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Outline

❖ Tensorflow regressor to predict the quasar redshifts

❖ Gated Recurrent Unit (GRU) to predict redshifts

❖ CNN to classify whether DLAs (Damped Lyman-alpha 
absorber) appear

❖ CNN to locate where DLAs are



Background

Quasar, also known as QSO
(quasi-stellar object)

A kind of extremely luminous active 
galactic nucleus (AGN)

- Supermassive black hole

Source: Wikipedia

The nearest known one is about 
600 million light-years away from 
Earth.

- Markarian 231 (UGC 8058)



Background - imaging

Source: Wikipedia 3C 273



Background - spectroscopy

Source: 
https://www.thoughtco.com/introduction-t

o-spectroscopy-603741

Dispersion



Background - redshift (z)

Source: Vanden Berk et al. (2001).

z = λ_obsv / λ_rest - 1



4MOST - (4G–PAQS) - The survey will observe nearly 250,000 quasar candidates

Motivation



Randomly simulated data

Z_range ∈ [2,4], Mag_range ∈ [18, 20.5]

Data size: 10000 spectra (~ 20 hrs for generation)

Data shape: (10000, 23411, 1) - (N_spec, N_wav_bins, input_features - Flux)

Wavelength range: 3600 ~ 9600 Å



Labels/Truth



Finding the redshift(z) - TensorFlow regressor
 The simplest idea - calculate redshift by a certain peak

         

λ_SiIV_rest  λ_SiIV_obsv

z  = λ_SiIV_obsv / λ_SiIV_rest  -1
Source: Vanden Berk et al. (2001).



The part that is not simple - how do we know which peak is SiIV? 

λ_SiIV_obsv ≈ 4800 λ_SiIV_obsv ≈ 5300

We human - compare neighboring peaks by eyes…

Or…let Regressor figure out its own way!

Model structure:
Learning rate determined by Adam optimizer

n_epochs = 8   batch_size = 50   n_samples=10000



Results & Evaluation

Time used: 6775.952 s (failed to use GPU)

Loss history* (mean absolute error)

* Data is normalized by qt.transform 



Results & Evaluation

It is a very simple ML model, but shows not bad accuracy

What are bad?

Loss remains unchanged in the last several epochs 

It tends to predict higher values in small redshift, and lower values in large redshift

So it performs badly near the end points of the redshift range

Too long training time (~2 hours)



RNN - Gated Recurrent Unit (GRU) - Tensorflow

A
ctivation('relu')

units=100, input_shape=(23411, 1)
D

ropout(0.2)

D
ense(units=1)

A
ctivation('linear')

Predicted 
redshift

loss='mean
_absolute

_percentage
_error'

batch_size = 16,
epochs = 25, (+25+7)

with GPU acceleration thanks to Colab



RNN - Gated Recurrent Unit (GRU) - Tensorflow

Test loss: 1.14%;
Time used by TensorFlow: 7547.7 s

N_epochs

Lo
ss



RNN - Gated Recurrent Unit (GRU) - Tensorflow

Test loss: 1.14%;
Time used by TensorFlow: 7547.7 s



CNN - Classification - Tensorflow

● What is DLA(Damped 

Lyman-alpha Absorbers)?

● Why DLA? 

● Why CNN?

● My work

Source: http://www.nat.vu.nl/~wimu/FundConst-Notes.html







CNN - Locating Damped Lyman Alpha Absorptions



CNN - Preparing Data + Labels



CNN - Preparing Data + Labels



CNN - Preparing Data + Labels



CNN - Preparing Data + Labels



CNN - Locating Damped Lyman Alpha Absorptions



CNN Structure - Keras



Results



Conclusion

- Performance of our models
- Tensorflow regressor: test loss = 0.0441
- GRU: test loss = 1.14%
- CNN for classifying DLAs: AUC = 0.9154
- CNN for locating DLAs: accuracy ~ 90%

- Did we reach our objective?
- What could we improve?

- Try to implement GPU acceleration on our own machine or get access to larger clusters.
- More training data.



Thank you :) 

Any questions?



Appendix



Appendix - TensorFlow Regressor
Features

Our samples are spectra, and the features are the flux of each spectrum. In each spectrum, the wavelength 
ranges from 3671.5 to 9524 and a wavelength bin is 0.25 wide, i.e. there are 23411 wavelength bins in each 
spectrum. So each sample has 23411 features (a very large parameter space).

Data preprocessing

Before qt.transform and training, I preprocess the truth data (the location of SiIV peak) by

               y_truth = (λ_SiIV - 3671.5) / 0.25

The idea is that, we only input the flux data so the machine know nothing about the wavelength. Then it might 
be hard for it to learn how a wavelength value like 9524 jumps out. But the machine does know the label of 
flux, in other words, the label of wavelength bins. Hence, the above transformation convert 9524 to (9524 - 
3671.5) / 0.25 = 23410 = the label of the last flux, something the machine should know.

