# Using ML to Read the ASL Alphabet

A lesson in preprocessing data

Emilie Nielsen, Morten Bendtsen, Ludvig Marcussen & Michelle Rix

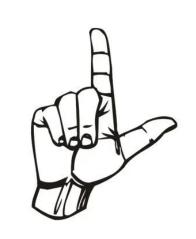
UNIVERSITY OF COPENHAGEN

## Introduction

- Classification of images of ASL alphabet
- Inspired by kaggle competition
  - Data obtained from kaggle









#### Introduction to Data

- 1. The online data
- 29 categories
- 1 hand
- 3000 jpgs in each
- 240 X 240 pixels



Α



В



С



D

. . . .







Delete

Space

Nothing

# Introduction to Data

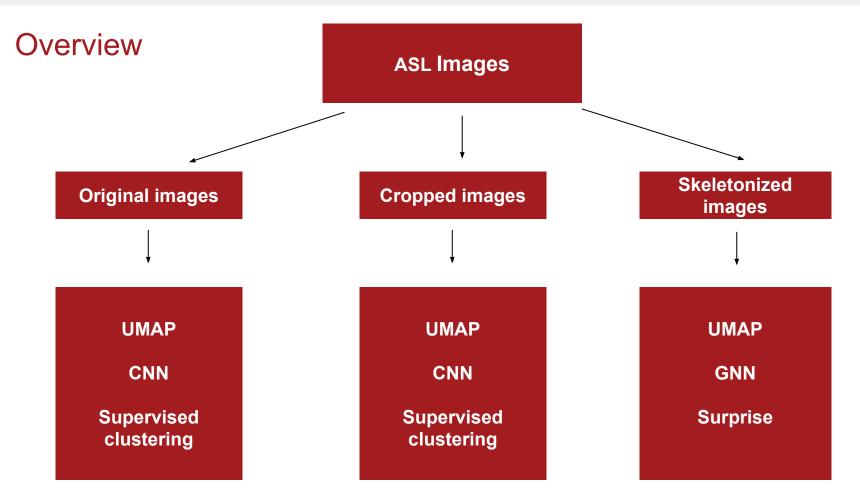
- 1. The online data
- 29 categories
- 1 hand
- 3000 jpgs of each sign
- 240 X 240 pixels
- 2. Self produced data
  - 29 categories
  - 4 hands
  - 960 jpgs of each sign
  - variable dimensions

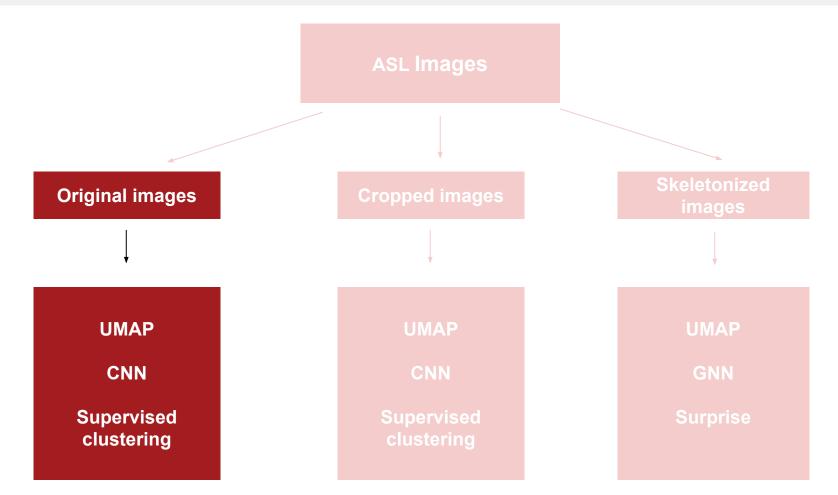












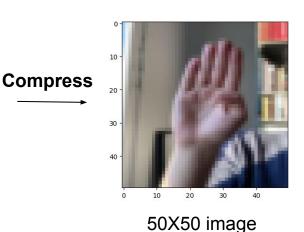
## Preprocessing

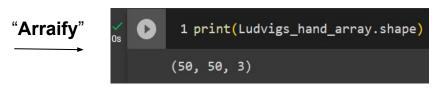
A two step process

- 1. Compress photo to suitable format
- 2. Turn into array



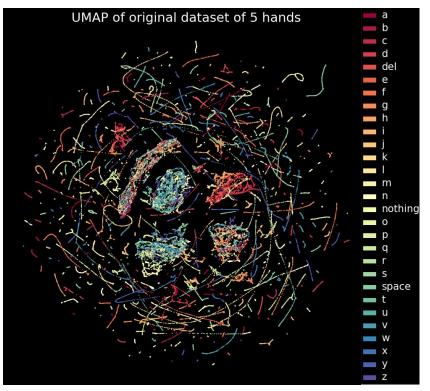
Original image





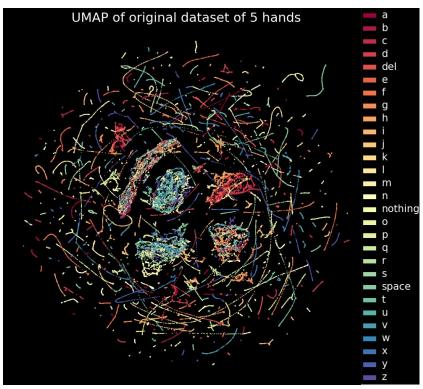
## Dimensionality reduction using UMAP on original images

