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What is the goal?

- Predict outcome of football matches using ML

- Combine with clever betting strategies

- Get positive return on investment (ROI)
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The Data

Football data*

The 11 top european leagues

Seasons from 2008 to 2016

25979 matches

For each match the data contains

- Outcome (modified to be H or XA)

- Teams

- Players

- Date

- Odds from 10 bookies

Data is data

*Data from Kaggle: kaggle.com/datasets/hugomathien/soccer3

https://www.kaggle.com/datasets/hugomathien/soccer


Wrangling the data (FIFA data*)

9 features for each team
● buildUpPlaySpeed, buildUpPlayDribbling, etc.

35 features for each player

● Overall_rating, heading_accuracy, etc.

= 788 features for each match

Some missing entries (NaN values)

4*Data from Kaggle: kaggle.com/datasets/hugomathien/soccer

https://www.kaggle.com/datasets/hugomathien/soccer


Imputation of FIFA data

Data: FIFA → loads of NaN

LightGBM-regression to impute 

data for all NaN-values

More suitable data for NN 

Ft. 1 Ft. 2 Ft. n

3 50 NaN

NaN 75 7

8 NaN 10

5 43 8

‘Target Feature’

LGBM-Regression

Ft. 1 Ft. 2 Ft. n

3 50 NaN

6.73 75 7

8 NaN 10

5 43 8

‘Target Feature’

LGBM-Regression
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Feature engineering

Using only the final score of each match

Creating data that shows the teams’ league 

standing and stats during the season

Calculating parameters which try show 

performance in previous matches 

Resulting in 57 features per match

Referred to as: 

Historical League Standings and Stats

Small cutout of one teams stats 

calculations
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ROI (Return On Investment)

ROI = (Money earned - #bets placed) / #bets placed

Assuming we always bet 1 kr

E.g. 1kr bet with odds 1.15.

Win: ROI = 15%

Lose: ROI = -100%
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Naive betting strategies

Bookie Reference:

B365 - Bet365

BW - BetWay

IW - InterWetten

LB - LadBrokes

PS - Pinnacle Sports

WH - William Hill

SJ - Stan James

VC - Victor Chandler

GB - Gamebookers

BS - Blue Square
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Can the betting strategies be improved?
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Betting strategy & Custom Loss Function

Model probability prediction: {x ∈ R ∣0<x<1}

Bookie probability prediction: 1/Odds

Confidence score: Pmodel/Pbookie

Select bet with highest confidence for each match, not necessarily the predicted winner!

Eg. we predict home win with probability 0.4, bookmaker predict 0.2: Conf-score = 2!

Custom loss function that maximizes the ROI during hyperparam optimization for 

LightGBM
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Results
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Performance

Model: LightGBM

Features: FIFA Ratings
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Performance

Model: LightGBM

Features: FIFA Ratings
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Performance

Model: LightGBM

Features: Imputed FIFA Ratings 
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Performance

Model: LightGBM

Features: Imputed FIFA Ratings 
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Performance

Model: LightGBM

Features: Historical League Standings and Stats
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Performance

Model: TensorFlow Feed Forward-NN: 

Features: Imputed FIFA ratings
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Performance

Model: TensorFlow Feed Forward-NN:

Features: Historical League Standings and Stats
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Performance

Model: TensorFlow Recurrent-NN with Long Short Term Memory layers:

Features: Historical League Standings and Stats with Time-step = 10
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SHAP Values
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Summary and further work

- Positive ROI for FIFA features with both LightGBM and NN:
- Update features based on SHAP values and improve ROI

- Do more rigorous statistical tests to veri

- Negative ROI for historical league standings features with both LightGBM, NN 

and RNN:
- Calculate better performance parameters

- Remove matches early in the season

- Introduce more (or less) timesteps for RNN data

- Get more data!
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Thank you for listening  
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Appendix
All participants of the group have contributed equally in this project, and all the models were 

conjured and evaluated in collaboration with each other. 

23

The group has consisted of the following members:

Sebastian Koza (wtj465)

Casper Wied (nqs117)

Philip Kofoed Djursner (tkv976)

Malte Wettergren Andreasen (srl902)



SHAP-values:
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SHAP-values:
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SHAP-values:
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SHAP-values:
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SHAP-values:
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Custom loss function for optuna hyperparam optimization for LightGBM

Loss function for each K-fold:

• Calculate highest confidence for each match in val set.

