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NETWORK-BASED INERTIAL NAVIGATION

Agenda

• Data

• Typical IMU processing

• End-to-end architecture

• Feature extension (clustering)

• Gyroscope integration

• Dynamic filter combination

• End-to-end network

• Neural accelerometer integration

• Conclusion

IMU
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The Data

Raw Synced Pose

Illustra(on from h/ps://ronin.cs.sfu.ca/

12 Features 

• Accelerometer

• Magnetometer

• Gyroscope

• RV

2 Ground truths 

• True position

• True orientation

100 recorded and synced runs, with 50.000 - 250.000 data points at 200Hz. 
Plot displays true posi(on and orienta(on for sample runs.
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Naïve IMU processing (double integration)
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Network following analytical path

Angular rates

Magnetometer

Acceleration 

Initial 
orientation 

Quaternion 
update

Position 
 + 

Orientation 

For each individual network test:


• Feed forward network

• LSTM

• RNN

• Transformer
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Inertial Navigation Neural Network
Pros and cons

Analytical approach Neural Network

Speed Fast Maybe slow

Testing requirements Reliable without much testing Need vigorous testing to 
guarantee reliability

Drift Quadratic positonal drift 
caused by linear velocity

Increased stability. Since we 
can identify stand-still!

Perfomance given noisy data Poor Potentially stable
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Feature Extension
Clustering

1

4

Idea: Extend features 
with clustering labels applied to 

processed segments of data. 

What segments have similar 
characteristics or equivalently;


"Where are the pa/erns in the data?"
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Feature Combinations
Clustering

Input Features Characteristics Clustering methods
• Accelerations

• Orientations

• Angular rates

• Average

• Standard Deviation

• Significant Frequencies

• Kmeans labels

• Agglomerative labels

• Birch labels

• Cross run clustering


Extending each feature component with factor 11

• Number of clusters 
determined with silhouette 

score and set to 9

• Significant peaks set to 3
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Feature 
Combination
Clustering

Segmentation lengths 
reveal different 

behaviour


Short 0.5s: To capture 
movements like steps 
sequences and turns


Long 5s: To capture 
macromovement like running or 

talking on the phone

Tiny 0.1s: To capture 
micromovements like single-steps
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Filtering
• Problems with 

integration


• A multitude of 
analytical filters we 
applied to the 
gyroscopic data


• None yielded a 
clean fit with the 
ground truth
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Loss Function for Quaternions

11

Convergence of different loss metrics

(source: 10.1007/s10851-009-0161-2)

• Quaternions have symmetric properties, i.e. we 
have to change our loss function


• Divergence and Performance should be 
considered 



Dynamic Filter Combination (LSTM)

• Poor performance 
of individual filters 
led us to implement 
dynamic filter-
weighting


• Filters are combined 
with an LSTM model


• Hyperparameter 
tuning is essential 
for a well-
performing LSTM

Quaternion estimation
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Dynamic Filter Combination (comp.)

• Poor performance of individual filters led us to implement dynamic filter-weighting.


• Filters are combined with an LSTM, GRU and RNN model

Quaternion estimation

NN-based models Analytical approaches

Model LSTM GRU RNN Integration EKF Mahoney Madwick

Validation 
Loss 190 ± 40 250 ± 10 310 ± 40 9174 7772 7161 7904

Runtime 
(seconds) 150 ± 50 370 ± 90 74 ± 8 5.2 7.0 3.1 8.5
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Position estimation using just IMU data
EKF for quaternion estimation with a Linear 
network used for position estimation

Despite loss-convergence 
trace error remains great.
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Position estimation using IMU + orientations

• Position prediction in 'easy mode'


• Architectures: Linear, RNN, GRU, LSTM


• 4.5 million training data points from 75 training sets


• Sequencing data 


• Two approaches to predicting
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Linear network vs LSTM 
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Best run of the linear network

Every once in a blue 
moon; Anton’s linear 
network did well.
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LSTM predictions 
on various data 
sets
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LSTM, GRU and RNN performance