#### Colouring by sign

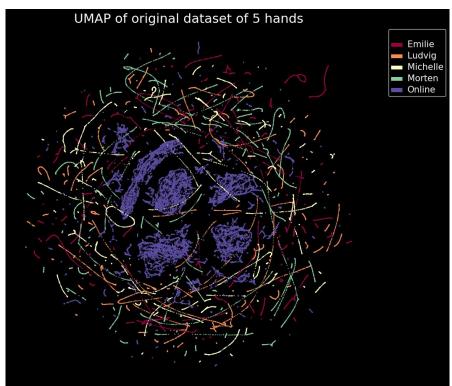


# Dimensionality reduction using UMAP on original images

#### Colouring by sign

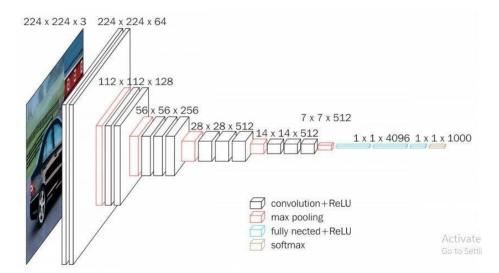


#### Colouring by people



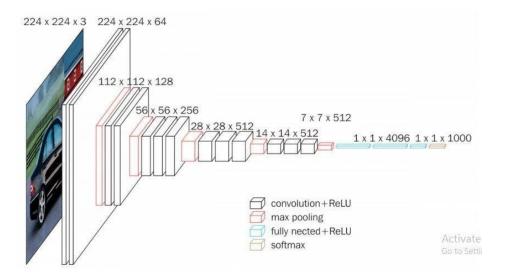
# Using CNNs to classify signs

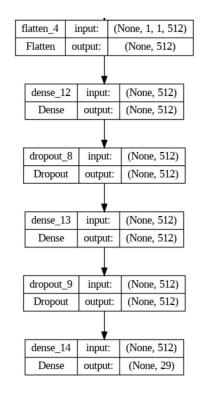
- VGG16 - a pretrained network



# Using CNNs to classify signs

- VGG16 - a pretrained network

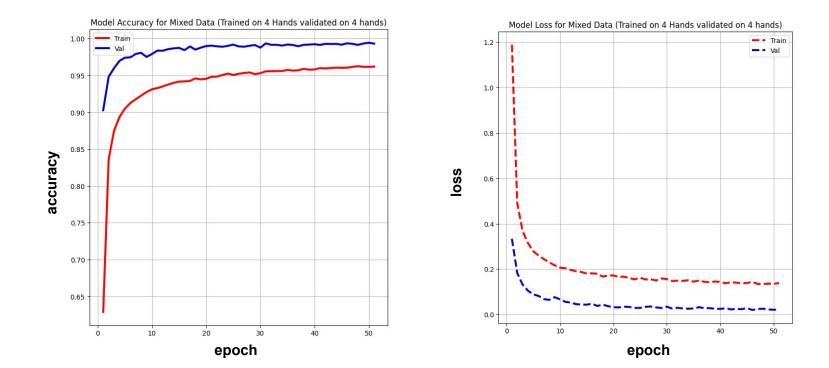




+

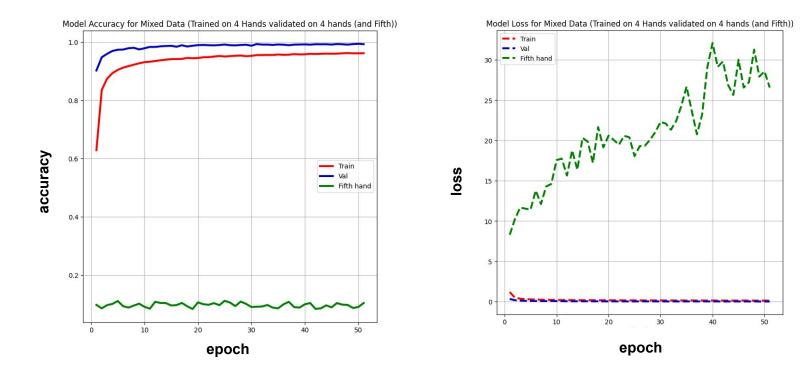
## Using CNNs to classify signs

- Mixing the online data and 3 of our hands and doing train/test split

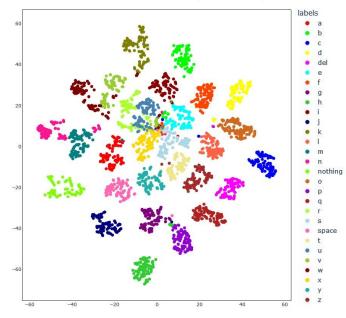


# CNN classifies new signs with an accuracy of ~ 9 %

- Mixing the online data and 3 of our hands and doing train/test split
- What if we introduced a new hand?



- Removing the output layer of CNN yields feature selection
- From these features we can perform t-sne to get a better look at the data!

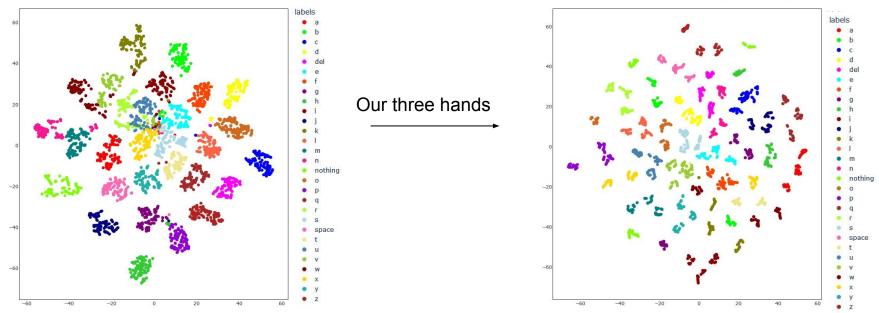


t-SNE Visualization of Online Hand Data (Trained on 4 Hands)

t-SNE Visualization of Online Hand Data (Trained on 4 Hands)

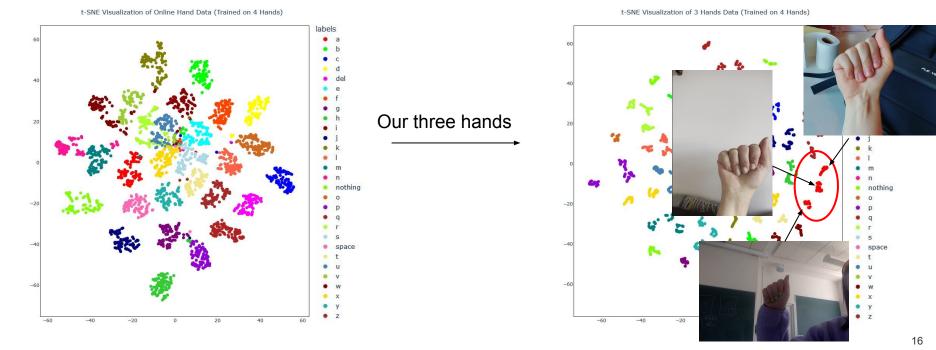
# Visualizing Data Using Supervised Clustering

- Removing the output layer of CNN yields feature selection
- From these features we can perform t-sne to get a better look at the data!

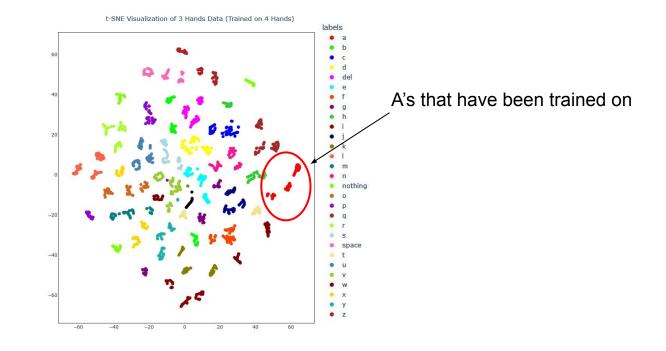


t-SNE Visualization of 3 Hands Data (Trained on 4 Hands)

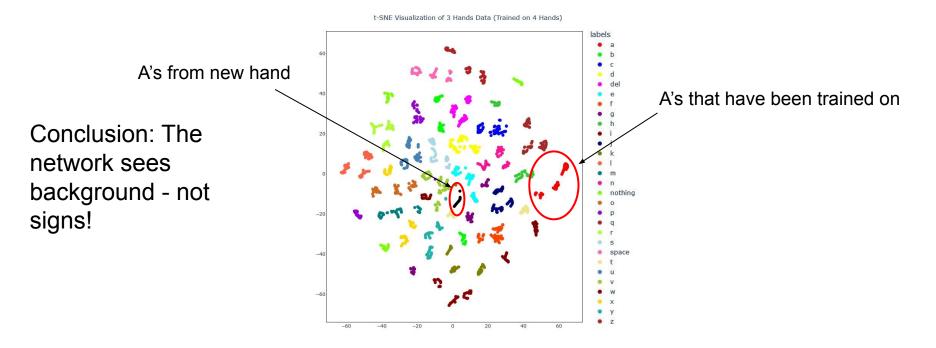
- Removing the output layer of CNN yields feature selection
- From these features we can perform t-sne to get a better look at the data!

