
05/03/20231

A lesson in preprocessing data

Emilie Nielsen, Morten Bendtsen,
Ludvig Marcussen & Michelle Rix

Using ML to Read the
ASL Alphabet

Introduction

• Classification of images of ASL alphabet
• Inspired by kaggle competition

• Data obtained from kaggle

2

Introduction to Data

1. The online data
- 29 categories
- 1 hand
- 3000 jpgs in each
- 240 X 240 pixels

3

 A B C D

….

 Delete Space Nothing

Introduction to Data

1. The online data
- 29 categories
- 1 hand
- 3000 jpgs of each sign
- 240 X 240 pixels

2. Self produced data
- 29 categories
- 4 hands
- 960 jpgs of each sign
- variable dimensions

4

UMAP

CNN

Supervised
clustering

 ASL Images
Overview

Original images Cropped images Skeletonized
images

UMAP

CNN

Supervised
clustering

UMAP

GNN

Surprise

5

UMAP

CNN

Supervised
clustering

 ASL Images

Original images Cropped images Skeletonized
images

UMAP

CNN

Supervised
clustering

UMAP

GNN

Surprise

6

Preprocessing

A two step process
1. Compress photo to suitable format
2. Turn into array

7

Original image

Compress

50X50 image

“Arraify”

Dimensionality reduction using UMAP on original images
Colouring by sign

8

Colouring by sign Colouring by people

Dimensionality reduction using UMAP on original images

9

Using CNNs to classify signs

- VGG16 - a pretrained network

10

Using CNNs to classify signs

- VGG16 - a pretrained network

11

+

Using CNNs to classify signs

- Mixing the online data and 3 of our hands and doing train/test split

12

ac
cu

ra
cy

lo
ss

epoch epoch

CNN classifies new signs with an accuracy of ∼ 9 %

- Mixing the online data and 3 of our hands and doing train/test split
- What if we introduced a new hand?

13epoch epoch

ac
cu

ra
cy

lo
ss

Visualizing Data Using Supervised Clustering

- Removing the output layer of CNN yields feature selection
- From these features we can perform t-sne to get a better look at the data!

14

Visualizing Data Using Supervised Clustering

- Removing the output layer of CNN yields feature selection
- From these features we can perform t-sne to get a better look at the data!

15

Our three hands

Visualizing Data Using Supervised Clustering

- Removing the output layer of CNN yields feature selection
- From these features we can perform t-sne to get a better look at the data!

16

Our three hands

Visualizing Data Using Supervised Clustering

- What if we add a letter from a new hand?

17

A’s that have been trained on

Visualizing Data Using Supervised Clustering

18

A’s that have been trained on
A’s from new hand

Conclusion: The
network sees
background - not
signs!

- What if we add a letter from a new hand?

UMAP

CNN

Supervised
clustering

 ASL Images

Original images Cropped images Skeletonized
images

UMAP

CNN

Supervised
clustering

UMAP

GNN

Surprise

19

Introduction to cropped data

A three step process
1. Crop image to contain only the hand
2. Compress photo to suitable format
3. Turn into array

20

Original image

Compress

50X50 image

“Arraify”
Crop

Image cutout

21

Colouring by sign (cropped)

Dimensionality reduction using UMAP on cropped images

Dimensionality reduction using UMAP on cropped images

22

Colouring by sign (cropped) Colouring by sign (original)

Dimensionality reduction using UMAP on cropped images

23

Colouring by people (cropped)

Dimensionality reduction using UMAP on cropped images

24

Colouring by peopleColouring by people (cropped)

CNN classifies new signs with an accuracy of ∼ 40 %

25
epoch epoch

ac
cu

ra
cy

lo
ss

Visualizing Data Using Supervised Clustering

- Is the new hand closer now?

26

Visualizing Data Using Supervised Clustering

- Is the new hand closer now?

27

A’s that have been trained on

Visualizing Data Using Supervised Clustering

- Is the new hand closer now?

