
Fake News Articles and How to
Find Them

Final Project

Applied Machine Learning 2023

Marcus Gut, Rune Zeitzen, Magnus Oddershede and Brage Haldor Thomsen

Introduction and motivation
● Fake news has a documented effect on political beliefs

(Ognyanova et al, 2020)

● Reuters and others spend resources on fact-checking

● Our task: Classification of fake news articles using Consumer
grade hardware, utilising

○ LightGBM Gradient Boosted Decision Trees

○ Recurrent Neural Networks with Long Short-Term Memory
(LSTM)

Outline

Dataset
● Very balanced - nearly 50/50 - thus making accuracy a performance measure
● Mix of long and short articles with no obvious difference
● Contains title, text and label

Dataset
● Very balanced - nearly 50/50 - thus making accuracy a good measure
● Mix of long and short articles with no obvious difference
● Contains title, text and label
● Very messy - complicated dataset

● Very balanced - nearly 50/50 - thus making accuracy a good measure
● Mix of long and short articles with no obvious difference
● Contains title, text and label
● Very messy!

Dataset

Requires multilingual capabilities in
order to compare with english articles!

● Very balanced - nearly 50/50 - thus making accuracy a good measure
● Mix of long and short articles with no obvious difference
● Contains title, text and label
● Very messy!

Dataset

“Text” is literally just a
link!

● Very balanced - nearly 50/50 - thus making accuracy a good measure
● Mix of long and short articles with no obvious difference
● Contains title, text and label
● Very messy!

Dataset

Classifying this is probably beyond the scope of this project…

Cleanup
● Average word length - takes care of link-only articles without removing actual

articles using links

Cleanup
● Average word length - takes care of link-only articles without removing actual

articles using links
● Search for most common special char. in other languages: æøå, ç, ¿, various

chinese and arabic symbols, ect.

Cleanup
● Average word length - takes care of link-only articles without removing actual

articles using links
● Search for most common special char. in other languages: æøå, ç, ¿, various

chinese and arabic symbols, ect.
● Remove formatting artifacts, double spaces, \n ect.

Outline

Preprocessing

Geologist thinks she found a meteorite, but
the geologist really found a rock!

[0, 1527, 45, 236, 5, 0, 32, 1, 28490, 219, 236, 5, 0]

Preprocessing

Geologist thinks she found a meteorite, but
the geologist really found a rock!

[0, 1527, 45, 236, 5, 0, 32, 1, 28490, 219, 236, 5, 0]

0 is unknown

Preprocessing
Geologist thinks she found a meteorite,
but the geologist really found a rock!

Geologist thinks she found a meteorite ,
but the geologist really found a rock !

geologist thinks she found a meteorite,
but the geologist really found a rock!

[0, 1635, 58, 270, 7, 0, 3, 38, 1,
19379, 250, 270, 7, 1665, 134]

[28490, 1527, 45, 236, 5, 0, 32, 1,
28490, 219, 236, 5, 0]

Space between
special character

Uppercase to
lowercase

Preprocessing
Geologist thinks she found a meteorite,
but the geologist really found a rock!

Geologist thinks she found a meteorite ,
but the geologist really found a rock !

geologist thinks she found a meteorite,
but the geologist really found a rock!

[0, 1635, 58, 270, 7, 0, 3, 38, 1,
19379, 250, 270, 7, 1665, 134]

[28490, 1527, 45, 236, 5, 0, 32, 1,
28490, 219, 236, 5, 0]

Space between
special character

Uppercase to
lowercase

Preprocessing

Geologist thinks found meteorite,
geologist really found rock!

One of the F***YoFlag organizers is
called Sunshine.

[0, 1411, 136, 0, 29374, 119, 136, 0] [0, 3, 1, 660, 5729, 8, 163, 0]

One of the wordwithasterisk organizers
is called Sunshine.

Geologist thinks she found a meteorite,
but the geologist really found a rock!