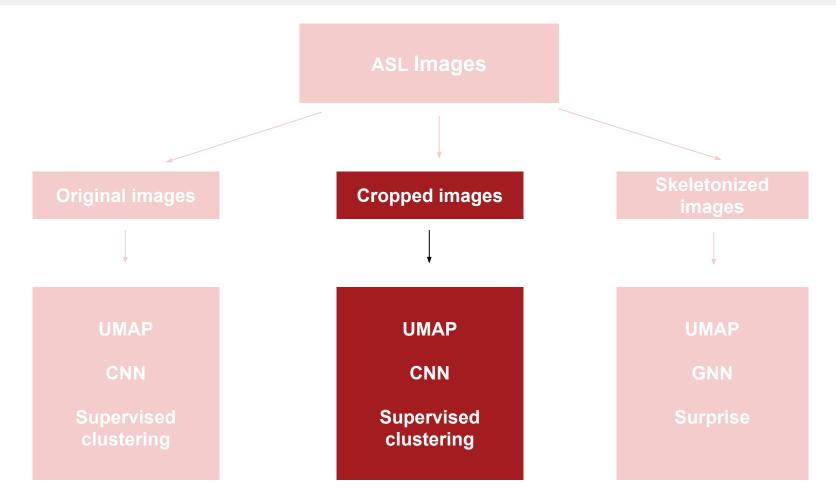


- What if we add a letter from a new hand?



- What if we add a letter from a new hand?





# Introduction to cropped data

A three step process

- 1. Crop image to contain only the hand
- 2. Compress photo to suitable format
- 3. Turn into array

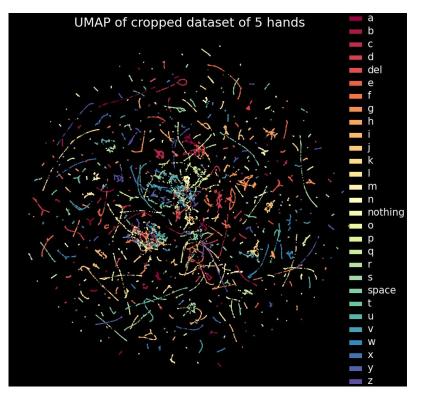


Original image

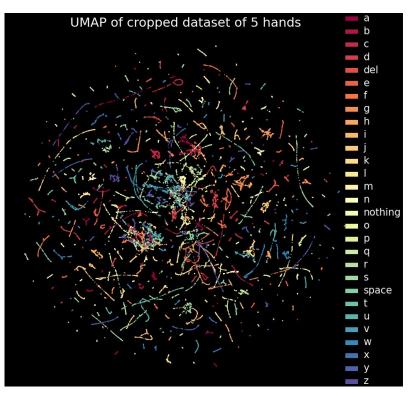
Image cutout

50X50 image

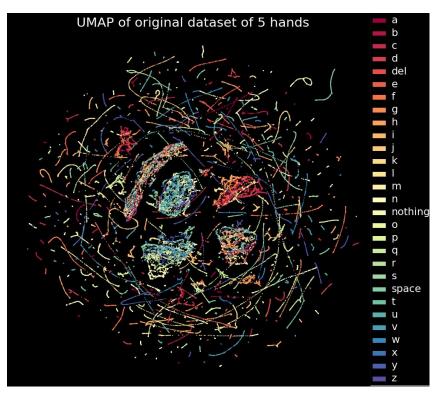
#### Colouring by sign (cropped)



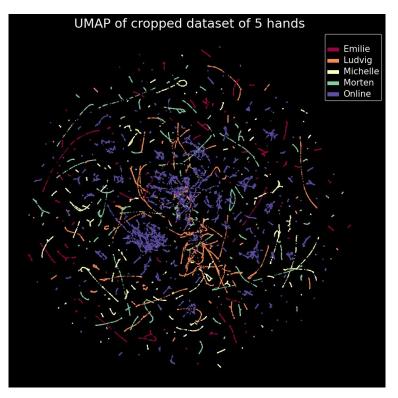
#### Colouring by sign (cropped)



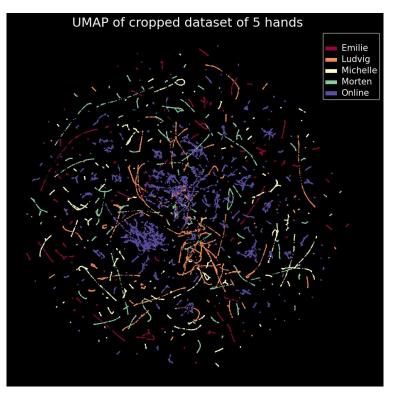
Colouring by sign (original)



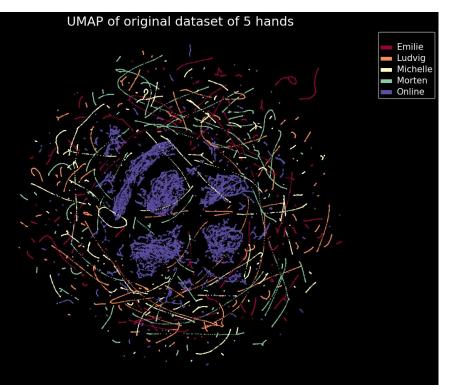
#### Colouring by people (cropped)



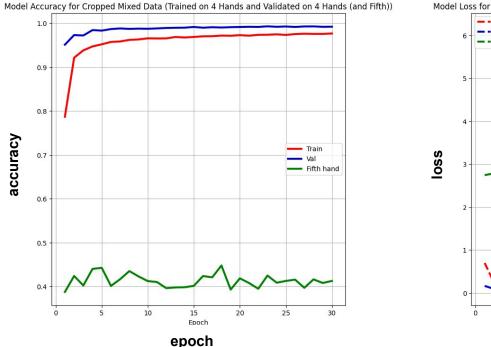
#### Colouring by people (cropped)



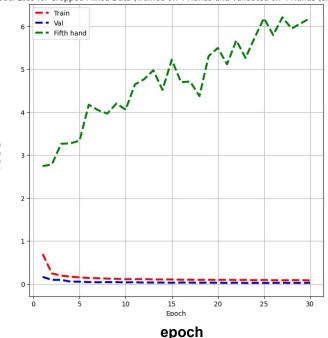
#### Colouring by people



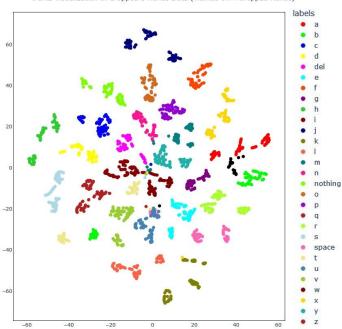
## CNN classifies new signs with an accuracy of ~ 40 %



Model Loss for Cropped Mixed Data (Trained on 4 Hands and Validated on 4 Hands (and Fifth))

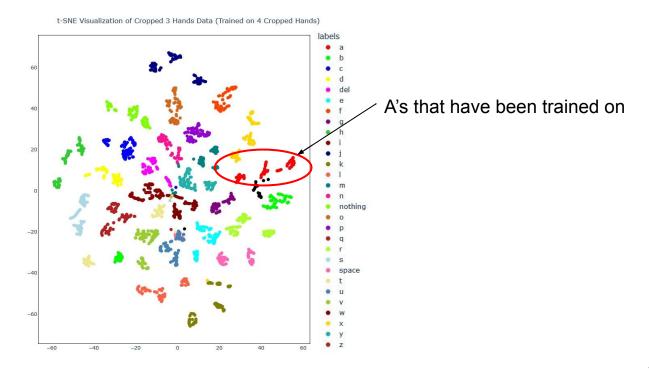


- Is the new hand closer now?

