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Introduction

 Satellite measurements of 
sea surface temperatures

 Missing data due to clouds 

 Predict missing values
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1: https://data.marine.copernicus.eu/product/SST_BAL_SST_L4_REP_OBSERVATIONS_010_016/description

2: https://data.marine.copernicus.eu/product/SST_BAL_PHY_L3S_MY_010_040/description



The Data 4

L3 and L4

Challenges:

• Just two years of data take approx. 2 GB

• About 65 % data is missing
• No values over land

Level 3 (L3) daily image

Level 4 (L4) daily image

Level 3 one pixel time series



Gated 
Recurrent Unit

 GRU on L4 data

 Regular/unidirectional and 
bidirectional – not a big 
difference (RMSE of 0.54, and 
0.47, respectively)

Regular GRU

Bidirectional GRU
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Gated 
Recurrent Unit

 Simple GRU on combined L3 
and L4 data
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Combined 
model
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 One point does not 
contain sufficient 

information

 New method: Look at a 

time series of images. 
Insert artificial "cloud" on 

last picture

 Target is L3 augmented 
with L4



Combined 
model -

structure
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 Combination of CNN using 

"partial convolutions" (PCNN)

 Benchmarks:

 Mean of today

 Last measurement in point

 Model without GRU and with 
only today's picture



Combined model - results 12

Model Validation RMSE [K]

Benchmark: Mean of last day 0.53 K

Benchmark: Last valid measurement at point 0.65 K

Benchmark: Part ial Convolut ional Neural 
Network (PCNN)

0.30 K

Benchmark: GRU on L4 data 0.47 K

Combined PCNN and GRU 0.33 K

 Best model: Benchmark 
PCNN

 Convergence problems with 
the combined model

 Both PCNN's were able to 
overtrain significantly without 
dropout layers

 Losses span 5 orders of 
magnitude

 Huge impact by low-data 
days

 Possible information limit?



Convolutional Neural Network
Predicting the full picture
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CNN architecture 14



Inpainting autoencoder 15

 Structure

 Example results



Adding information from the day before 16



CNN interpolation simulating a real scenario
17



Concluding the project

 The combined GRU model should be modified to 
improveconvergence properties. Unphysical properties of the 
artificial cloud

 The CNN needs proper evaluation

Further work

 Increase data size – both in time and space

 Combine the GRU and CNN methods

 Add variables: Pressure. Wind velocity. Precipitation. Etc.

 Include in situ observations in training

 Potential to beat the DMI algorithm
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Appendix
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Appendix: GRU 20



Simple GRU 21

For the regular/unidirectional and bidirectional GRU:

• Lookback = 7

• Hidden layer = 7

• Data from January 1 2017 to December 31 2019 with a 

70/20 split between training and validation
• Unidirectional RMSE: 0.54

• Bidirectional RMsE: 0.47

• Scaled with MinMaxScaler

• Dropout rate of 0.2 to prevent overfitting

Unidirectional GRU

Bidirectional GRU



Simple GRU for combined L3 and 
L4 data
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• Input features we a combination between the L3 and L4 

data as well as time, and a nan-marker feature.

• Data from January 1 2017 to December 31 2019 with a 

70/20 split between training and validation

• Scaled with MinMaxScaler
• Dropout rate of 0.2 to prevent overfitting

• Only predicted nan values



PCNN and GRU: Preprocessing

 L3 data from years 2016-2019 is taken in outlined region. Every 
second pixel is taken to reduce images to 100x100. Everything is 
normalized to between 0 and 1

 Training set: 2016-2018 data. Validation set: 2019 data

 The middle pixel is saved as a target. The available L3 data is 
augmented with L4 data where data is missing to create a more 
balanced dataset (would be biased towards summer weather if 
only using L3 data)

 Since the mean is a good guess, we want to make a "residual" 
model, meaning the mean is subtracted from each image, stored 
and is then to be added in the very end
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PCNN and GRU: Simple PCNN

 Input to the benchmark PCNN is: 

 Image of today with mean subtracted and artificially inserted cloud in 

the middle

 Binary mask indicating valid vs. NaN values

 The mean of today

 Model is implemented in PyTorch. Partial convolutions is 
implemented using NVIDIA's "partialconv" 
( partialconv/models/partialconv2d.py at master · 
NVIDIA/partialconv · GitHub )
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PCNN and GRU: 
Simple PCNN – Best Structure
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Input Image

Input mask

6 layers of 

partial 

convolutions

Kernel size=3
Stride=2

Padding = 0/1
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shape: 
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activation

Linear layer 
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PCNN and GRU
Simple PCNN – Optimization