Stop words removed Special character to single word

Feature extraction for LightGBM
● Title and text length
● Average word length
● Entropy gain from splitting at a given word

Outline

LightGBM GBDT
Model Highlights

- Gradient Boosted Decision Tree

- Easy to set up - Fast training

- Performant on minimal preprocessing

HyperParams:
- max_depth: 3
- learning_rate: 0.01
- n_estimators: 100
- subsample: 0.8
- reg_alpha (L1): 0.1
- reg_lambda (L2): 0.1

LightGBM GBDT
Combating overfitting

Reduced model complexity

- Optimized using k-fold cross

validation & learning curves

- small k-fold cross validation

spread indicating no overfitting

- Convergent learning curves

Tensorflow LSTM
Model Highlights

- Long Short-Term Memory (RNN)

- Naturally well suited for sequenced

data, specifically structured text

- Handles and uses context

through word ordering

- Tackles unseen data well

LSTM Hidden Cells Figure:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

TensorFlow LSTM
Combating overtraining

- Model structure and batch size

optimised for efficient training

- Input & Recurrent dropout to combat

overtraining

- Batchsize: 2048 (Most Stable)

- Training time ~ 20-30 minutes

Results and Performance
LightGBM GBDT
- Acceptable metrics

- False positive is dominant

error for default cut (p=0.5)

- A very clean cut is not

possible (ROC curve)

- Extremely high true positive

rate (true fake classified as

fake) is attainable

Preprocessing: lowercase, spaces, stopwords, cleanup

Results and Performance
TensorFlow LSTM RNN
- Better metrics than LGBM

- False positive and false

negative are balanced

- Good separation, but one

type of error cannot be

excluded

Preprocessing: lowercase, spaces, cleanup

Trying BERT on GPUs
BERT: Bidirectional Encoder Representation of Transformers
Using a pretrained BERT Tokenizer: 'bert-base-uncased'.

Fine tuned using our dataset, run on Kaggle NVIDIA P100 GPU.

Yielded high accuracy of about 98% on test data.

NVIDIA P100 GPU
Training time: 1.5 hours

Preprocessing: lowercase, spaces, cleanup

Vocabulary size and preprocessing
Some observations:

- Preprocessing improved performance to a certain extent

- Clean, lowercase, and spaces improve performance

- Find and replace ” (f**k → wordwithasterisk) impairs performance

- Preprocessing becomes irrelevant when vocabulary becomes large

Conclusion
➔ Well performing NLP classification tasks can be executed on personal computers -

no need for HPC resources.

◆ RNN-LSTM: good metrics and general separation

◆ LGBM-GBDT: Very pure “fake” classification is possible

➔ Preprocessing and feature extraction improves performance to a certain extent.

➔ Transformer based models, BERT, offer improved performance at the cost of
computational time.

Predictions on current NEWS
Using the LSTM model, our trained
model labelled this BBC article as Real.

https://www.bbc.com/news/world
-us-canada-65875898

The same model flagged this article
from The Onion as Fake.

https://www.theo
nion.com/trump-t
akes-out-full-pag
e-newspaper-ad-
calling-for-deat-1
850299979

https://www.bbc.com/news/world-us-canada-65875898
https://www.bbc.com/news/world-us-canada-65875898
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979

Further work
➔ Bidirectional, peephole & coupled forget/input gate LSTMs or even GRU

(Gated Recurrent Unit) for 1 update unit

➔ Generate fake news articles

◆ Using trained LSTM

◆ Using transformer based model

➔ General Fake News Detection Software

◆ Using our model to flag fake news, utilising a webscraber

Appendix
Github Repository:

https://github.com/Chrowian/Final_Project_GutQuaadeHaldorZeitzen.git

Dataset:
https://www.kaggle.com/datasets/saurabhshahane/fake-news-classification

https://github.com/Chrowian/Final_Project_GutQuaadeHaldorZeitzen.git
https://www.kaggle.com/datasets/saurabhshahane/fake-news-classification

STATEMENT

All authors contributed equally to all parts of the project, both in
developing key ideas for investigation, code to preprocess and run the
Machine Learning algorithms and subsequent analysis of the results.

Cleaning Data
Removal of empty strings, NaN’s, non-english articles, only hyperlinks, were coded. In
the end, approx. 70000 articles were left.

Preprocessing
Pandas dataframes are used in this project. With dataframes finding and replacing
things are quick and easy.