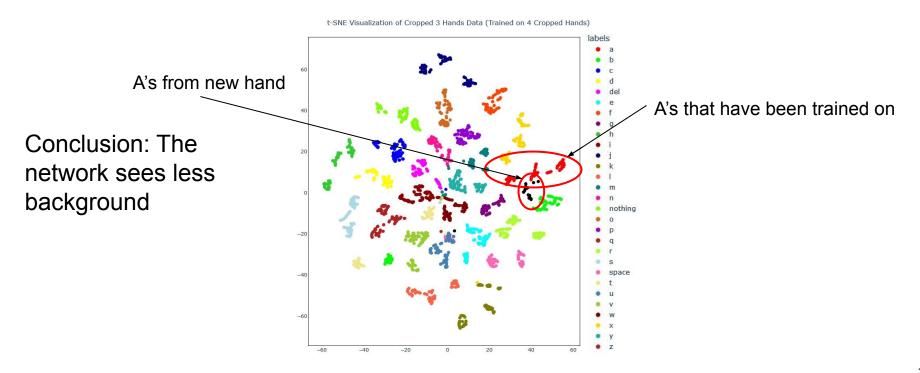


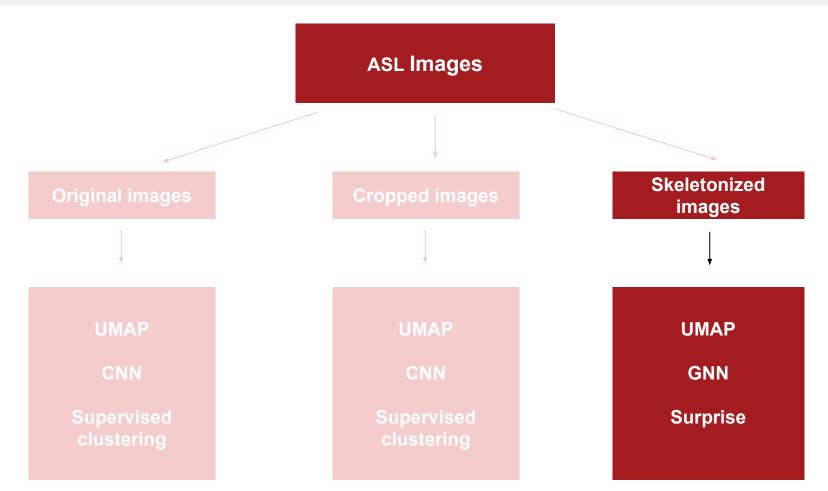
t-SNE Visualization of Cropped 3 Hands Data (Trained on 4 Cropped Hands)

- Is the new hand closer now?



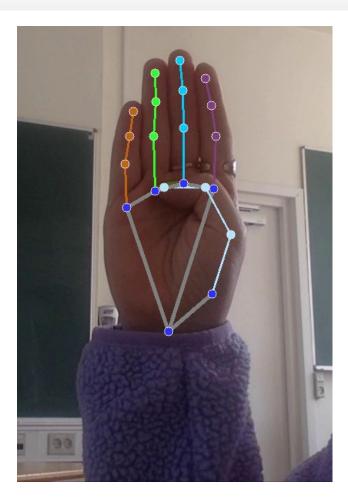
- Is the new hand closer now?



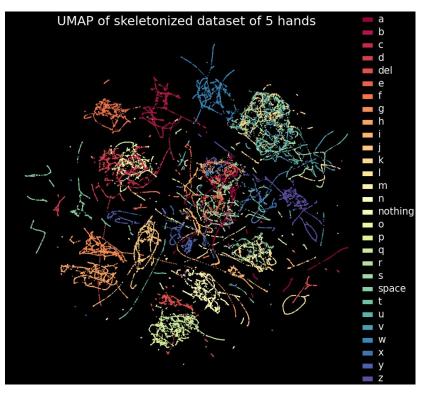


## Skeletonized hands

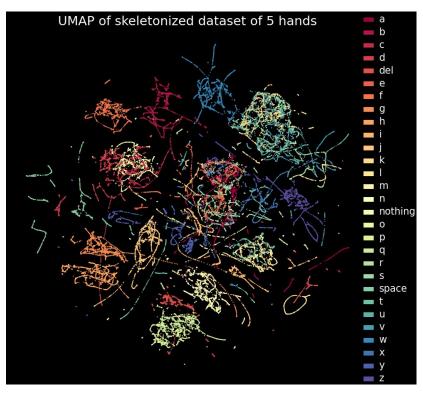
- Use a pretrained CNN to detect landmarks
  - MediaPipe
- Output: X, Y and Z coordinates of 21 landmarks
- 100 times smaller than compressed RGB files



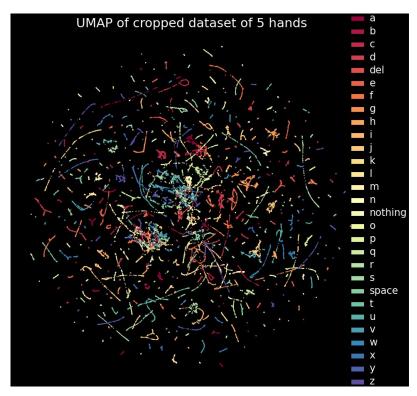
#### Colouring by sign (skeletonized)



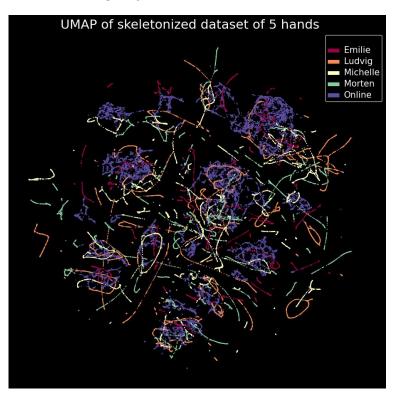
#### Colouring by sign (skeletonized)



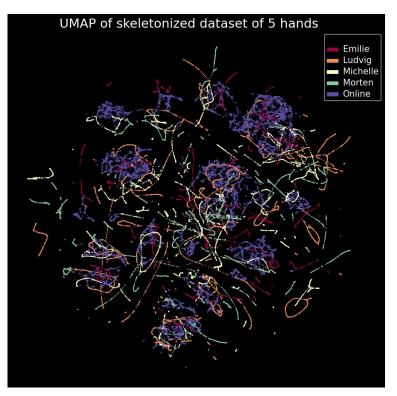
Colouring by sign (cropped)



