Applied Statistics
 Hypothesis Testing

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense"

Hypothesis testing

Suppose in a beer tasting, that someone gets 49 our of 50 right.
Does that prove that the person can taste difference between beers?

Hypothesis testing

Suppose in a beer tasting, that someone gets 49 our of 50 right.
Does that prove that the person can taste difference between beers?

NO!

What we can say is that the result is inconsistent (at some significance level) with the hypothesis that the person chooses at random.

This leaves us with the alternative hypotheses, that the person can taste the difference or have cheated (consciously or unconsciously).

In statistics one can never prove a hypothesis directly. However, one can set up alternative hypotheses and disprove these. That is how one works in statistics...

Hypothesis testing

Hypothesis testing is like a criminal trial. The basic "null" hypothesis is Innocent (called H_{0}) and this is the hypothesis we want to test, compared to an "alternative" hypothesis, Guilty (called H_{1}).

Innocence is initially assumed, and this hypothesis is only rejected, if enough evidence proves otherwise, i.e. that the probability of innocence is very small ("beyond a reasonable doubt"), and the hypothesis can be rejected.

	Truly innocent $\left(\mathrm{H}_{0}\right.$ is true)	Truly guilty $\left(\mathrm{H}_{1}\right.$ is true)
Acquittal (Accept $\left.\mathrm{H}_{0}\right)$	Right decision	Wrong decision Type II error
Conviction (Reject $\left.\mathrm{H}_{0}\right)$	Wrong decision Type I error	Right decision

The rate of type I/II errors are correlated, and one can only choose one of these!

Hypothesis terminology

$\mathbf{H}_{0}=$ Null Hypothesis:

Definition: The initial/ simplest hypothesis.
Examples: Data is background, data follows simple model, particle is a pion.
$\mathbf{H}_{1}=$ Alternative Hypothesis:
Definition: The alternative to the null hypothesis, possibly more advanced. Examples: Data is background + signal, data does not follows simple model, particle is an electron.

$\alpha=$ Significance:

Definition: Probability to reject H_{0}, even if it is true.
Example: Concluding no signal, even if there; deciding electron when pion.
Note: The selection efficiency $=1-\alpha$
$\beta=1$ - Power:
Definition: Probability to accept \mathbf{H}_{0}, even if it is false.
Example: Concluding signal, even if not there; deciding pion when electron.
Note: The misidentification probability $=\beta$

Taking decisions

You are asked to take a decision or give judgement - it is yes-or-no.

Given data - how to do that best?

That is the basic question in hypothesis testing.
Trouble is, you may take the wrong decision, and there are TWO errors:

- The hypothesis is true, but you reject it (Type I).
- The hypothesis is wrong, but you accept it (Type II).

REALITY

Null is True

STATISTICAL DECISION:

REALITY			
Null is True			Null is False
Do Not Reject Null$1-\alpha$ Correct			
$1-\alpha$ Type II error			
α Reject Null Type I error			

Taking decisions

REALITY

STATISTICAL DECISION:	Do Not Reject Null	Null is True	Null is False
		$\overline{1-\alpha}$ Correct	β Type II error
	Reject Null	α Type I error	$1-\beta$ Correct

Taking decisions

The purpose of a test is to yield (calculable/ predictable) distributions for the Null and Alternative hypotheses, which are as separated from each other as possible, to minimise α and β.
The likelihood ratio test can be the best such test.

Measuring separation

Which of these three distributions are most separated? How do you "measure" this?

Measuring separation

ROC-curves

The Receiver Operating Characteristic or just ROCcurve is a graphical plot of the sensitivity, or true positive rate, vs. false positive rate.

It is calculated as the integral of the two hypothesis distributions, and is used to evaluate the power of a test.

Often, it requires a testing data set to actually see how well a test is performing.

Dividing data, it can also detect overtraining!

ROC-curves

The Receiver Operating

Characteristic or just ROCcurve is a graphical plot of the sensitivity, or true positive rate, vs. false positive rate.

It is calculated as the integral of the two hypothesis distributions, and is used to evaluate the power of a test.

