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Introduction and motivation 
● Fake news has a documented effect on political beliefs 

(Ognyanova et al, 2020)

● Reuters and others spend resources on fact-checking

● Our task: Classification of fake news articles using Consumer 
grade hardware, utilising

○ LightGBM Gradient Boosted Decision Trees

○ Recurrent Neural Networks with Long Short-Term Memory 
(LSTM)
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Dataset
● Very balanced - nearly 50/50 - thus making accuracy a performance measure
● Mix of long and short articles with no obvious difference
● Contains title, text and label
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● Very messy!

Dataset

Requires multilingual capabilities in 
order to compare with english articles!



● Very balanced - nearly 50/50 - thus making accuracy a good measure
● Mix of long and short articles with no obvious difference
● Contains title, text and label
● Very messy!

Dataset

“Text” is literally just a 
link!



● Very balanced - nearly 50/50 - thus making accuracy a good measure
● Mix of long and short articles with no obvious difference
● Contains title, text and label
● Very messy!

Dataset

Classifying this is probably beyond the scope of this project…



Cleanup
● Average word length - takes care of link-only articles without removing actual 

articles using links



Cleanup
● Average word length - takes care of link-only articles without removing actual 

articles using links
● Search for most common special char. in other languages: æøå, ç, ¿, various 

chinese and arabic symbols, ect.



Cleanup
● Average word length - takes care of link-only articles without removing actual 

articles using links
● Search for most common special char. in other languages: æøå, ç, ¿, various 

chinese and arabic symbols, ect.
● Remove formatting artifacts, double spaces, \n ect.
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Preprocessing

Geologist thinks she found a meteorite, but 
the geologist really found a rock!

[ 0, 1527, 45, 236, 5, 0, 32, 1, 28490, 219, 236, 5, 0 ]
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Preprocessing

Geologist thinks found meteorite, 
geologist really found rock!

One of the F***YoFlag organizers is 
called Sunshine.

[ 0, 1411, 136, 0, 29374, 119, 136, 0 ] [ 0, 3, 1, 660, 5729, 8, 163, 0]

One of the wordwithasterisk organizers 
is called Sunshine.

Geologist thinks she found a meteorite, 
but the geologist really found a rock!

Stop words removed Special character to single word



Feature extraction for LightGBM
● Title and text length
● Average word length
● Entropy gain from splitting at a given word
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LightGBM GBDT
Model Highlights

- Gradient Boosted Decision Tree

- Easy to set up - Fast training 

- Performant on minimal preprocessing

HyperParams:
-  max_depth: 3
-  learning_rate: 0.01
-  n_estimators: 100
-  subsample: 0.8
-  reg_alpha (L1): 0.1 
-  reg_lambda (L2): 0.1



LightGBM GBDT
Combating overfitting

Reduced model complexity

- Optimized using k-fold cross 

validation & learning curves

- small k-fold cross validation 

spread indicating no overfitting

- Convergent learning curves



Tensorflow LSTM
Model Highlights

- Long Short-Term Memory (RNN)

- Naturally well suited for sequenced 

data, specifically structured text

- Handles and uses context 

through word ordering

- Tackles unseen data well

LSTM Hidden Cells Figure:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


TensorFlow LSTM
Combating overtraining

- Model structure and batch size 

optimised for efficient training

- Input & Recurrent dropout to combat 

overtraining

- Batchsize: 2048 (Most Stable)

- Training time ~ 20-30 minutes



Results and Performance
LightGBM GBDT
- Acceptable metrics

- False positive is dominant 

error for default cut (p=0.5)

- A very clean cut is not 

possible (ROC curve)

- Extremely high true positive 

rate (true fake classified as 

fake) is attainable

Preprocessing: lowercase, spaces, stopwords, cleanup



Results and Performance
TensorFlow LSTM RNN
- Better metrics than LGBM

- False positive and false 

negative are balanced

- Good separation, but one 

type of error cannot be 

excluded

Preprocessing: lowercase, spaces, cleanup



Trying BERT on GPUs 
BERT: Bidirectional Encoder Representation of Transformers
Using a pretrained BERT Tokenizer: 'bert-base-uncased'.

Fine tuned using our dataset, run on Kaggle NVIDIA P100 GPU.

Yielded high accuracy of about 98% on test data.

NVIDIA P100 GPU
Training time: 1.5 hours

Preprocessing: lowercase, spaces, cleanup



Vocabulary size and preprocessing 
Some observations:

- Preprocessing improved performance to a certain extent

- Clean, lowercase, and spaces improve performance

- Find and replace ” (f**k → wordwithasterisk) impairs performance

- Preprocessing becomes irrelevant when vocabulary becomes large



Conclusion
➔ Well performing NLP classification tasks can be executed on personal computers - 

no need for HPC resources.