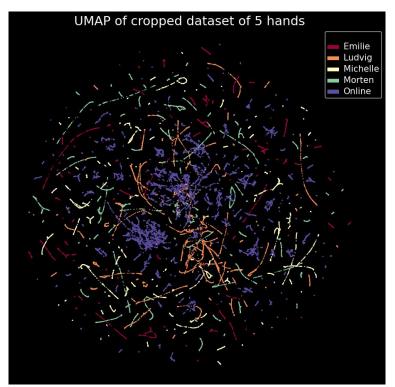
Colouring by people (skeletonized)



#### Colouring by people (skeletonized)



#### Colouring by people (cropped)

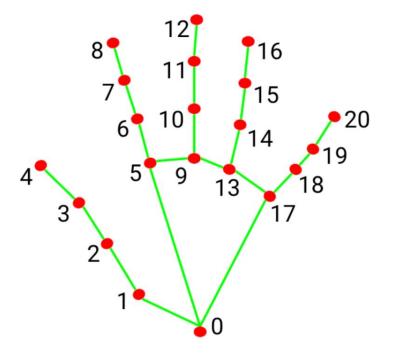


# Constructing the graph for a GNN

Each landmark corresponds to 1 node in the graph, with 3 features: X, Y, Z

Basic adjacency matrix:

- Dimensions: 21 x 21
- 1 for connections, otherwise 0



https://developers.google.com/mediapipe/solutions/visio n/hand\_landmarker#models

# Constructing the GNN for graph classification

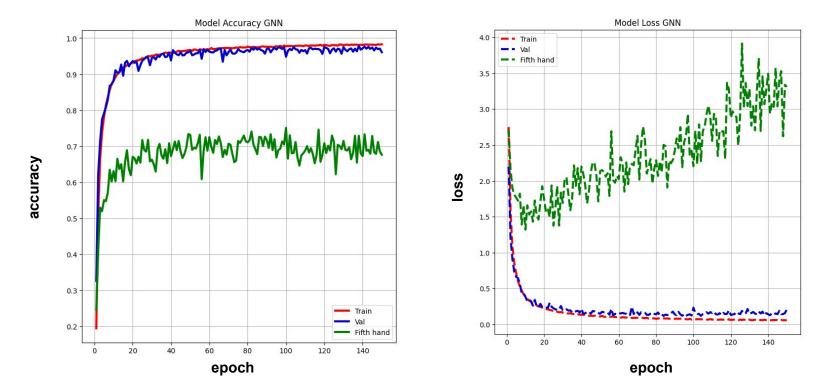
- 1 input GCN layer
- 3 hidden GCN layers
- Pooling layer
- Output layer

Hyperparameters optimized using bayesian search



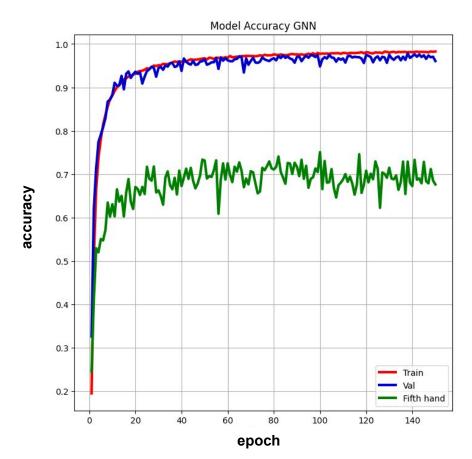
#### GNN classifies new signs with an accuracy of ~ 70 %

- Adding a new hand in a GNN using the skeletonized data

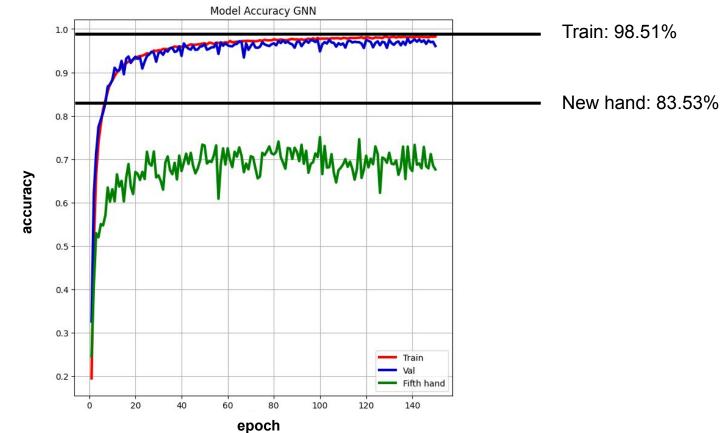


37

#### Now we have tabular data...

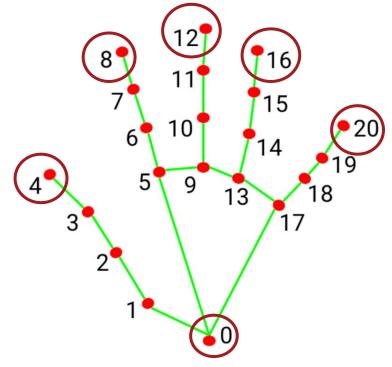


Surprise, LightGBM is superior



#### Top six LightGBM feature selection of landmarks

|    | feature | ranking |
|----|---------|---------|
| 0  |         | 13610   |
| 4  |         | 13068   |
| 8  |         | 12037   |
| 20 |         | 8511    |
| 12 |         | 7954    |
| 16 |         | 7425    |



https://developers.google.com/mediapipe/solutions/visio n/hand\_landmarker#models

#### Conclusion

Preprocessing data and removing background significantly improves CNN performance.

Removing all irrelevant features of images by landmarking dramatically improves accuracy in a GNN.

Once again LightGBM reigns supreme!

#### Future work

Thoroughly optimize our algorithms

Expanding the training dataset to include a larger variety of hands

Remove failed landmarking using clustering outliers





(All participants contributed equally to this project)

#### Method of reading images

- To make the images from regular images to RGB arrays we have used the library cv2, and the function cv2.imread()

Kaggle images obtained from: <u>https://www.kaggle.com/datasets/grassknoted/asl-alphabet?datasetId=23079</u>

#### Hand landmarking

Completed using Mediapipe's HandLandmarker, can be found at

https://storage.googleapis.com/mediapipe-models/hand\_landmarker/hand\_landmarker/ker/float16/1/hand\_landmarker.task

or:

https://developers.google.com/mediapipe/solutions/vision/hand\_landmarker

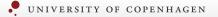
Handedness and real world length estimates are discarded.

### Cropping method

- Follows the procedure for image reading.
- After hand landmarking, the outermost points (xmax, xmin, ymax, ymin) are identified, and a buffer of 0.2\*(xmax-xmin) is added to ensure catching the entire hand.