• Check if the outcome was correct

• Add either -1 or Odds-1 to Money earned dependent on Loss/Win

• Calculate ROI

Average ROI over K-folds

Optuna maximises this loss function using Bayesian Optimization
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Dataset description

FIFA data Team and player attributes taken from the FIFA game at the date closest to the 

match. 25629 matches with 788 features. Contains NaN values 

Regressed FIFA data The fifa data where regression have been used to guess the value in place of a 

NaN value and thereby give a complete dataset. 25629 matches with 788 

features

Stats data Standing and accumulative scores for teams before the match. Furthermore, 

contains information about performance in previous matches. 25969 matches 

with 57 features.

Long stats data Adaptation of the stats dataset to include historical scores for use in RNN. For 

each match the standing before for home and away teams last 10 matches are 

included. 25969 matches with 10 timesteps each with 57 features.

Stats + Fifa Combination of Fifa data and stats data. Excludes the matches not in fifa data. 

25629 matches with 845 features
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FIFA stats LightGBM accuracy distribution
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Imputed FIFA stats LightGBM accuracy distribution
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Imputed FIFA stats - Betting strategy

33



Historical league standings and stats - Betting strategy
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Performance

Model: LightGBM

Data: Fifa + Stats
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Performance

Model: TensorFlow Feed Forward-NN:

Data: Regressed FIFA
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Performance

Model: TensorFlow Feed Forward-NN:

Data: Regressed FIFA

37



Performance

Model: TensorFlow Feed Forward-NN:

Data: Regressed FIFA
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Hyperparams - LightGBM - optimized using Optuna with Bayesian 

Opt
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LightGBM with FIFA ratings {'bagging_fraction': 0.9579291293788237, 'bagging_freq': 2, 'feature_fraction': 

0.6905869538273885, 'lambda_l1': 3.0207950743679935e-06, 'lambda_l2': 

2.8471435761366433e-06, 'learning_rate': 0.08070953882212376, 

'min_child_samples': 21, 'num_leaves': 60}

LightGBM with Imputed FIFA ratings {'bagging_fraction': 0.9001065227814082, 'bagging_freq': 4, 'feature_fraction': 

0.8571709403386009, 'lambda_l1': 1.3055455944442806e-07, 'lambda_l2': 

0.9946641932692142, 'learning_rate': 0.08020792259086053, 'min_child_samples': 

24, 'num_leaves': 231}

LightGBM with Historical League standings and stats {'bagging_fraction': 0.8815773640303611, 'bagging_freq': 1, 'feature_fraction': 

0.9331008825258347, 'lambda_l1': 0.00023013094300225074, 'lambda_l2': 

9.29984411243807e-08, 'learning_rate': 0.4659936425277095, 

'min_child_samples': 32, 'num_leaves': 117}

LightGBM with FIFA ratings + Historical {'bagging_fraction': 0.7869734846747195, 'bagging_freq': 6, 'feature_fraction': 

0.946364174886954, 'lambda_l1': 0.0010554319601229364, 'lambda_l2': 

4.278160517318616e-05, 'learning_rate': 0.06269262282530857, 

'min_child_samples': 23, 'num_leaves': 119}



Hyperparams - NN - Optimized using Bayesian Optimization

40

FF-NN with Historical League standings and stats 'batch_size': int(210.93147806917756), 'learning_rate': 

0.0001031647889407131, 'num_layers': int(1.6527764683653896), 

'num_nodes1': int(795.2791694689053), 'num_nodes2': 

int(981.1525219447333), 'num_nodes3': int(129.07866106404288)

FF-NN with Imputed FIFA ratings 'batch_size': int(264.05031761942996), 'learning_rate': 

0.00090657875624180566, 'num_layers': int(1.5990497723377082), 

'num_nodes1': int(1268.3567408393797), 'num_nodes2': 

int(2049.7155220818804), 'num_nodes3': int(115.84809550410591)

RNN - Historical League standings and stats 'num_layers': int(1.3354462066384936), 'num_nodes': 

int(81.26932393398478), 'learning_rate': 0.001999564797802341, 

'batch_size': int(543.5715311507388), 'dropout_rate1': 

0.37090214789269504, 'dropout_rate2': 0.2729329990267305
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