28

A’s that have been trained on
A’s from new hand

Conclusion: The
network sees less
background

UMAP

CNN

Supervised
clustering

 ASL Images

Original images Cropped images Skeletonized
images

UMAP

CNN

Supervised
clustering

UMAP

GNN

Surprise

29

Skeletonized hands

- Use a pretrained CNN to detect
landmarks

-

- Output:
X, Y and Z coordinates of 21 landmarks

- 100 times smaller than compressed
RGB files

30

31

Colouring by sign (skeletonized)

Dimensionality reduction using UMAP on skeletonized images

32

Colouring by sign (skeletonized) Colouring by sign (cropped)

Dimensionality reduction using UMAP on skeletonized images

33

Dimensionality reduction using UMAP on skeletonized images
Colouring by people (skeletonized)

34

Dimensionality reduction using UMAP on skeletonized images
Colouring by people (skeletonized) Colouring by people (cropped)

Constructing the graph for a GNN

Each landmark corresponds to 1 node in
the graph, with 3 features: X, Y, Z

Basic adjacency matrix:
- Dimensions: 21 x 21
- 1 for connections, otherwise 0

35

https://developers.google.com/mediapipe/solutions/visio
n/hand_landmarker#models

Constructing the GNN for graph classification

- 1 input GCN layer
- 3 hidden GCN layers
- Pooling layer
- Output layer

Hyperparameters optimized using
bayesian search

36

GNN classifies new signs with an accuracy of ∼ 70 %

- Adding a new hand in a GNN using the skeletonized data

37epoch epoch

ac
cu

ra
cy

lo
ss

Now we have tabular data…

38epoch

ac
cu

ra
cy

Surprise, LightGBM is superior

39

Train: 98.51%

New hand: 83.53%

epoch

ac
cu

ra
cy

Top six LightGBM feature selection of landmarks

40

https://developers.google.com/mediapipe/solutions/visio
n/hand_landmarker#models

Conclusion

Preprocessing data and removing background significantly improves CNN
performance.

Removing all irrelevant features of images by landmarking dramatically improves
accuracy in a GNN.

Once again LightGBM reigns supreme!

41

Future work

Thoroughly optimize our algorithms

Expanding the training dataset to include a larger variety of hands

Remove failed landmarking using clustering outliers

42

Appendix

43

(All participants contributed equally to this project)

Method of reading images

- To make the images from regular images to RGB arrays we have used the
library cv2, and the function cv2.imread()

Kaggle images obtained from:
https://www.kaggle.com/datasets/grassknoted/asl-alphabet?datasetId=23079

44

https://www.kaggle.com/datasets/grassknoted/asl-alphabet?datasetId=23079

Hand landmarking

Completed using Mediapipe’s HandLandmarker, can be found at
https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmar
ker/float16/1/hand_landmarker.task
or:
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
Handedness and real world length estimates are discarded.

45

https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task
https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker

Cropping method

- Follows the procedure for image reading.
- After hand landmarking, the outermost points (xmax, xmin, ymax, ymin) are

identified, and a buffer of 0.2*(xmax-xmin) is added to ensure catching the
entire hand.

46

Image compression method

- To make compress the images, we have used the library skimage and the
function skimage.transform.resize()

47

UMAP

48

UMAP’s of only one hand

49

Performed with umap.UMAP() Settings: default

CNN

50

CNN summary of network in code

51

Confusion matrix for
CNN on validation set
(uncropped)

52

Confusion matrix for
CNN on fifth hand
(uncropped)

53

Confusion matrix for
CNN on validation set
(cropped)

54

Confusion matrix for
CNN on fifth hand
(cropped)

55

t-SNE visualisation on four hands (trained on all four)

56
original images cropped images

t-SNE visualisation of only online hand

57

original images cropped images

Note: how
clusters are
now slightly
more
condensed
after
cropping

GNN

58

59

Confusion matrix for
GNN fifth hand

Confusion matrix for
GNN Validation set

60

Graph design

An adjacency matrix was designed based on 3D distance between the nodes, using
the simple matrix as edge matrix, but as initial testing was horrible (30%> accurycy
on validation) and in the interest of time, this was abandoned.

61

GNN summary of the network code

62

Graphs are constructed using Spektral
Bayesian search completed using Optuna, optimizing the hidden dimensions, batch
size and learning rate.

Optimized using Adam. loss function: Keras.losses.SparseCategoricalCrossentropy

63

GNN classifies new signs with an accuracy of ∼ 70 % pre
optimisation

- Adding a new hand in a GNN using the skeletonized data

64

LightGBM comparison to GNN pre optimization

65

Validation: 98.51%

New hand: 83.53%

LightGBM

66

LightGBM hyperparameters changed from default

- objective = ‘multiclass’

- num_leaves = 35

- n_estimators = 125

67

Feature importance for each coordinate LightGBM using built-in
ranking

68

Feature importance for each landmark LightGBM using built-in
ranking

69

Confusion matrix by
LightGBM

70