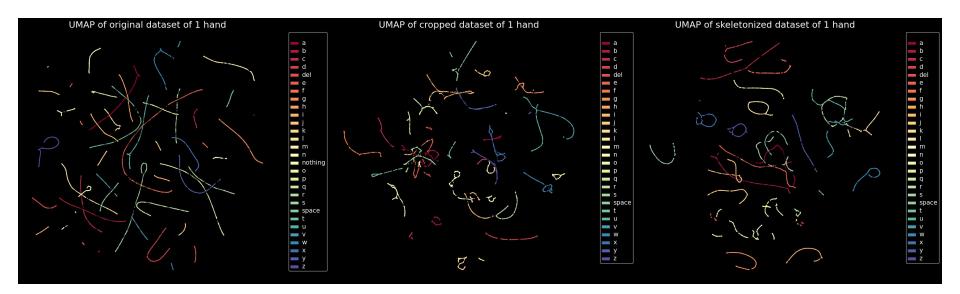
#### Image compression method

- To make compress the images, we have used the library skimage and the function skimage.transform.resize()



## UMAP

#### UMAP's of only one hand



Performed with umap.UMAP() Settings: default

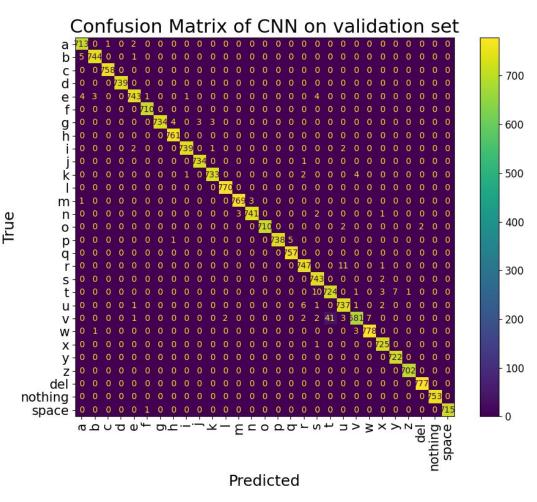


CNN

#### CNN summary of network in code

```
base = VGG16(weights = 'imagenet', include top=False, input shape=(50, 50, 3))
for layer in base.layers:
    layer.trainable = False
x = base.output
x = Flatten()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
predictions = Dense(29, activation='softmax')(x)
```

### Confusion matrix for CNN on validation set (uncropped)



52

### Confusion matrix for CNN on fifth hand (uncropped)

#### Confusion Matrix of CNN on new hand 0 0 0 0 0 74 0 0 13 0 0 0 20 0 0 105 7 0 8 13 12 4 2 0 26 0 0 0 0 0 0 1 30104 0 0 4 2 0 0 0 0 27 0 0 0 42 74 0 0 0 0 26 2 0 49 0 0 0 0 12 0 5 8 0 0 9 0 0 0 0 0 26 42 110 0 10 0 0 0 0 0 18 0 0 0 6 0 0 0 42 14 7 137 5 0 18 0 0 0 16 11 9 0 26 11 35 4 0 0 21 15 0 0 0 0 36 0 0 38 0 0 0 24 3 0 0 0 0 0 0 0 0 0 27 144 0 0 16 0 0 0 0 0 0 26 0 0 0 0 0 20 4 0 0 0 0 0 3 0 4 28112 0 0 10 0 0 0 0 0 0 59 0 0 0 0 14 55 0 0 0 19 19 0 0 0 0 0 0 0 0 2 0 0 0 0 26 0 0 105 0 4 0 0 10 0 22 0 0 0 49 0 0 3 0 0 0 11 0 0 0 0 0 0 0 0 0 0 141 0 18 0 0 0 0 4 0 0 15 9 0 0 13 0 2 15 0 0 0 0 0 0 26 11 0 11<mark>106</mark>10 0 0 0 0 16 0 0 0 0 0 90 50 0 0 0 0 0 0 0 40 13 9 22 0 12 3 10 0 0 0 0 0 0 0 41 0 11 48 99 0 0 15 0 0 0 0 0 0 0 1 0 0 0 0 5 0 0 4 0 2 0 0 6 65 0 0 0 0 6 43 0 0 0 0 11 9 0 61 27 <u>0 0 0 7 11 0 0 6 0 0 0 0 0 46 4 24 0 12 71</u> 0 0 0 0 0 0 59 0 0 0 0 0 0 2 0 0 0 0 17 75 0 0 0 0 6 0 0 0 140 0 - 0 0 0 28 8 6 0 0 0 2 0 0 0 0 0 0 1 0 43 0 0 0 0 0 0 0 1 <mark>151</mark> 0 0 0 10 20 0 7 0 0 0 0 0 0 0 0 0 0 13 0 18 64 0 0 0 0 13 0 1 88 6 1 17 2 0 15 0 0 0 0 0 0 0 37 96 0 31 2 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 92 45 0 0 49 0 0 0 0 2 30 0 17 0 0 0 0 0 55 0 0 0 0 0 0 0 0 0 35 46 0 2 61 0 0 1 0 5 4 2 27 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89122 0 0 5 0 0 0 0 0 0 3 14 0 3 0 0 0 0 0 0 0 0 0 0 0 32 11 0 0 0 0 2 0 0 2 34 0 2432 0 0 0 0 0 0 0 11 0 0 26 156 0 0 17 0 0 0 0 5 21 0 0 0 0 0 3 5 0 0 0 0 0 0 0 0 0 0 0 12459 0 0 0 0 0 0 0 0 28 0 21 0 del nothing - 0 0 0 space

True



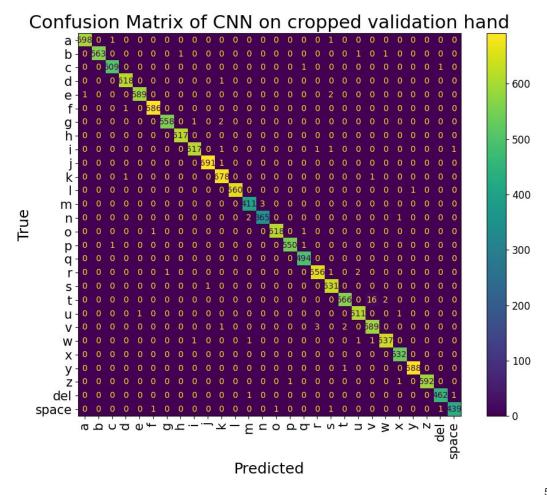
200

150

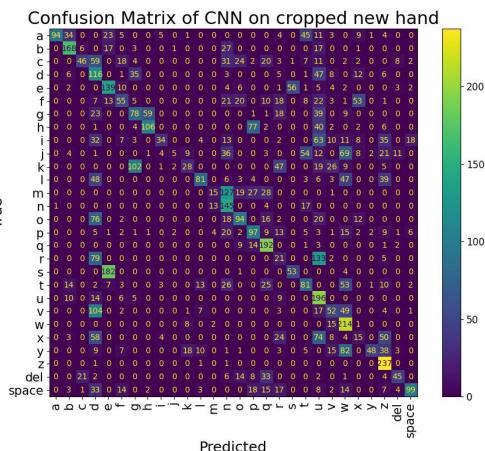
- 100

- 50

### Confusion matrix for CNN on validation set (cropped)



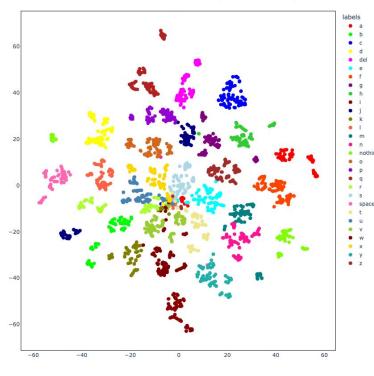
### Confusion matrix for CNN on fifth hand (cropped)



