
Human face detection

Long Lin, Sina Borgi, Weiyuan Chen, and Malou Maria Nielsen

Outline
● Motivation

● Dataset

● Models

● Results

● Discussion

● Summary

Motivation
1. We are all interested in object detection

2. Human face detection is most relevant and

practical

Where is the cat?

Dataset--Kaggle Human Faces
A diverse compilation of human facial images encompassing various races, age

groups, and profiles. (N=2,204)

● High resolution

● Labeled images

● Different sizes

● Different number of faces

● Structured

Dataset--Kaggle Human Faces
A diverse compilation of human facial images encompassing various races, age

groups, and profiles. (N=2,204)

● High resolution

● Labeled images

● Different sizes

● Different number of faces

● Structured

Dataset--Kaggle Human Faces
A diverse compilation of human facial images encompassing various races, age

groups, and profiles. (N=2,204)

● High resolution

● Labeled images

● Different sizes

● Different number of faces

● Structured

Dataset--Kaggle Human Faces
A diverse compilation of human facial images encompassing various races, age

groups, and profiles. (N=2,204)

● High resolution

● Labeled images

● Different sizes

● Different number of faces

● Structured

Pre-trained Models
● InceptionResnetV2

○ CNN -- 164 layers
○ Trained on more than a million images (No human faces)
○ Classify images into 1000 object categories
○ Input size of 299-by-299

● Xception
○ CNN -- 71 layers
○ Trained on the same images dataset as above (No human faces)
○ Classify images into 1000 object categories
○ Input size of 299-by-299

● MTCNN
○ Multi-task Cascaded Convolutional Networks
○ Combined 3 CNNs for face classification, bounding box regression, facial landmark localization

Pre-trained models

Model Accuracy Average_IoU

InceptionResnetV2 0% \

Xception 0% \

MTCNN 93% 0.43

Accuracy:

IoU(Intersection over Union):

Implementation
● Pre-trained on Imagenet

○ Classify 1000 objects or animals

● Removed top layers (*bottom)
○ Adding our own

● Output:

4 ∗ max_number_faces + 1

● Accuracy: IoU

corners of the box

how many faces

Cut off

Cut off

added

Implementation

● Loss: MSE = (1/n) * Σ(xi - x)2

● Training process
○ Train the added layers (Frozen)
○ Retrain with all layers (Unfrozen)

Cut off

Cut off

added

Results: Xception
● Average IoU(Frozen): 0.5

● Average IoU(Unfrozen): 0.7

○ Trained on sharp images

Red: Predicted box
Green: True box

InceptionResnetV2
● Average IoU (Unfrozen): 0.792

● Decent performance
○ Single faces

○ Trained on clean images

InceptionResnetV2
● Not so decent performance

○ Multiple faces

○ Blurred images

InceptionResnetV2: Are all images perfect?

Blur it until humans almost can’t distinguish

*Image created by DALL-E-2

Can the model still recognize faces?
● Sometimes..

● Different training needed

Can the model still recognize faces?
● Sometimes..

● Different training needed
○ Pre-processed + clean images

● Accuracy:

● Average IOU: 0.824 (+ 0.032)

MTCNN - Multi-Task Cascaded Convolutional Neural Network

● The 3 stages:

1. The proposal network (P-Net)

2. The refine network (R-Net)

3. The output network (O-Net)

● The 3 tasks:

1. Face classification

2. Bounding box regression

3. Facial landmark localization

● Zhang et al. 2016

MTCNN - Multi-Task Cascaded Convolutional Neural Network

Problems:

● Sometimes it can’t find any faces .

● Difference to the true boxes (low IoU, but is it bad?)

IoU = 0.302
Red: Predicted box
Blue: True box

Discussions
● Good at individuals

● Labels
○ Not the best

● Overtraining
○ Maybe?

