictions compared to approach A. A downside to this
approach is that the more dim point sources of the true data are neglected. Choice of the two approaches depend on the goal
you are trying to achieve - Are you trying to get a more general idea of how the total galaxy looks, or are you interested in
identifying more specifically the exact locations of the brightest point sources out there? The cut-off value can furthermore be
chosen to give a better accuracy in one of the approaches - but not both at the same time.

Next steps / Improvements
Further hyperparameter-optimization could be done to the network. We choose the image size and size of the data set ourselves,
so increasing these could be an option too. Further work on the penalty term in the loss function as well as a systematic
investigation and optimization of the cut-off value would also be interesting. It would furthermore be interesting to test out a
completely different type of algorithm for semantic segmentation and compare to the U-net, to see if we actually have chosen the
most optimal algorithm for the problem, or if out results could be optimized even further.

Appendix 3
Denoising images using autoencoding

(DAE)

DAE
Goal
The goal was to make an autoencoder for denoising images where adative isotropic Gaussian noise was added. To make
the simulated images differ more than in the previous parts, the simulation was modified by introducing more randomness.
An example of this is the random angle of which the original image is rotated. This was inspired by real space telescopes
as these rotate themselves.

Normalization
All the simulated images were normalized by divided the pixel values in each image with the maximum pixel value in that
image. Alternative types of normalization were also tested e.g. dividing all pixel values in all images with the maximum
pixel value across all images. Since the maximum value varied by approximately a factor of 100 in a dataset with 10,240
images the latter method for normalization did not perform well.

Size of dataset
Training: 8192 simulated images with size 1x64x64
Validation: 1024 simulated images with size 1x64x64
Testing: 1024 simulated images with size 1x64x64

DAE
Why use an autoencoder for this task?
We use an autoencoder for this task since this type of network has the ability to learn compact representations of the
images and capture meaningful features in the original images. By limiting the capacity of the autoencoder (through a
bottleneck layer with lower dimensions), it forces the model to capture the most prominent features of the input. This
regularization effect can help denoise the images by discarding the noisy components and emphasizing the essential
details. In addition, since we use non-linear activation functions (Leaky ReLu) in the hidden layers the autoencoder can
capture nonlinear relationships between the noisy and clean images. Lastly, an autoencoder works well on unsupervised
data as it learns to encode and decode the images without the need for explicit annotations of the noise (labels).

DAE: Architecture and HP optimization
The denoising autoencoder (DAE) consists of an encoder and a decoder
component. The encoder applies a series of convolutional layers with batch
normalization and Leaky ReLU activation functions to progressively reduce the
spatial dimensions of the input image from 1x64x64 to 64x4x4. During
‘architecture optimization’ we concluded that

● Adding more conv-layers generally improved the result
● Leaky ReLu improved the result compared to ReLu
● Adding a Sigmoid activation function before returning the output made

the result worse

Next, the output is flattened and passed through fully connected layers to
further compress the information into a lower-dimensional encoded space. The
size of the latent space proved to be one of the most important
hyperparameters. Performing hyperparameters optimization we concluded

● Size of latent space: 1x6 (examined range: 1x2 - 1x10)
● Learning rate: 0.001 (examined range: 0.0005 - 0.0100)
● Loss function: MSE (alternative loss function: MAE)
● Batch size: 64 (examined alternatives: 32 and 128)

DAE: Different types of noise
We trained and ran the DAE on different types of noise:

● Gaussian: Adds random Gaussian distributed values
isotropically to the input data. The noise values are
independent and have equal variance in all dimensions.

● Poisson: Adds noise based on the Poisson distribution to the
input data, simulating the randomness of these events.

● Masked: Randomly selects a fraction of the input and sets
those elements to zero, effectively masking them out. The
remaining elements remain unchanged.

● Salt-and-Pepper: Randomly selects a fraction of the input and
replaces those elements with either the minimum or
maximum value. This creates "salt" (maximum value) and
"pepper" (minimum value) artifacts in the data.

The DAE optimization is based on images with Gaussian noise. In
order to make an optimal algorithm for alternative types of noise the
optimization should be repeated for each alternative type of noise.

DAE: Different types of noise
The MSE-score of the different types of noise cannot be directly compared since the amount of noise added is not identical
in the four different cases (except for the masking and salt-and-pepper noise). The best MSE-score for the four different
types of noise are

● Gaussian w. noise factor = 0.2 MSE = 0.0011
● Poisson w. noise factor = 1.0 MSE = 0.0012
● Masked w. noise fraction = 0.5 MSE = 0.0010
● Salt-and-Pepper w. noise fraction = 0.5 MSE = 0.0019

In the next two slides you can see the performance of the network after 1 and 6 epochs, respectively. After 20 epochs the
loss hit a minimum (see slide 20) and after around 30 epochs the network was overtrained.

DAE results after 1 epoch
The network has learnt that the flux intensity is the highest in the center Gaussian noise

DAE results after 6 epochs
The network has learnt that the images are rotated in different directions Gaussian noise

DAE
Own evaluation
Overall the DAE succeeds in removing the Gaussian noise. It is also good at capturing the angle of which the images are
rotated (even the very faint simulations) as well as the flux in the images. However, the output images are far more smooth
than the original images. In general, we strive for the output image to be identical to the original image, but in this case the
smoothness might be an advantage since this is often a very standard thing to do when dealing with astronomical
observations. Both the training and validation data converge towards a MSE value at 0.0011 after approximately 20
epochs. We also ran our algorithm on other types of noise (mostly for fun, since we did not do new optimizations with the
alternative types of noise). The algorithm performed with similar loss (0.0012) on the amount of Poisson noise we added.
The masking and salt-and-pepper noise can be compared directly since the noise fractions selected were equal. The
masking performed significantly better than the salt-and-pepper noise (0.0010 vs. 0.0019) which makes sense when
looking at the corrupted images (i.e. the pixels in the background are originally 0 and are therefore only affected by the
salt-and-pepper noise and not the masking noise).

Next steps
An easy-to-implement next step could be to mix images with different types of noise in order to make the algorithm more
robust. One could also develop the algorithm further, making it classify the different types of noise.