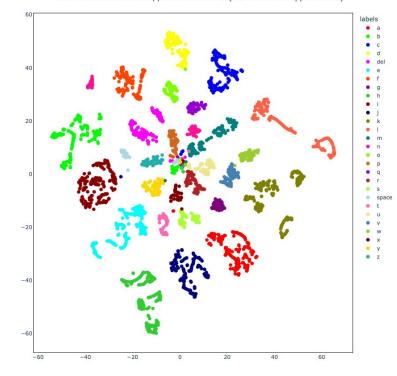
True

#### t-SNE visualisation on four hands (trained on all four)

t-SNE Visualization of 4 Hands Data (Trained on 4 Hands)



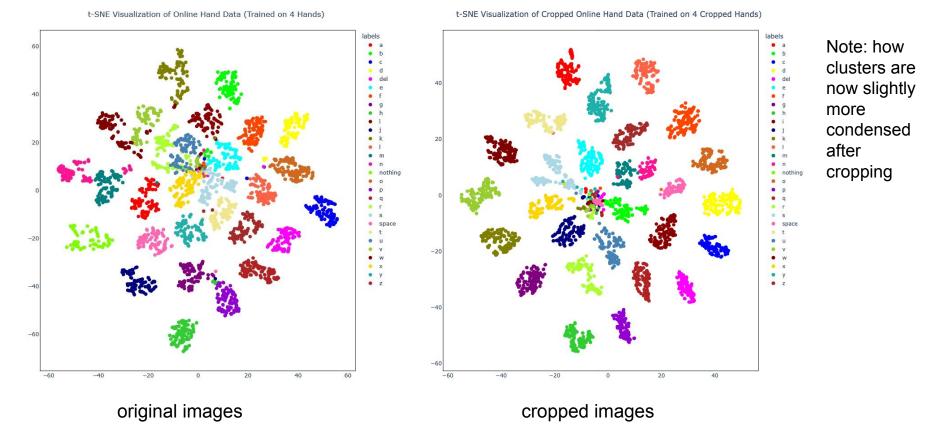
t-SNE Visualization of Cropped 4 Hands Data (Trained on 4 Cropped Hands)



original images

cropped images

#### t-SNE visualisation of only online hand





GNN

### Confusion matrix for GNN fifth hand

Confusion Matrix GNN for fifth hand 0 0 4 0 0 0 0 0 13 0 0 0 0 0 51 15 0 0 0 0 44 82 0 0 30 89 b -0 38 0 155 8 29 21 0 0 C -0 0 0 0 16 0 d -0 79 0 14 0 19 0 0 1 0 38 0 0 0 0 0 0 0 0 75 0 0 141 22 1 0 2 23 0 0 0 22 2 6 0 27 0 29 6 f-0 0 0 0 0 0 4 0 0 6 0 0 12 0 0 5 0 0 0 0 196 13 4 a - 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 228 0 0 0 0 2 h -0 3 0 0 0 0 0 0 0 0 0 228 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 74 0 14 0 0 0 0 0 0 23 0 78 43 5. k-0 0 0 0 0 2 0 0 |<u>-00000</u>0000000<mark>136</mark>0500000<mark>99</mark>0 0 0 0 0 0 0 0 0 107107 0 m - 0 0 0 0 0 0 3 0 0 n - 0 0 0 0 0 0 0 0 0 0 0 0 <mark>85 95</mark> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 <u>39 0</u> 0 0 0 0 0 0 0 0 4 0 <u>197</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 190 7 0 0 0 0 0 0 0 0 0 p-0 0 0 0 1 1 67 150 0 0 0 a - 0 00 0 0 0 0 0 3 0 0 0 0 0 0 0 0 r-00 0 0 0 0 0 0 131 1 11 24 0 0 62 0 0 0 s-1 0 0 0 11 1 0 0 0 0 187 20 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 203 0 0 0 14 18 0 0 0 t - 0 00 0 0 0 0 0 14 115 78 0 19 u -0 0 0 v-00000000 0 0 0 0 29210 0 0 0 0 0 0 w-00000000 0 0 0 240 0 0 0 x - 0 0 0 0 0 0 0 0 0 0 0 33 15 0 0 0 0 33 0 0 0 145 0 14 0 v - 0 0 0 0 0 0 2 0 0 16 0 0 0 0 0 0 0 0 182 0 39 0 z-0 0 0 0 0 0 0 11 22 0 3 42 del -0 0 0 0 0 0 0 6 0 0 0 0 51 0 35 0 0 space - 0 0 0 0 7 23 0 0 0 0 0 1 15 0 1 0 0 0 space del

Predicted

-200

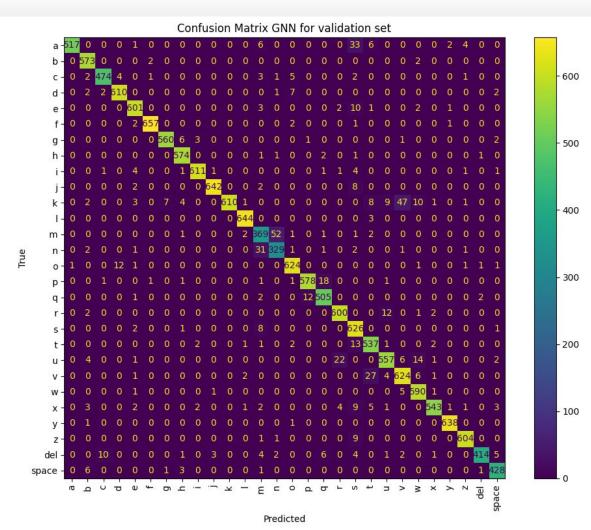
- 150

- 100

- 50

True

### Confusion matrix for GNN Validation set



#### Graph design

An adjacency matrix was designed based on 3D distance between the nodes, using the simple matrix as edge matrix, but as initial testing was horrible (30%> accurycy on validation) and in the interest of time, this was abandoned.

#### GNN summary of the network code



| Layer (type)                                  | Output Shape | Param #        |
|-----------------------------------------------|--------------|----------------|
| gcn_conv (GCNConv)                            | multiple     | ========<br>84 |
| gcn_conv_1 (GCNConv)                          | multiple     | 2816           |
| gcn_conv_2 (GCNConv)                          | multiple     | 16512          |
| gcn_conv_3 (GCNConv)                          | multiple     | 16512          |
| global_max_pooling1d (Globa<br>lMaxPooling1D) | multiple     | 0              |
| dense (Dense)                                 | multiple     | 3612           |

#### Graphs are constructed using Spektral

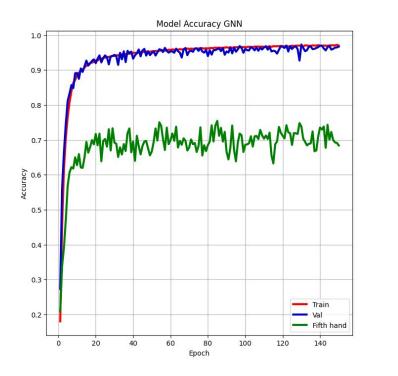
Bayesian search completed using Optuna, optimizing the hidden dimensions, batch size and learning rate.