• The results of each of our models are calculated as the average performance on 25 recordings


• It must be emphasized that our models are trained using IMU data + true orientations, whereas the benchmark model are 
trained just on IMU data


• Information on the benchmark models can be found at 
https://arxiv.org/abs/1905.12853

Our models Benchmark models

Model LSTM GRU RNN NDR RIDI IONET RoNIN LSTM

ATE (m) 458.06 15.66 32.03 5.32

RTE (m) 117.06 18.91 26.93 3.58

Runtime 
3m 20s 
(NVIDIA 

940mx 2GB)

5m 10s 
(NVIDIA 

940mx 2GB)

4m 48s 
(NVIDIA 

940mx 2GB)
? ? ? 12 h (NVIDIA 

1080Ti 12GB)

32 ± 17

25 ± 13

31 ± 15

26 ± 14
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24 ± 13

30 ± 16

https://arxiv.org/abs/1905.12853


• The complexity of the problem 
necessitated long training times – 
thus hindering fast exploration.


• Models must be trained on much 
data (>600,000) in order to learn 
data structure even roughly


• Other shit

• Working with 'Big Data'


• Working with sequential models


• Working with noisy data


• Time series analysis


Learnings Difficulties 
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Appendix
•Analytic quaternion update

•Clustering details

•Effect of supplementing with 

clustering data

• Filtering method description

•Model descriptions

Link to our Git Repository
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Analytical  
Gyroscope  
Integration
def Omega(w=np.array([1,1,2]).reshape(3,1)): 
    w = is_column_vector(w) 
    w_cross = np.array([[0, -w[2,0], w[1,0]], 
                        [w[2,0], 0, -w[0,0]], 
                        [-w[1,0], w[0,0], 0]]) 
    top = np.hstack((-w_cross, w)) 
    bottom = np.hstack((-w.T, np.zeros((1,1)))) 
    return np.vstack((top, bottom)) 

def u_b(w=np.array([1,1,2]).reshape(3,1), dt=.1): 
    return  w*dt 

# matrix norm of a 4x4 matrix 
def matrix_norm(M): 
    return np.sqrt(np.trace(M.T@M)) 

def vec_norm(v): 
    return np.sqrt(v.T@v) 

def Theta(w=np.array([1,1,2]).reshape(3,1), dt=.1): 
    W = Omega(w) 
    u = u_b(w, dt) 
    W_norm = matrix_norm(W) 
    u_b_norm = vec_norm(u) 
    return np.cos(u_b_norm/2)*np.eye(4) + 
np.sin(u_b_norm/2)/(u_b_norm/2)*W 

qt+1 = Φqt

Ω = [−ω× ωT

ω 0 ]

Θ = cos ( |u |
2 ) ⋅ I + sin ( |u |

2 ) ⋅
2Φ
|u |

ω× =
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

u = ∫ ωdt

Given the current orientation, the next orientation is 
obtained via application of the quaternion update matrix;

With theta approximated as;

In which;

and

with
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Clustering details

• Feature extension by clustering allows a guiding 
hand for the NN.


• Will not (and did not) provide additional accuracy 
for deep NN, as the structures being parsed are 
already learned by the deep NN.


• Possible to extend with other characterics, like the 
laplace transform, taylor expansion etc.


• Gave insight into the methodology of true 
behavior classification from IMU data.              
Which is coming to the phone near you!
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Macromovement Clusters

Micromovement Clusters



Kalman filtering

• Use prior knowledge of state 
to inform measurement 
dependent state update.


• With user inputs of signal 
and processing noise, the 
algorithm takes previous 
states.