● Weaknesses
○ Multiple faces
○ Lower resolution (and small)

● Lacking comparability

Summary
1. InceptionResnetV2(Retrained)

a. Powerful on individual faces
b. Weaker on multiple
c. Stronger when trained on pre-processed images

2. Xception(Retrained)
a. Decent on individual faces
b. Weaker on multiple

3. MTCNN
a. Powerful on multiple faces
b. Independent of labels

Thank you for listening

Appendix

Motivation
In this project we wanted to find a dataset of images. Find an appropriately

pre-trained model that could take images and do object detection on it. If possible

the final model should be able to draw a box around human faces. Once this step has

been done we can see if it is possible to finetune the initial model and get better and

better guesses on where the human faces are, or if they are not there.

Data
This project will take a dataset of images from Kaggle (N = 2204). The data is

photographs of people (individuals and groups), and the goal of this project is to find

a pre-trained model, or multiple, to draw boxes around human faces. The data comes

in different sizes as seen in the Figures below.

Width of images Height of images

C
o

u
n

t

C
o

u
n

t

Data
The data is also labelled with bounding boxes that gives the x

0
, y

0
, x

1
 and y

1
,

coordinates of the top-left and bottom-right corners of the box around each face in

each image (shown in Fig 1). This means that images with multiple faces has multiple

labels (shown in Fig 2).
(x

0
,y

0
)

(x
1

,y
1

)

Fig 1
Fig 2

Data
The coordinates were produced by ssd_mobilenet_v2_face_quant_postprocess model. There are some issues that may affect our training:

1. Overlapping between multiple faces coordinates. e.g. 00000562.jpg
2. Some images don’t have all labels for all faces, possibly due to the lack of power of that model, e.g. 00000616.jpg
3. Some images have more labels than faces. e.g. 00002857.jpg
4. Duplicated/highly similar images. e.g. 00000280.jpg vs 00000377.jpg

00000562.jpg 00000616.jpg 00000280.jpg 00000377.jpg

Data source (all Kaggle)
● Human faces:

https://www.kaggle.com/datasets/sbaghbidi/human-faces-object-detection

● Flowers: https://www.kaggle.com/datasets/prasunroy/natural-images
○ Subfolder:/flower

● Cats: https://www.kaggle.com/datasets/prasunroy/natural-images
○ Subfolder:/cat

https://www.kaggle.com/datasets/sbaghbidi/human-faces-object-detection
https://www.kaggle.com/datasets/prasunroy/natural-images
https://www.kaggle.com/datasets/prasunroy/natural-images

Methods and thoughts: InceptionResnetV2
Then by adjusting the pre-processing phase, training of the model and doing hyper
parameter tuning. The aim is to improve on basic pre-trained models accuracy on
detecting faces. For InceptionResnetV2, hyperparameter tuning included tests on
the learning rate, how many layers to add to the end of the pre-trained model and
how many nodes on them. The optimal settings were found using a “grid” with lr =
0.0001, 2 extra hidden layers of 256 and 128 nodes. Cross validation was not
working with the way that the data/labels were setup. We had to use the:

ds = tf.data.Dataset.from_tensor_slices(images_path).map(lambda x:
tf.numpy_function(load_image_and_boxes, [x], [np.float32, np.float32]))

Which caused model.fit(validation_data=val_data) to fail same with validation_split

Methods and thoughts: InceptionResnetV2
However, pre-processing was tried as a measure of improving the detection capacity

of the model. Here computer vision functions such as blurring matrices, high&low

pass Fourier filters were used to mess up the images. By training the model on both

clean and pre-processed images the over IoU and loss functions were better. This

was could have been because the versatility of different types of images made the

model more robust. At least towards less “optimal” images where the there isn’t only

1 face, centered, focused, and looking at the camera and with higher resolution.

Initial training with only the added layers
On the right, the loss and IoU score can be seen for each

epoch of the initial training. This is where the end of the

pre-trained model has been cut-off and the extra hidden

layers has been added with the desired output layer.

Clearly the weights are way off in the beginning, but

without much training there is a huge improvement after

just 10 epochs (on pre-processed images).

Methods and thoughts: Xception
Xception was trained with the

same parameters as

InceptionResNetV2.

The figures on the left show loss

and IoU scores for the initial

training with the added layers.

The IoU score improved until it was

around 0.5.