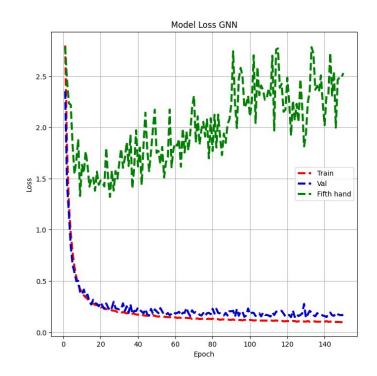
hidden\_dim = trial.suggest\_categorical("hidden\_dim", [32, 64, 128])
n\_epochs = trial.suggest\_categorical("n\_epochs", [45]) # Number of epochs
batch\_size = trial.suggest\_categorical("batch\_size", [64, 128, 256, 512, 1024]) # batch size
learning\_rate= trial.suggest\_categorical("Learning\_rate", [0.01, 0.005, 0.0025, 0.001, 0.0005])

Optimized using Adam. loss function: Keras.losses.SparseCategoricalCrossentropy

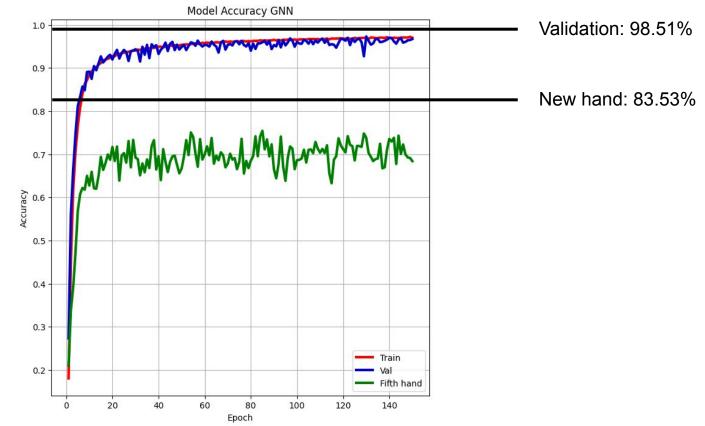
### GNN classifies new signs with an accuracy of ~ 70 % pre optimisation

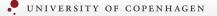
- Adding a new hand in a GNN using the skeletonized data





#### LightGBM comparison to GNN pre optimization





# LightGBM

#### LightGBM hyperparameters changed from default

- objective = 'multiclass'
- num\_leaves = 35
- n\_estimators = 125

#### UNIVERSITY OF COPENHAGEN

## Feature importance for each coordinate LightGBM using built-in ranking

|    | index | feature | ranking |
|----|-------|---------|---------|
| 0  | Y4    |         | 6467    |
| 1  | Y8    |         | 5599    |
| 2  | Z0    |         | 5298    |
| 3  | X4    |         | 5006    |
| 4  | X8    |         | 4977    |
| 5  | X0    |         | 4746    |
| 6  | Y20   |         | 4279    |
| 7  | Y16   |         | 3961    |
| 8  | Y0    |         | 3566    |
| 9  | Y12   |         | 3490    |
| 10 | X12   |         | 3200    |
| 11 | X20   |         | 2611    |
| 12 | Z5    |         | 2488    |
| 13 | Z1    |         | 2426    |
| 14 | Y1    |         | 2004    |
| 15 | X1    |         | 1931    |

| 16 | Z17 | 1862 |
|----|-----|------|
| 17 | Z16 | 1782 |
| 18 | X16 | 1682 |
| 19 | Y3  | 1647 |
| 20 | Z20 | 1621 |
| 21 | Y2  | 1607 |
| 22 | Z4  | 1595 |
| 23 | X2  | 1588 |
| 24 | Y17 | 1577 |
| 25 | Y18 | 1554 |
| 26 | X5  | 1547 |
| 27 | Y5  | 1479 |
| 28 | Z8  | 1461 |
| 29 | X6  | 1457 |
| 30 | Y10 | 1444 |
| 31 | Y14 | 1397 |

| 32 | Y15        | 1393 |
|----|------------|------|
| 33 | Y6         | 1387 |
| 34 | X17        | 1296 |
| 35 | Z12        | 1264 |
| 36 | Z14        | 1245 |
| 37 | Y11        | 1200 |
| 38 | Z9         | 1185 |
| 39 | Х3         | 1151 |
| 40 | Z18        | 1072 |
| 41 | <b>X</b> 7 | 1047 |
| 42 | Y7         | 1042 |
| 43 | Y19        | 1040 |
| 44 | Z13        | 996  |
| 45 | Z3         | 912  |
| 46 | Y9         | 856  |
| 47 | Z2         | 854  |

| 48 | Z11 | 827 |
|----|-----|-----|
| 49 | X11 | 810 |
| 50 | X10 | 793 |
| 51 | Z7  | 789 |
| 52 | X19 | 742 |
| 53 | Z10 | 730 |
| 54 | Z15 | 715 |
| 55 | X18 | 712 |
| 56 | Y13 | 677 |
| 57 | Z19 | 664 |
| 58 | X9  | 655 |
| 59 | Z6  | 627 |
| 60 | X14 | 542 |
| 61 | X15 | 512 |
| 62 | X13 | 495 |
|    |     |     |

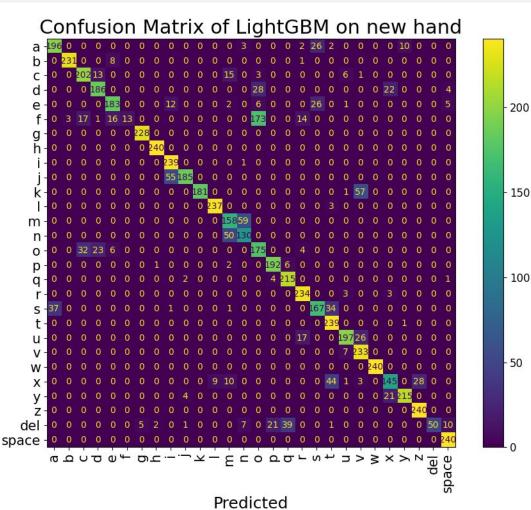
## Feature importance for each landmark LightGBM using built-in ranking

|    | feature | ranking |  |
|----|---------|---------|--|
| 0  |         | 13610   |  |
| 4  |         | 13068   |  |
| 8  |         | 12037   |  |
| 20 |         | 8511    |  |
| 12 |         | 7954    |  |
| 16 |         | 7425    |  |
| 1  |         | 6361    |  |

| 5  | 5514 |
|----|------|
| 17 | 4735 |
| 2  | 4049 |
| 3  | 3710 |
| 6  | 3471 |
| 18 | 3338 |
| 14 | 3184 |

| 10 | 2967 |
|----|------|
| 7  | 2878 |
| 11 | 2837 |
| 9  | 2696 |
| 15 | 2620 |
| 19 | 2446 |
| 13 | 2168 |

### Confusion matrix by LightGBM



True