
Applied Machine Learning 2023

Rediscovering
Herculaneum

Andreas, Rasmus, Shaowen, Yasaswy, and Yi

Problem: Ink Detection Challenge
- Can you reconstruct the ink on a 2D image from 3D X-ray scans?

Data and labels

Data: Scanned images of a sheet - 65 layers of gigantic 2D pictures

Labels: Reconstructed ink based on an IR-scan - 2D image

Data visualized
 Visualization of z-layers Real IR values Ink Labels

Mask

Data visualized 2
 All layers averaged Layers 22-35 averaged Layer 30

Preprocesing

Three main things we noticed:

- Information in layer 40 and
onwards is limited

- The boundary behaves very oddly
- X-ray layer distributions are

different across images

Boundary behaviour

Calibration plots

 Uncalibrated Calibrated

Approach and scoring

Two ways to approach

- Classification
- Image Segmentation

Train on Image 1 and 2 validate on Image 3

Most models were CNNs

Competition score is F0.5 score

- Encoder only models (Classification)
- 2D CNN model
- 3D CNN model
- Encoder only Vision Transformer

- Encoder-decoder Models (Image Segmentation)
- UNet model
- Encoder-decoder Vision Transformer

- Simple Models
- CatBoost
- LDA

Models
U-Net structure

Threshold

- The models predict continuous spectrum in [0,1]
- Set a threshold
- Below the threshold, predict no ink
- Above the threshold, predict ink

Reconstructions:

2D CNN 2D – 2D U-NetThreshold: 0.3

Reconstructions:

Threshold: 0.53D CNN 3D CNN

Importance of chosing right threshold

3D CNN

Evidence for lack of calibration
- Models preform better, when training and predicting on different parts of the

same images

- A trained CNN can classify, which image a block is from with a 94% accuracy

- This accuracy is decreased slightly (down to 88%) by using calibrations

Reconstructions

Validation results of models

List of f-scores

- Encoder only Vision Transformer: 0.27
- Encoder-decoder Vision Transformer: 0.21
- 2d CNN encoder: 0.24
- 3d→1d CNN encoder: 0.28
- 2d→2d UNet: 0.26
- 3d→2d UNet: 0.28
- 3d→2d UNet like model: 0.34
- CatBoost: 0.16
- LDA: 0.15

Looking back

Preprocessing is important

Pretrained models require 3 input channels

Hardware limitations

- Kaggle allows 30h/weekly with P100 GPU (13GB RAM, 16GB VRAM)
- Not enough for these very large images

Moving forward

- Better augmentations
- Look at calibrations and the preprocessing step
- Maybe look at more advanced denoising algorithms in preprocessing and

postprocessing
- More advanced (pretrained) models

- TransUNet
- SegFormer
- Segment Anything Model (SAM)
- Ensembles
- etc.

- Use Adversarial to punish model if it can predict which image a patch
originated from

Thank you all for your attention!

Appendix
1. About the Problem
2. Models used
3. More reconstruction
4. Hyperparameters
5. Models we didn’t get to try
6. Miscellaneous

- Library in Herculaneum buried in 79 AD (contains works of Epicurean philosophy)
- Scrolls/fragments carbonized by the heat of the volcanic debris
- Brittle and sensitive scrolls read through tomography
- Carbon ink on carbonized papyrus a little hard to read
- Classification data from manually opened and studied scrolls

More information can be found at:
● https://scrollprize.org/ink_detection,
● Reading the Herculaneum Papyri: Yesterday, Today, and Tomorrow - YouTube

A.1 - About the Problem

The papyrus scrolls of Herculaneum

https://scrollprize.org/ink_detection
https://www.youtube.com/watch?v=g-7-Xg75CCI

A.1 - Image 2
 Visualization of z-layers Real IR values Ink Labels

Mask

A.1 - Image 3
 Visualization of z-layers Real IR values Ink Labels

Mask

A.2 - Linear Discriminant Analysis

Not very much information in a single column of pixels.

Peaks are from the boundary

A.2 - Models

Vision Transformer (ViT)

- “Create sequence from Image”
- Encoder only transformer
- MLP Classification from a class token

ViT Original paper

Vision Transformers

https://arxiv.org/abs/2010.11929v2

Convert both input and output image to a sequence.

Use a traditional encoder-decoder Transformer to “translate” between input and
output, in a similar fashion to how an encoder-only Vision Transformer works.

Didn’t perform very well on our dataset, possibly due to the fact that transformers
usually require very large amounts of data.

Can be generalized to TransUNet / Segment Anything Model (SAM)

A.2 - Models
Sequence to Sequence (Vision) Transformers

Encoder-decoder style CNN

Allows for arbitrary CNN Backbone encoder

Can be generalized to TransUNet

- Combining Vision Transformer with UNet

UNet Original Paper

TransUNet Original Paper

A.2 - Models
UNET

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2102.04306

A.2 - Models
Sample 2D UNet Model We Use

Two different CNN models have been tried.

- First model: 3D encoder only (3 layers) followed by a linear layer. This model
preformed with an f-score of 0.29

- Second model: UNet like mode, with a 3D encoder (3 layers + 3 pools)
followed by a 2D decoder (3 layers + 1 upsample). There were however no
skip-connections and no linear bottleneck. The best f-score was 0.34

Both models were only trained on layers 22-35

A.2 - Models
(simple) 3D CNN Models

A.3 - Additional Reconstructions

ViT

A.3 - Additional Reconstructions

2D CNN

- ‘Invisible letter’ where there is no ink?
- ‘Information’ from random noise :)

Due to hardware constraint and long training time, we didn’t do much dedicated
hyper parameter optimization.

A.4 - Hyperparameters

ViT

- Embedding dim: 512
- Attention heads: 8
- Patch size: (4x16x16)
- Feedforward dim: 2048
- Encoder layers: 6
- z layers: (0 - 39)
- Hull/Nucleus: (64x64) / (16x16)
- lr: 3e-5
- optimizer / lr scheduler: Lion / Linear warmup - cosine annealing

A.4 - Hyperparameters for best performing models

A.5 - Models we didn’t get to try

We went with the approach of first trying simple models and get them to work and
gradually make the models more complex. However due to the preprocessing
difficulties, we never really got to try cutting edge models for “semantic
segmentation”.

Following are some models, which weren’t tried due to time and hardware
limitations:

TransUNet (combination of Transformer with UNet) Original Paper

SegFormer (CNN+Transformer hybrid) Original Paper

Segment Anything Model (Modified Encoder-Decoder Transformer) Original Paper

https://arxiv.org/pdf/2102.04306.pdf
https://arxiv.org/abs/2105.15203
https://arxiv.org/abs/2304.02643

A.5 - Models we didn’t try (continued)

It is also worth noting, that due to the very special nature of this segmentation task,
almost none of the standard vision models will work out of the box, since they expect
3 input channels.

For the few pretrained models we’ve tried (ResNet34/50, ViT B), their feature
extraction abilities also don’t seem to transfer well, to this very noisy data. And for
the models to get any reasonable scores, they basically need to be retrained entirely.

- Recent State-of-the-art optimizer
- Used for training some of the models
- Pytorch Implementation: GitHub
- Lion: Original Paper

Also available on the nightly release of tensorflow

A.6 - Miscellaneous
Lion (Optimizer)

https://github.com/lucidrains/lion-pytorch
https://arxiv.org/pdf/2302.06675.pdf