• Noise estimates are updated 
iteratively


• For documentation regarding 
the remaining filters see: 
https://ahrs.readthedocs.io/
en/latest/metrics.html

Image from: https://en.wikipedia.org/wiki/Kalman_filter
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Does clustering improve performance?
• The 8 different cluster labels were encoded using one hot encoding and used 

as input features in addition to the IMU data and true orientations for the 
LSTM


• Each model is trained 3 times on 1.2M data points


• As can be seen below, the inclusion of clustered features did not significantly 
improve performance, and so we decided not to include them

Av. Performance on test dataset 
a000_1 (3 trials) LSTM 

Error With clustering Without clustering

ATE (m)

RTE (m)

12.4 ± 2.7

7.3 ± 3.9

8.3 ± 2.6

6.6 ± 0.9
25



A couple of the things we tried: 
Quaternion estimation

• A lot of time was spent on trying to get linear networks, as well as more complicated 
sequential ones, to predict orientations using just IMU data, as as well a single initial 
orientation. Most of our models just output constant predictions and were worthless. In our 
ignorance, we used small sequence lengths and trained on 'toy data' snippets of the full data 
set. Short sequences meant that the network was almost right when consistently predicting 
null changes in orientation. Our lack of success prompted us to dive into the world of data 
filters and custom loss functions. 


• We initially tried using previous true orientations as input features during training. These true 
orientations would then be replaced by the model predictions during training.  The models 
ended up ignoring everything but the orientation features, and failure ensued.


• We tried using any and all combination of filtered features, along with intermediary analytical 
update steps, ultimately resulting in the results summarized in the 'Dynamic Filter 
Combination' slide
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A couple of the things we tried: 
Position estimation using just IMU data

• Much effort was put into building a transformer that could predict positions 
given solely IMU data, the hope being that this superior architecture would 
be able to outperform the RoNIN's LSTM model. Transformer based network 
—> turned out to require more than available compute. The model was 
unable to learn any relevant structure.


• We tried using various combinations of filtered features, along with 
intermediary analytical update steps


• We tried giving the networks the initial orientation and tasked them to predict 
absolute positions -> Fail. We ended up predicting relative positions, both 
trying to predict 1 to several positional changes per sequence.
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A couple of the things we tried: 
Position estimation using IMU data + true orientations

• We tried using various combinations of filtered and clustered features, along 
with intermediary analytical update steps


• We tried giving the networks the initial orientation and tasked them to predict 
absolute positions -> Fail. 


• We ended up predicting relative positions, both trying to predict 1 to several 
positional changes per sequence. Both approaches lead to similar results, but 
the former approach was much faster to train. It is possible that the latter has 
more potential if given the proper amount of training time
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Dynamic Filter Combination (GRU)

• Poor performance of 
individual filters led 
us to implement 
dynamic filter-
weighting


• Filters are combined 
with an GRU model


• Hyperparameter 
tuning is essential 
for a well-performing 
GRU model

Quaternion estimation
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Dynamic Filter Combination (RNN)

• Poor performance of 
individual filters led 
us to implement 
dynamic filter-
weighting


• Filters are combined 
with an RNN model


• Hyperparameter 
tuning is essential 
for a well-performing 
RNN model

Quaternion estimation
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Linear network for position estimation (Pytorch)
Model summary

Name Description

Architecture Densely connected linear

Parameter count 2.2M

Loss function MSE

Learning rate 10^{-6}

Sample count (train/val) 1M (80/20)

Runtime 23m 40s

Epochs 500

Sequence length 300

Sequence overlap 1

Batch size 128

IMU data + true orienta<ons

Dense linear network
9 layers 

 690 —> 500(8) —> 3

RelaBve XYZ posi<ons

Rotate accelera<on 
to world-frame

perform double integra<on
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LSTM for position estimation (Pytorch)
Model summary

Hyperparameter opBmzaBon: Epochs, sequence length, learning 
rate and N_hidden were op<mized using Optuna for 75 trials 
(run<me = 5 hours on NVIDIA GeForce 940MX)

Name Description
Architecture LSTM

Parameter count 82000
Loss function MSE
Learning rate 3.9 * 10^{-5}

Sample count (train/val) 1.2M (80/20)
Runtime 3m 20s
Epochs 78

Sequence length 30
Sequence overlap 1

Batch size 64
Regularization dropout=0.2

LSTM

IMU data + true orienta<ons

3 layers  
(n=62)