 With no regularization, significant overtraining occurred

 Dropout layers with p=0.5 were inserted after batch normalization 
and after the first Linear + ReLU connection

 Learning rate was optimized with Adam with an initial learning rate 
of 1e-4 and tweaked later in training. Trained for 30 mins on google 
colab GPU until exhibiting signs of overtraining

 Many different combination of latent space sizes (64-256), placing 
and number of batch normalizations and dropouts were tried and 
the best solution is shown

 The number of convolutional layers is determined by when the 
image is reduced to (1x1). This process is inspired by an in-painting 
PCNN paper by NVIDIA and kept in the hope of adding a decoder 
later
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PCNN and GRU
Combined Model

 Input to the combined model (PCNN + GRU) is:

 Time series of 4 images with mean subtracted and artificially inserted 

cloud in the middle of the last image

 Binary mask indicating valid vs. NaN values of all 4 images

 The mean of all 4 images

 Model is implemented in PyTorch. Partial convolutions 
is implemented using NVIDIA's 
"partialconv" ( partialconv/models/partialconv2d.py at master 
· NVIDIA/partialconv · GitHub )
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PCNN and GRU: 
Combined model – Best Structure
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 The PCNN encoding is identical to the simple PCNN up to and 
including the batch normalization and first dropout layer



PCNN and GRU:
Combined model – Best Structure

 Details:

 To the 64 latent space features is appended 2 things: The number of 

valid pixels in today's image and the change in mean (today –
yesterday)

 The GRU has 128 hidden states

 The NN has 2 hidden layers (both size 64)

 A skip connection is introduced between the latent space 

representation of the last image and the first hidden layer in the NN 
(essentially the "memories" of GRU should represent pertubations to the 

last latent space representation)

 In the end, the mean of today is added to the prediction
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PCNN and GRU: 
Combined model – Optimization
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 If no dropout layers were introduced, the model overtrained 
significantly. We introduced extra dropouts with p=0.5 between the 
GRU and the regular NN and after the final hidden layer of the NN

 When doing the first dropout (after the PCNN encoding), we found 
that care had to be taken so that the SAME dropout was made on 
all 4 images. This made a significant difference

 We started without skip connections and just appending the mean 
and number of valid pixels. Then, we tried out several model 
architectures: Having the GRU look at DIFFERENCES in latent 
space, adding and subtracting hidden states, increasing number of 
hidden layers in the regular NN, modifying dropouts and batch 
normalizations. The best obtained result is shown



PCNN and GRU: 
Combined model – Optimization
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 The model was optimized with Adam, and the learning rate of the 
different parts of the network was tweaked during training.

 The model was trained for 50 min on google colab free GPU until 
loss settled around a stable value



Appendix: CNN

 Normalizing the images for CNN

 Auto encoder (testing the architecture when there is no noise)

 CNN interpolation using L4 from yesterday and L3 from today

 CNN interpolation simulating a real scenario
(alternativ version)

 CNN error evalutation

32



Normalizing the images for CNN

 The temperature data is given in Kelvin and can thus only take positive 
values. Naturally the sea surface temperatures lay in the range 270 to 
300 Kelvin in which most variability can be explained by the season.

 Normalizing by a similar approach in every season will e.g. course winter 
images to take only low values and summer images to take only high 
values. Furthermore most days will have a low spatial variability.

 Normalizing was done by subtracting the mean and dividing my the 
standard deviation of the level 4 data of the previous day. This way most 
images have data distributed approximately normally.
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A regular autoencoder

 Structure

34

 Example results

Validation loss = 0.09
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CNN interpolation using L4 from yesterday and L3 from today

 Structure: L4  Results
Validation loss = 0.17



CNN interpolation simulating a real scenario

(alternativ version)

 In this verison of the CNN 
interpolation, where fake 
clouds are added to the L3 
input data, the training 
pictures are masked, so 
that only pixels in which fake 
clouds have removed L3 
data are used for training 
and evaluation.
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CNN error evalutation

 The error of the "Optimal Interpolation" DMI method is evaluated 

by comparing the L4 product to in situ data from buoys and ships. 

The RMS error is approximately 0.7 Kelvin.3

 The error of our algorithm is evaluated by taking the RMS of 

the error between L3 and predictions yielding approximately 

0.3 Kelvin. The RMS error in pixels where fake clouds 

were added was 0.4 Kelvin.

 Since a different method of evaluation is used nothing can 

be concluded, but the CNN method do shows promising results.
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3: Høyer, J. L., Le Borgne, P. and Eastwood, S. 2014. A bias correction method for Arctic satellite sea surface temperature 

observations, Remote Sensing of Environment