Tokenization
To turn words into tokens we first create a vocabulary of words from the articles.

This is done by counting how often each words appear and then giving the number of

words you want in your vocabulary.

This implementation found our own vocabulary

The tokenizer used were implemented using
Keras, as this package was optimised for faster
runtime.

Tokenization
This vocabulary assigns an integer from 0 to “number of words in vocabulary” to each
word. So the most common word, usually “the”, is given integer 1 and so on.

If a word is not in the vocabulary it will be given the integer 0 and described as “UNK”,
meaning its an unknown word.

From this vocabulary every word is replaced with is corresponding integer, thereby
tokenizing the text.

Entropy splitting 1
A list of 150 words related to American politics (a significant portion of articles seemed
to be related to American politics, with “Trump” being present in approx. 50% of all
articles) or “article-like” lingo (exclusive, breaking, interview, ect.) are counted in all
articles, separated into four counts: occurring in fake or real articles, and not occurring
in fake or real articles. From this, the entropy gain (based on Shannon entropy) is
calculated from a potential split at this word. The chosen words are in the main
presentation. See next slide for entropy calculations.

Entropy splitting 2

LightGBM GBDT Setup
Setup using the LightGBM classifier class LGBMClassifier().

Key Hyperparamters:

n_estimators: 100, max_depth: 3, learning_rate: 0.01, subsample: 0.8, reg_alpha: 0.1, reg_lambda: 0.1

Initial experiments hinted at overfitting, and k-fold cross validation and learning curve

divergence confirmed this. A Hyperparameter optimisation was carried out, reducing the

complexity, and leading to satisfactory spread on k-fold cross validation experiments, and

convergence in learning curves.

LightGBM GBDT Setup
Performance of the LightGBM classifier was evaluated based of several indicators. The

accuracy of the predicted labels on the test data, the binary cross entropy (LogLoss), and

the ROC curve. While accuracy normally isn’t always a good indicator for classification

problems, we have an even data set, meaning the same number of fake and real articles,

so that accuracy should be a good measure.

TensorFlow LSTM Setup
Implemented using the TenserFlow Keras API. The model built is a sequential model, where

layers are added as needed. The simple model used for some of the results is implemented

as shown by the figure in the presentation:

TensorFlow LSTM Setup
Although having only one LSTM layer may seem overly simple, in reality, as this is a type of RNN,

the LSTM layer does many computations, and in that sense “adds” more “layers” to the model. It

is not correct to call these time steps, x-1, x, x+1, layers, but they can be imagined as such. The

model, even with this simple setup, was able to handle the complex data structures, and as such,

it was not important to add more layers, which only would have made the model slower to train.

The sequence length of the inputs to the model dictated the number of “timesteps” in the LSTM,

typically we used between 300 and 400, with zeropadding on the end so that all inputs had the

same shape (This is vital for LSTM RNNs).

TensorFlow LSTM Setup
The model structure and batchsize used was optimised to have a good tradeoff between

stable model behaviour, i.e., semi-smooth converging loss functions, and training time. It

was found that a batchsize of 2048 gave the most stable loss functions, while the reduction

of units in the LSTM layer yielded faster training, while not costing much in performance.

Increasing LSTM units, or adding another LSTM layer, only yielded accuracy scores that

were slightly higher, ~ 0.96, at the cost of vastly increased computational time.

BERT Classifier Setup
We used the pretrained model BERT to try and see whether or not a Transformer powered model would

perform exceptionally well on the dataset. This was, as seen in the presentation, the case. Setting up

the model was done using the TensorFlow Keras implementation version of the

TFBertForSequenceClassification forward method. A high dropout rate was used to avoid overtraining

and overfitting.

BERT Classifier Setup
As the BERT classifier model is a very large pretrained model, it may come as no surprise, that

finetuning the pretrained model was time consuming. It was estimated, that the total training time for the

model would have come close to 24 hours on our fastest available laptop (M2pro Macbook), which was

by no means feasible. However, luckily, Kaggle offers 30 hours of GPU usage for its users per week,

provided they have registered with a phone number. This allowed for much faster training times, in the

order of 1 hour. The outputted, finetuned model, fills nearly 500MB, and is therefore a very heavy and

complicated model.

