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Introduction

• Classification of images of ASL alphabet 
• Inspired by kaggle competition

• Data obtained from kaggle 
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Introduction to Data 

1. The online data
- 29 categories
- 1 hand
- 3000 jpgs in each
- 240 X 240 pixels
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Introduction to Data

1. The online data
- 29 categories
- 1 hand
- 3000 jpgs of each sign
- 240 X 240 pixels

2. Self produced data
- 29 categories
- 4 hands
- 960 jpgs of each sign
- variable dimensions
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Preprocessing

A two step process
1. Compress photo to suitable format
2. Turn into array
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Original image    

Compress

50X50 image

“Arraify”



Dimensionality reduction using UMAP on original images
Colouring by sign
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Colouring by sign Colouring by people

Dimensionality reduction using UMAP on original images
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Using CNNs to classify signs

- VGG16 - a pretrained network
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Using CNNs to classify signs

- VGG16 - a pretrained network
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Using CNNs to classify signs

- Mixing the online data and 3 of our hands and doing train/test split
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CNN classifies new signs with an accuracy of ∼ 9 %

- Mixing the online data and 3 of our hands and doing train/test split
- What if we introduced a new hand?
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Visualizing Data Using Supervised Clustering

- Removing the output layer of CNN yields feature selection
- From these features we can perform t-sne to get a better look at the data!
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Visualizing Data Using Supervised Clustering

- Removing the output layer of CNN yields feature selection
- From these features we can perform t-sne to get a better look at the data!
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Our three hands



Visualizing Data Using Supervised Clustering

- Removing the output layer of CNN yields feature selection
- From these features we can perform t-sne to get a better look at the data!
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Our three hands



Visualizing Data Using Supervised Clustering

- What if we add a letter from a new hand?
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A’s that have been trained on



Visualizing Data Using Supervised Clustering
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A’s that have been trained on
A’s from new hand

Conclusion: The 
network sees 
background - not 
signs! 

- What if we add a letter from a new hand?
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Introduction to cropped data

A three step process
1. Crop image to contain only the hand
2. Compress photo to suitable format
3. Turn into array
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Compress
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Colouring by sign (cropped)

Dimensionality reduction using UMAP on cropped images



Dimensionality reduction using UMAP on cropped images
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Colouring by sign (cropped) Colouring by sign (original)



Dimensionality reduction using UMAP on cropped images
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Colouring by people (cropped)



Dimensionality reduction using UMAP on cropped images
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Colouring by peopleColouring by people (cropped)



CNN classifies new signs with an accuracy of ∼ 40 %
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Visualizing Data Using Supervised Clustering

- Is the new hand closer now?
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Visualizing Data Using Supervised Clustering

- Is the new hand closer now?
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A’s that have been trained on



Visualizing Data Using Supervised Clustering

- Is the new hand closer now?

28

A’s that have been trained on
A’s from new hand

Conclusion: The 
network sees less 
background
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Skeletonized hands

- Use a pretrained CNN to detect 
landmarks

-

- Output: 
X, Y and Z coordinates of 21 landmarks

- 100 times smaller than compressed 
RGB files
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Colouring by sign (skeletonized)

Dimensionality reduction using UMAP on skeletonized images
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Colouring by sign (skeletonized) Colouring by sign (cropped)

Dimensionality reduction using UMAP on skeletonized images
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Dimensionality reduction using UMAP on skeletonized images
Colouring by people (skeletonized)
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Dimensionality reduction using UMAP on skeletonized images
Colouring by people (skeletonized) Colouring by people (cropped)



Constructing the graph for a GNN

Each landmark corresponds to 1 node in 
the graph, with 3 features: X, Y, Z

Basic adjacency matrix: 
- Dimensions: 21 x 21
- 1 for connections, otherwise 0
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https://developers.google.com/mediapipe/solutions/visio
n/hand_landmarker#models



Constructing the GNN for graph classification

- 1 input GCN layer
- 3 hidden GCN layers 
- Pooling layer 
- Output layer 

Hyperparameters optimized using 
bayesian search
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GNN classifies new signs with an accuracy of ∼ 70 %

- Adding a new hand in a GNN using the skeletonized data
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Now we have tabular data…
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Surprise, LightGBM is superior 
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Train: 98.51%

New hand: 83.53%
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Top six LightGBM feature selection of landmarks
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https://developers.google.com/mediapipe/solutions/visio
n/hand_landmarker#models



Conclusion

Preprocessing data and removing background significantly improves CNN 
performance.

Removing all irrelevant features of images by landmarking dramatically improves 
accuracy in a GNN.

Once again LightGBM reigns supreme!  
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Future work

Thoroughly optimize our algorithms

Expanding the training dataset to include a larger variety of hands

Remove failed landmarking using clustering outliers
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Appendix
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(All participants contributed equally to this project)



Method of reading images 

- To make the images from regular images to RGB arrays we have used the 
library cv2, and the function cv2.imread()

Kaggle images obtained from: 
https://www.kaggle.com/datasets/grassknoted/asl-alphabet?datasetId=23079 
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https://www.kaggle.com/datasets/grassknoted/asl-alphabet?datasetId=23079


Hand landmarking

Completed using Mediapipe’s HandLandmarker, can be found at 
https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmar
ker/float16/1/hand_landmarker.task
or:
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
Handedness and real world length estimates are discarded.

45

https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task
https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker


Cropping method

- Follows the procedure for image reading.
- After hand landmarking, the outermost points (xmax, xmin, ymax, ymin) are 

identified, and a buffer of 0.2*(xmax-xmin) is added to ensure catching the 
entire hand.
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Image compression method

- To make compress the images, we have used the library skimage and the 
function skimage.transform.resize()
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UMAP
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UMAP’s of only one hand
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Performed with umap.UMAP() Settings: default



CNN
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CNN summary of network in code
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Confusion matrix for 
CNN on validation set
(uncropped)

52



Confusion matrix for 
CNN on fifth hand
(uncropped)
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Confusion matrix for 
CNN on validation set
(cropped)
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Confusion matrix for 
CNN on fifth hand
(cropped)
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t-SNE visualisation on four hands (trained on all four)
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t-SNE visualisation of only online hand
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original images cropped images 

Note: how 
clusters are 
now slightly 
more 
condensed
after 
cropping



GNN
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Confusion matrix for 
GNN fifth hand



Confusion matrix for 
GNN Validation set
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Graph design

An adjacency matrix was designed based on 3D distance between the nodes, using 
the simple matrix as edge matrix, but as initial testing was horrible (30%> accurycy 
on validation) and in the interest of time, this was abandoned.
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GNN summary of the network code

62



Graphs are constructed using Spektral
Bayesian search completed using Optuna, optimizing the hidden dimensions, batch 
size and learning rate.

Optimized using Adam. loss function: Keras.losses.SparseCategoricalCrossentropy
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GNN classifies new signs with an accuracy of ∼ 70 % pre 
optimisation

- Adding a new hand in a GNN using the skeletonized data
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LightGBM comparison to GNN pre optimization 
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Validation: 98.51%

New hand: 83.53%



LightGBM
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LightGBM hyperparameters changed from default 

- objective = ‘multiclass’

- num_leaves = 35

- n_estimators = 125
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Feature importance for each coordinate LightGBM using built-in 
ranking
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Feature importance for each landmark LightGBM using built-in 
ranking
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Confusion matrix by 
LightGBM
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