◆ RNN-LSTM: good metrics and general separation

◆ LGBM-GBDT: Very pure “fake” classification is possible

➔ Preprocessing and feature extraction improves performance to a certain extent.

➔ Transformer based models, BERT, offer improved performance at the cost of 
computational time.



Predictions on current NEWS
Using the LSTM model, our trained 
model labelled this BBC article as Real. 

https://www.bbc.com/news/world
-us-canada-65875898

The same model flagged this article 
from The Onion as Fake.

https://www.theo
nion.com/trump-t
akes-out-full-pag
e-newspaper-ad-
calling-for-deat-1
850299979

https://www.bbc.com/news/world-us-canada-65875898
https://www.bbc.com/news/world-us-canada-65875898
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979


Further work
➔ Bidirectional, peephole & coupled forget/input gate LSTMs or even GRU 

(Gated Recurrent Unit) for 1 update unit

➔ Generate fake news articles

◆ Using trained LSTM

◆ Using transformer based model

➔ General Fake News Detection Software

◆ Using our model to flag fake news, utilising a webscraber



Appendix
Github Repository:

https://github.com/Chrowian/Final_Project_GutQuaadeHaldorZeitzen.git

Dataset:
https://www.kaggle.com/datasets/saurabhshahane/fake-news-classification

https://github.com/Chrowian/Final_Project_GutQuaadeHaldorZeitzen.git
https://www.kaggle.com/datasets/saurabhshahane/fake-news-classification


STATEMENT

All authors contributed equally to all parts of the project, both in 
developing key ideas for investigation, code to preprocess and run the 
Machine Learning algorithms and subsequent analysis of the results.



Cleaning Data
Removal of empty strings, NaN’s, non-english articles, only hyperlinks, were coded. In 
the end, approx. 70000 articles were left.



Preprocessing
Pandas dataframes are used in this project. With dataframes finding and replacing 
things are quick and easy.



Tokenization
To turn words into tokens we first create a vocabulary of words from the articles.

This is done by counting how often each words appear and then giving the number of 

words you want in your vocabulary.

This implementation found our own vocabulary

The tokenizer used were implemented using 
Keras, as this package was optimised for faster 
runtime.



Tokenization
This vocabulary assigns an integer from 0 to “number of words in vocabulary” to each 
word. So the most common word, usually “the”, is given integer 1 and so on.

If a word is not in the vocabulary it will be given the integer 0 and described as “UNK”, 
meaning its an unknown word.

From this vocabulary every word is replaced with is corresponding integer, thereby 
tokenizing the text.



Entropy splitting 1
A list of 150 words related to American politics (a significant portion of articles seemed 
to be related to American politics, with “Trump” being present in approx. 50% of all 
articles) or “article-like” lingo (exclusive, breaking, interview, ect.) are counted in all 
articles, separated into four counts: occurring in fake or real articles, and not occurring 
in fake or real articles. From this, the entropy gain (based on Shannon entropy) is 
calculated from a potential split at this word. The chosen words are in the main 
presentation. See next slide for entropy calculations.



Entropy splitting 2



LightGBM GBDT Setup
Setup using the LightGBM classifier class LGBMClassifier(). 

Key Hyperparamters: 

n_estimators: 100, max_depth: 3, learning_rate: 0.01, subsample: 0.8, reg_alpha: 0.1, reg_lambda: 0.1

Initial experiments hinted at overfitting, and k-fold cross validation and learning curve 

divergence confirmed this. A Hyperparameter optimisation was carried out, reducing the 

complexity, and leading to satisfactory spread on k-fold cross validation experiments, and 

convergence in learning curves.



LightGBM GBDT Setup
Performance of the LightGBM classifier was evaluated based of several indicators. The 

accuracy of the predicted labels on the test data, the binary cross entropy (LogLoss), and 

the ROC curve. While accuracy normally isn’t always a good indicator for classification 

problems, we have an even data set, meaning the same number of fake and real articles, 

so that accuracy should be a good measure.



TensorFlow LSTM Setup
Implemented using the TenserFlow Keras API. The model built is a sequential model, where 

layers are added as needed. The simple model used for some of the results is implemented 

as shown by the figure in the presentation:



TensorFlow LSTM Setup
Although having only one LSTM layer may seem overly simple, in reality, as this is a type of RNN, 

the LSTM layer does many computations, and in that sense “adds” more “layers” to the model. It 

is not correct to call these time steps, x-1, x, x+1, layers, but they can be imagined as such. The 

model, even with this simple setup, was able to handle the complex data structures, and as such, 

it was not important to add more layers, which only would have made the model slower to train. 

