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Motivation and Goal

‘Climate change is playing an increasing role in 
determining wildfire regimes alongside human 
activity (medium confidence), with future climate 
variability expected to enhance the risk and 
severity of wildfires in many biomes such as 
tropical rainforests (high confidence)’  – IPCC, 
2019 [1]

2[4]

Main Goal: 

Predict wildfires across the Iberian Peninsula 

from meteorological data.

Data:

Fire data (NASA VIIRS) [3]
https://firms.modaps.eosdis.nasa.gov/

Weather data (ERA5 reanalysis) [2]
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-

era5-single-levels



Data Structure
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0.25° x 0.25° boxes over Iberia

Timeseries with daily averages from

2012-01-20 to 2021-12-31 → 3643 days

Meteorological data: ERA5 reanalysis

Fire data: VIIRS Nasa

11 variables

4 variables

33 x 55 = 1815 boxes



Data Correlations
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Correlations over the whole area and time • High correlation (>0.8) between the

temperature variables (t2m and stl1) and 

the precipitation variables (cp and tp) 

• Low correlation between fire data and 

meteorological data for the whole area

... but there is hope when looking at 

correlations in single boxes:



Models
RNN with LSTM and GRU
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Recurrent Neural Networks (RNNs) are very useful for time series, as their cells 

both take the prediction of the previous time step and the input of the current time 

step into account to generate the output [5].

They have a short-term 

memory problem, ‘forgetting‘ 

the first time steps due to

vanishing gradients.

LSTM and GRU cells are two

approaches to solve this

problem by adding (long-term) 

memory cells. 

[6]



Trend and Seasonality
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• Most of our features and the target are s

easonal, with a period of approximately

a year.

• Although LSTM and GRU have long

memory, they may not have it long

enough to learn the seasonality in the

data.

• Therefore, it is sometimes better to

extract noise and seasonality from the

data, train the model with the trend,

and add again the seasonality to the

predictions.



Neural Network
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LSTM
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GRU
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Seasonality correction
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• Extracting the seasonality 
and training the model 
with just the trend (Thick 
lines) shows in a 
significantly improved 
results compared to 
training the model without 
extracting seasonality 
(dashed lines)

• Results of the model 
trained with just the trend 
are better no matter how 
many days ahead we want 
to predict.



The look-back parameter
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•The more days we look 

back to make the prediction, 

the more beneficial it is to 

train the model with just the 

trend

•In fact, the best choice to 

train the model is to choose 

100 days of look-back and 

extract the seasonality. (We 

could not add more days of 

look-back because of 

computation time)



Conclusions
‘What did we learn?‘

• RNN‘s might be a powerful tool for predicting timeseries when the hyperparameter
are optimised in the right way

• We assume that we would have needed more fires in order to make good predictions

• Organisation of the models and well structured code is key

‘What else would have been cool to investigate?’

• Using information of neighboring cells (e.g. whether there’s a fire or not and/or 
taking the wind direction into account) to improve the fire prediction

• Trying an algorithm that combines LSTM and some spatial correlation weights, 
such as a GNN. We tried ConvLSTM that combines CNN and LSTM but it did not 
fit our purpose.

• It would be very interesting to know what is the optimal combination of look-back 
parameter and how many days ahead to train the model for.
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Appendix
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The following slides describe some of our decision making regarding variable 
choice, data preproccessing and model choice in more detail.

All participants contributed evenly

Statement



Details – Fire Data Preprocessing
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The fire data contains lat, lon coordinates for each fire event with an accuracy of ±375 meters. 
This is a lot smaller than our ERA5 datagrid. To collect the two data sets in a common format, we 
have done the following: coordinate transform fire events to the center of the ERA5 grid cell to 
which they belong. Then we save new variables to the ERA5 dataset, the most important of which 
is the number of fires in each grid cell (for each day). From this we later make a new binary 
variable stating for a given day if a given cell had at least one fire. Plotted below (left) are all fires 
in the 10-year period on top of a random day's surface temperature. The middle plot is the same 
but zoomed in, such that you can see the individual ERA5 grid cells, and the right plot shows the 
coordinate transformation for each fire event (blue) to their corresponding ERA5 coordinate 
(magenta). Code: aggregate_data.py



Details – Fire Data Variables
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Variables of the 

Fire Dataset

Description

bright_ti4 • I-4 Channel brightness temperature of the fire pixel [K]

bright_ti5 • I-5 Channel brightness temperature of the fire pixel [K]

frp • pixel-integrated fire radiative power [MW]

n_fires • Number of fires in each grid cell of the era5 data

We considered to use these variables of the fire dataset for the models. All variables are averaged daily

and  spatially for the era5 gridcells.

In the end we decided to make classification models and ended up just using the number of fires as

described on the previous slide. 



Details – Met Data Preprocessing
We downloaded hourly data as netCDF files from [2]. We made daily averages and combined 
datasets, since we had to download several datasets for different variables because otherwise they 
became too big to download. We spatially averaged the data for different box sizes but decided to 
use the smallest box size. In a future project one could think about using bigger box sizes, since 
there would be more fires per box to train the model. On the other hand one might loose important 
details of the data when averaging spatially over bigger areas.

Code: met_data_preprocessing.py
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Details – Meteorological Variables

Variables that affect wildfires Data we used [2]

Temperature • 2m Temperature [K]

Solar radiation • Direct Solar Radiation [J/m2]

• Total Cloud Cover [%]

Wind speed and direction • U Component of the Wind [m/s]

• V Component of the Wind [m/s]

Atmospheric stability • Convective Precipitation [m]

• Surface Pressure [Pa]

Precipitation • Total Precipitation [m]

Fuel availability • High Vegetation Cover [%]
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We decided to download the following variables of the meteorological dataset for the

fire predictions.



Details – Data Preprocessing

Several Scaler from sklearn were tested on the data in order to generate similar data distribution
in the same ranges.

The MinMaxScaler() was used for the RNN GRU Classification algorithm.
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Details –
Feature Importance
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We took a look at the Feature Importances for the RNN 

Classification model using GRU.

The values of single features were randomnly permuted and the

logloss calculated.

Results:

• The log loss did not change a lot (max change of ~ 0.02)

• The variables that increase the loss the most when randomnly

permutted are:

• cdir (Clear-sky direct solar radiation at surface)

• swvl1 (Volumetric soil water)

• tcc (total cloud cover) 

• The temperature (t2m) and the high vegetation cover (cvh) 

didn‘t seem to be too important for this classification model

In the end we used all meteorological variables for the models.

Code: RNN_GRU_and_Feature_Importance.py



Details – Hyperparameter 
Optimization
• HP optimization on the NN, LSTM, and GRU did not yield 

significant improvements.
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Details – Training on more than
one box

• Training on many cells (tried up to 64) did not make any significant 
improvement to the NN model.

• We find enough time to try this with the RNN (LSTM, GRU) because 
it was more complicated to code, as the time dependency of the RNN 
prevents us from simply concatenating data from different cells.
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