Optimization

Due to the long training time I only try to optimize the batch size. It turns out that the smaller batch size 
gives better results.



Appendix - GRU

❖ Reasons for choosing to use GRU:
➢ Spectrum data is in series and it is very similar to time series data. The spectrum is a flux 

function with respect to wavelength, and every point is highly linked with the one before and 
after, so we immediately wanted to try to analyse the spectra with RNN. LSTM is better for 
analysing time series, so we choose to use GRU since the spectrum is not really time series.

➢ GRU does not make use of the cell state and instead uses the hidden state to transfer 
information. It also only has two gates, a reset gate and update gate. GRUs have fewer tensor 
operations; therefore, they are a little speedier to train than LSTM.



Appendix - GRU

❖ Hyper parameter optimization:
➢ It seems that more units in GRU always help, but it also increase the code running time 

significantly. By considering both the performance of the code and the running time, we 
choose to use 100 in the end.

➢ We add a drop-out layer after the GRU to avoid over-fitting.
➢ A smaller batch-size is better, and it takes longer time, which is different from the common 

sense. (Batch-size gives the size of samples which is the amount of training samples to 
consider at a time for updating the network weights) - size = 32 -> Test loss: 3.68%, t: 1670s / 
size = 64 -> Test loss: 6.66%, t: 936 s.

➢ We used a loss function of mean_absolute_percentage_error, since our true values are 
between 2 and 4 and the mean_absolute_error will be a too small value (0.02 or lower), so we 
chose the percentage error.



Appendix - GRU

❖ Preprocessing is very necessary:

Before:

Before: 
(~ 1e-16)

After:
(~ 1)

Flux/mean(Flux)



Appendix - GRU

❖ Can improve significantly with larger sample size:
With using 1000 samples to train: With using 4000 samples to train:



Appendix - GRU

❖ Can improve significantly with larger sample size:
With using 8000 samples to train: With using 10000 samples to train:



Appendix - CNN classifying DLAs

Preprocessing the data: 

➢ The flux value can be too small for computer to recognize and instead of 
extracting the features from the spectra image, we use an one dimensional 
array, so we have to normalize the data. 

➢ Transform the wavelength into pixels, the dataset size would increase and we 
can use human knowledge of where DLAs approximately appear to select a 
sub dataset which will save memory and raise efficiency. 



Appendix - CNN Locating DLAs

Reasons for choosing CNN:

- Convolutional NNs used for analysing images and visual features
- Spectra are basically 1D images, and we’re looking for a specific visual 

feature (DLAs)



Appendix - CNN Locating DLAs

Preprocessing data:

- We know that DLAs only show up between a given range of wavelength, so we could 
reduce the size of the data down to what was more important (not necessarily too useful for 
my method but decreased the amount of segments I had to create)

- Normalising the data was very helpful, especially normalising the flux to give the relative 
flux

- Reduced the effect of noise by using the rolling medium for each spectra (improved the 
CNN’s accuracy)

- For the input data, made sure to balance the number of true and false segments as to avoid 
the model from just training to output “0” (as number of segments w/o DLA >>> number of 
segments with DLA)

- Using the segment method gave 10 000 segments w/ DLAs and then we took 10 000 
without, for a total of 20 000 in the input data (split into train/val/test etc.)



Appendix - CNN Locating DLAs

Hyperparameter Optimisation:

- Used a learning rate scheduler, as I noticed after ~epoch 3 the accuracy and 
validation accuracy started diverging (overtraining)

- Also implemented early stopping, but I was too lenient on the patience as the model 
starts to overtrain a little near the end

- Important hyperparameters were the learning rate (of course), the segment size and 
the overlap between each segment. I think that the labelling process (how many “1” 
values in a segment to label the entire segment “1”) as well as the range of what I 
consider the DLA is also an important hyperparameter

- Found that using a larger kernel for the input layer helped
- Played with the size of the Conv1D filters to get a good result without too long a run 

time or significant overfitting



Appendix - CNN Locating DLAs

Batch Normalisation was very important! This + normalising the data improved the 
accuracy a lot

Accuracy of previous model 
where these were not applied. 
Accuracy improved by ~10% in 
the final model, and loss improved 
significantly also



Appendix - CNN Locating DLAs

Further improvements:

- Could have used regression to find the location of the DLA inside the detected segment (e.g. +/- the 
width of the segment) = more accurate, rather than just looking at the range of the DLA segments 
and estimating an average - this would reduce the error in the final value of redshift calculated

- Would have liked to experiment with the hyperparameters more, and try to optimise them. Was not 
feasible to do a lot of systematic optimization with the time left due to long runtimes

- Could have accounted for other absorptions, which probably would have improved the accuracy as 
these are somewhat similar to the DLA absorptions and most likely were a source of false positives

- Could have tried to use an autoencoder perhaps? (tried to implement one to denoise the spectra 
since I thought that would be interesting, but then I realised I could just apply the rolling median to 
basically get the same effect)

- Potentially use weight decay with AdamW?