Dense linear network
2 layers 

 (62 -> 290 -> 2)

RelaBve XY posi<ons
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GRU for position estimation (Pytorch)
Model summary

Hyperparameter opBmzaBon: Epochs, sequence length, learning 
rate and N_hidden were op<mized using Optuna for 75 trials 
(run<me = 8 hours on NVIDIA GeForce 940MX)

Name Description
Architecture GRU

Parameter count 101744
Loss function MSE
Learning rate 1.7 * 10^{-4}

Sample count (train/val) 1.2M (80/20)
Runtime 5m 10s
Epochs 101

Sequence length 35
Sequence overlap 1

Batch size 64
Regularization dropout = 0.2

GRU

IMU data + true orienta<ons

3 layers  
(n=74)

Dense linear network
2 layers 

 (74 -> 265 -> 2)

RelaBve XY posi<ons

33



RNN for position estimation (Pytorch)
Model summary

Hyperparameter opBmzaBon: Epochs, sequence length, learning 
rate and N_hidden were op<mized using Optuna for 30 trials 
(run<me = 4 hours)

Name Description
Architecture RNN

Parameter count 35613
Loss function MSE
Learning rate 3.6 * 10^{-4}

Sample count (train/val) 1.2M (80/20)
Runtime 4m 48s
Epochs 47

Sequence length 30
Sequence overlap 1

Batch size 64
Regularization dropout = 0.2

RNN

IMU data + true orienta<ons

3 layers  
(n=58)

Dense linear network
2 layers 

 (58 -> 290 -> 2)

RelaBve XY posi<ons
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LSTM for orientation estimation (Pytorch)
Model summary

Hyperparameter op<miza<on with 200 trials (optuna and optuna-
dashboard):  amsgrad, betas, hidden_size, learning_rate, 
num_layers, op<mizer, weight_decay

Name Description
Architecture LSTM
Bidirectional TRUE

Parameter count 25348
Loss function phi2

Optimizer Adam
Learning rate 0.005
Weight Decay 0.02

Betas (0.51, 0.97)
Training/Validation Size 16000|4000

Runtime 150 ± 50
Epochs 96

LSTM

IMU + filtered data

1 layer  
(n=58)

Dense linear network
2 layers 

 (58 -> 116 -> 4)

Orienta<on sequence
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GRU for orientation estimation (Pytorch)
Model summary

Name Description
Architecture GRU
Bidirectional TRUE

Parameter count 1345346
Loss function phi2

Optimizer Adamax
Learning rate 0.0005
Weight Decay 0

Betas (0.40, 0.46)
Training/Validation Size 16000|4000

Runtime 370 ± 90
Epochs 92

GRU

IMU + filtered data

2 layers  
(n=233)

Dense linear network
2 layers 

 (233 -> 466 -> 4)

Orienta<on sequence
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Hyperparameter op<miza<on with 200 trials (optuna and optuna-
dashboard):  amsgrad, betas, hidden_size, learning_rate, 
num_layers, op<mizer, weight_decay



RNN for orientation estimation (Pytorch)
Model summary

Name Description
Architecture RNN
Bidirectional TRUE

Parameter count 75184
Loss function phi2

Optimizer AdamW
Learning rate 0.001
Weight Decay 0.034

Betas (0.74, 0.88)
Training/Validation Size 16000|4000

Runtime 74 ± 8
Epochs 64

RNN

IMU + filtered data

1 layer  
(n=179)

Dense linear network
2 layers 

 (179 -> 358 -> 4)

Orienta<on sequence
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Hyperparameter op<miza<on with 200 trials (optuna and optuna-
dashboard):  amsgrad, betas, hidden_size, learning_rate, 
num_layers, op<mizer, weight_decay



Example Plot for Early Stopping (RNN for quaternions)