General Training Comments
It is important to stress, that in the datasets were appropriately split, in such a way, to keep

the testing dataset away from the model, while the training and validation datasets are used

to train the model. Only when evaluating performance is the test dataset used.

Extended results
The next slides include more of the results, for varying levels of preprocessing, and

vocabulary size. These results are found using the models described previously.

General Trends
- Pre processing improves performance to a certain extent

- Data cleanup, lowercase, spaces improves performance

- “Find and replace” (f**k → wordwithasterisk) impairs performance

- It was found, above a certain threshold, that preprocessing returns
diminished, once vocabulary size was sufficiently large.

- Very good separation is possible for RNN-LSTM

- Very high true positive rate is possible for LGBM tree based solution

- Models are robust when vocabulary size is decreased

Extended results
The fact that our true negative rate cannot be very close to 1 (which is the case for the true

positive rate) means that we cannot separate articles into two classes and be sure that one

class contains only real articles. On the other hand, we can make sure that one class

contains only fake news articles.

We believe that this is due to the fact that some fake articles are very well written and

therefore are difficult to recognize. On the other hand, real news articles have a minimum

level of writing, and the poorly written articles are therefore easy to classify as fake news.

Accuracy vs vocabulary size

RNN-LSTM

LightGBM - Low Vocab Size

Preprocessing applied yielding higher
accuracy

No preprocessing applied yielding a
good accuracy nonetheless

LightGBM - Large Vocab Size

Preprocessing applied

No preprocessing applied

TensorFlow - Low Vocab Size

Preprocessing applied yielding higher
accuracy

No preprocessing applied yielding a
decent result

TensorFlow - Large Vocab Size

Preprocessing applied yielding higher
accuracy

No preprocessing applied yielding a
good accuracy nonetheless

Real & Real Fake News
To analyse the two articles found on the internet, we had to first save the models in a
dataframe, that was then passed through the same preprocessing and tokenizer functions
that the model training data had gone through, so the consistency was there.

The model used to assess the validity of the two articles was a TensorFlow LSTM, which
was structured and run in the same way as the previously described models. The model
used had an accuracy of 93%, and was preprocessed. The articles went through the same
preprocessing.

The two articles:
https://www.bbc.com/news/world-us-canada-65875898
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979

https://www.bbc.com/news/world-us-canada-65875898
https://www.theonion.com/trump-takes-out-full-page-newspaper-ad-calling-for-deat-1850299979

Real & Real Fake News
We observed, that testing the model on a news article, which had little to do with politics,
such as the attached news article, the model was more unsure how to classify them. This
comes as no surprise, and it has more to say about out training data, than our model. A
quick overview of the articles in our dataset also reveals, that the dataset mostly contains
articles related to politics, and therefore, the model knows how to distinguish fake political
articles from real.

This is the type of article, that the classifier had a harder time
classifying.

https://www.theonion.com/god-still-little-pissed-off-every-time-human-takes-bite-185
0524056

https://www.theonion.com/god-still-little-pissed-off-every-time-human-takes-bite-1850524056
https://www.theonion.com/god-still-little-pissed-off-every-time-human-takes-bite-1850524056

References
Katherine Ognyanova, David Lazer, Ronald E. Robertson, Christo Wilson: Misinformation in
action: Fake news exposure is linked to lower trust in media, higher trust in government when
your side is in power, The Harvard Kennedy School Misinformation Review, Vol 1.4 (2020)

Reuters Fact Check: Fact Check Housing Violation Notice in College Bathroom Prank
Resurfaces (2021)

https://towardsdatascience.com/choosing-the-right-hyperparameters-for-a-simple-lstm-using-keras-f8e9ed76f046

https://towardsdatascience.com/lstm-by-example-using-tensorflow-feb0c1968537

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://towardsdatascience.com/long-short-term-memory-lstm-in-keras-2b5749e953ac

https://towardsdatascience.com/choosing-the-right-hyperparameters-for-a-simple-lstm-using-keras-f8e9ed76f046
https://towardsdatascience.com/lstm-by-example-using-tensorflow-feb0c1968537
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/long-short-term-memory-lstm-in-keras-2b5749e953ac