The sequence length of the inputs to the model dictated the number of “timesteps” in the LSTM, 

typically we used between 300 and 400, with zeropadding on the end so that all inputs had the 

same shape (This is vital for LSTM RNNs).



TensorFlow LSTM Setup
The model structure and batchsize used was optimised to have a good tradeoff between 

stable model behaviour, i.e., semi-smooth converging loss functions, and training time. It 

was found that a batchsize of 2048 gave the most stable loss functions, while the reduction 

of units in the LSTM layer yielded faster training, while not costing much in performance. 

Increasing LSTM units, or adding another LSTM layer, only yielded accuracy scores that 

were slightly higher, ~ 0.96, at the cost of vastly increased computational time.



BERT Classifier Setup
We used the pretrained model BERT to try and see whether or not a Transformer powered model would 

perform exceptionally well on the dataset. This was, as seen in the presentation, the case. Setting up 

the model was done using the TensorFlow Keras implementation version of the 

TFBertForSequenceClassification forward method. A high dropout rate was used to avoid overtraining 

and overfitting. 



BERT Classifier Setup
As the BERT classifier model is a very large pretrained model, it may come as no surprise, that 

finetuning the pretrained model was time consuming. It was estimated, that the total training time for the 

model would have come close to 24 hours on our fastest available laptop (M2pro Macbook), which was 

by no means feasible. However, luckily, Kaggle offers 30 hours of GPU usage for its users per week, 

provided they have registered with a phone number. This allowed for much faster training times, in the 

order of 1 hour. The outputted, finetuned model, fills nearly 500MB, and is therefore a very heavy and 

complicated model. 



General Training Comments
It is important to stress, that in the datasets were appropriately split, in such a way, to keep 

the testing dataset away from the model, while the training and validation datasets are used 

to train the model. Only when evaluating performance is the test dataset used. 



Extended results
The next slides include more of the results, for varying levels of preprocessing, and 

vocabulary size. These results are found using the models described previously.

 



General Trends
- Pre processing improves performance to a certain extent

- Data cleanup, lowercase, spaces improves performance

- “Find and replace” (f**k → wordwithasterisk) impairs performance

- It was found, above a certain threshold, that preprocessing returns 
diminished, once vocabulary size was sufficiently large.

- Very good separation is possible for RNN-LSTM

- Very high true positive rate is possible for LGBM tree based solution

- Models are robust when vocabulary size is decreased



Extended results
The fact that our true negative rate cannot be very close to 1 (which is the case for the true 

positive rate) means that we cannot separate articles into two classes and be sure that one 

class contains only real articles. On the other hand, we can make sure that one class 

contains only fake news articles.

We believe that this is due to the fact that some fake articles are very well written and 

therefore are difficult to recognize. On the other hand, real news articles have a minimum 

level of writing, and the poorly written articles are therefore easy to classify as fake news.



Accuracy vs vocabulary size
 

RNN-LSTM



LightGBM - Low Vocab Size

Preprocessing applied yielding higher 
accuracy 

No preprocessing applied yielding a 
good accuracy nonetheless



LightGBM - Large Vocab Size

Preprocessing applied

No preprocessing applied



TensorFlow - Low Vocab Size

Preprocessing applied yielding higher 
accuracy 

No preprocessing applied yielding a 
decent result



TensorFlow - Large Vocab Size

Preprocessing applied yielding higher 
accuracy 

No preprocessing applied yielding a 
good accuracy nonetheless



Real & Real Fake News
To analyse the two articles found on the internet, we had to first save the models in a 
dataframe, that was then passed through the same preprocessing and tokenizer functions 
that the model training data had gone through, so the consistency was there. 

The model used to assess the validity of the two articles was a TensorFlow LSTM, which 
was structured and run in the same way as the previously described models. The model 
used had an accuracy of 93%, and was preprocessed. The articles went through the same 
preprocessing.

The two articles:
https://www.bbc.com/news/world-us-canada-65875898
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979

https://www.bbc.com/news/world-us-canada-65875898
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979


Real & Real Fake News
We observed, that testing the model on a news article, which had little to do with politics, 
such as the attached news article, the model was more unsure how to classify them. This 
comes as no surprise, and it has more to say about out training data, than our model. A 
quick overview of the articles in our dataset also reveals, that the dataset mostly contains 
articles related to politics, and therefore, the model knows how to distinguish fake political 
articles from real.

This is the type of article, that the classifier had a harder time 
classifying.

https://www.theonion.com/god-still-little-pissed-off-every-time-human-takes-bite-185
0524056 

https://www.theonion.com/god-still-little-pissed-off-every-time-human-takes-bite-1850524056
https://www.theonion.com/god-still-little-pissed-off-every-time-human-takes-bite-1850524056
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