Methods and thoughts: Xception
After training with all the layers,

the model saw improvements in

IoU score until 23 epochs. At

around 17 epochs in the bottom

IoU figure there is a gap in the

graph. This is due to the output

being a NaN, which sometimes

occurs because the IoU score is

calculated by dividing with the area

of union. If the area is 0, then IoU

can’t be calculated.

MTCNN - Why did we choose to work with it?
● MTCNN is currently one of the most popular detection models and known to be very accurate.

● As a completely pretrained model it is independent on the true labels, and as discussed the true

labels might not be the very best, so an independent model might provide more information.

● We expected it to work really well and the idea was to compare the other models to it.

MTCNN - Preprocessing and implementation
Preprocessing:

● input size: doesn’t matter,, but we used 256x256.

● Color format: BGR.

● Integer type: uint8.

Implementation:

● mtcnn package:

model = mtcnn.MTCNN()
faces = model.detect_faces(Image)

MTCNN - Structure details
The very first step:

● Resizing the image to make an

image pyramid.

● This is the input of stage 1

(the P-Net).

The stride of 2:

● Allows for faster runtime!

MTCNN - Structure details
Stage 1 (P-Net):

● Fully Convolutional Network (FCN).

1. Finds candidate windows and their

bounding box regression vectors.

2. Non-Maximum Suppression (NMS):

○ Highly overlapping candidates

are merged.

MTCNN - Structure details
Stage 2 (R-Net):

● CNN not FCN

1. It takes the candidates (as 24x24x3 image arrays) from

P-Net as input.

2. Low confidence candidates are discarded.

3. Bounding box regression.

4. NMS ones again to discard redundant boxes.

MTCNN - Structure details
Stage 3 (O-Net):

● CNN not FCN

1. It takes the boxes (as 48x48x3 image arrays) from

R-Net as input.

2. Similar to R-Net:

● Low confidence candidates are discarded.

● Bounding box regression.

● NMS.

3. It starts finding facial landmarks.

Outputs:

● Face classification (binary classification -

is it a face or not?)

● 4 element vector representing the

bounding box (x, y, width, height).

● 10 element vector representing 5 facial

landmarks.

MTCNN - Structure details
The complete model architecture image taken from Zhang et al. 2016:

MTCNN - Facial landmarks
● MTCNN also finds 5 facial landmarks (nose, left_eye, right_eye, mouth_left, mouth_right)!

● Since the dataset doesn’t have these facial landmarks labeled, we can’t quantitatively look at

the performance.

MTCNN - How was it trained?
● Datasets:

○ Wider Face

○ Celeb A (has annotated facial landmarks)

○ Face Detection Dataset and Benchmark (FDDB)

● Discussion (Considerations):

○ Are these diverse in terms of ethnicities, gender, and age?

○ Are these diverse in terms quality (blurring), angles, number of faces in the image, and

poses etc.

○ Or is the lack of diversity the reason MTCNN sometimes can’t recognize faces in our

dataset?

MTCNN - Sources
● https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf(Zhang et al. 2016)

● https://towardsdatascience.com/how-does-a-face-detection-program-work-using-neural-netw

orks-17896df8e6ff

● https://medium.com/@iselagradilla94/multi-task-cascaded-convolutional-networks-mtcnn-for

-face-detection-and-facial-landmark-alignment-7c21e8007923

● https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-ipr.2019.0141

https://arxiv.org/ftp/arxiv/papers/1604/1604.02878.pdf
https://towardsdatascience.com/how-does-a-face-detection-program-work-using-neural-networks-17896df8e6ff
https://towardsdatascience.com/how-does-a-face-detection-program-work-using-neural-networks-17896df8e6ff
https://medium.com/@iselagradilla94/multi-task-cascaded-convolutional-networks-mtcnn-for-face-detection-and-facial-landmark-alignment-7c21e8007923
https://medium.com/@iselagradilla94/multi-task-cascaded-convolutional-networks-mtcnn-for-face-detection-and-facial-landmark-alignment-7c21e8007923
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-ipr.2019.0141

Other models we tried
● Mask R-CNN

○ Amazing results on people and

objects but.. deprecated libraries..