Often, it requires a testing data set to actually see how well a test is performing.

Dividing data, it can also detect overtraining!

Useful ROC metrics

The performance of a test statistic is described fully by the ROC curve itself!
To summarise performance in one single number (i.e. easy to compare!), one used Area Under ROC curve.

Alternatively, people use:

- Signal eff. for a given background eff.
- Background eff. for a given signal eff.
- Youden's index (J), defined as shown in the figure.

The optimal selection depends entirely on your analysis at hand!

Useful ROC metrics

Example of ROC curves in use

Simple case

Basic steps - distributions

Basic steps - ROC curves

Overall improvement

Recent example (electron PID)

In addition to the ROC curves, the ratio of these are also shown, to illustrate the improvement as a function of operating point.
The three new methods clearly improve on he existing result.

This example is from identifying electrons using Machine Learning in the ATLAS experiment.
It is the result of applying ML on data, which solves the problem of differences between data and simulation.

Combined result

Combined result

Testing procedure \&

Typical statistical tests

Testing procedure

1. Consider an initial (null) hypothesis, of which the truth is unknown.
2. State null and alternative hypothesis.
3. Consider statistical assumptions (independence, distributions, etc.)
4. Decide for appropriate test and state relevant test statistic.
5. Derive the test statistic distribution under null and alternative hypothesis. In standard cases, these are well known (Poisson, Gaussian, Student's t, etc.)
6. Select a significance level (α), that is a probability threshold below which null hypothesis will be rejected (typically from 5% (biology) and down (physics)).
7. Compute from (otherwise blinded) observations/ data value of test statistic t.
8. From t calculate probability of observation under null hypothesis (\mathbf{p}-value).
9. Reject null hypothesis for alternative if \mathbf{p}-value is below significance level.

$\xrightarrow[{\left[\star \quad \text { Reject } H_{0}\right.}]{ } F$

Testing procedure

1. Consider an initial (null) hypothesis, of which the truth is unknown.
2. State null and alternative hypothesis.
3. Consider statistical assumptions (independence, distributions, etc.)
4. Decide for appropriate test and state relevant test statistic.
5. Derive t In stand
6. Select a hypoth
7. State hypothesis.
8. Set the criteria for a decision.
9. Compute the test statistic.
10. Comput
11. Make a decision.
pothesis.
ent's t, etc.)
v which null
(physics)).
st statistic t.
12. From t calculate probability of observation under null hypothesis (\mathbf{p}-value).
13. Reject null hypothesis for alternative if p-value is below significance level.

Hypothesis testing philosophy

In hypothesis testing, you can never prove a hypothesis.

You can accept a hypothesis, but this does not exclude accepting other hypothesis.

However, you can reject a hypothesis on the basis that it's probability of being correct (p -value) is too small.

Thus, in hypothesis testing, the line of reasoning is to state a hypothesis opposite of what you want to show, and then try to reject this hypothesis.

Example of hypothesis test

The spin of the newly discovered "Higgs-like" particle (spin 0 or 2?):

Test statistic (Likelihood ratio [Decay angles])

Neyman-Pearson Lemma

Consider a likelihood ratio between the null and the alternative model:

$D=-2 \ln$ likelihood for null model likelihood for alternative model

The Neyman-Pearson lemma (loosely) states, that this is the most powerful test there is.

In reality, the problem is that it is not always easy to write up a likelihood for complex situations!

However, there are many tests derived from the likelihood...

Likelihood ratio problem

While the likelihood ratio is in principle both simple to write up and powerful:

$D=-2 \ln$ likelihood for null model likelihood for alternative model

...it turns out that determining the exact distribution of the likelihood ratio is often very hard.
To know the two likelihoods one might use a Monte Carlo simulation, representing the distribution by an n -dimensional histogram (since our observable, x , can have n dimensions). But if we have M bins in each dimension, then we have to determine M^{n} numbers, which might be too much.

However, a convenient result (Wilk's Theorem) states that as the sample size approaches infinity, the test statistic \mathbf{D} will be χ^{2}-distributed with $\mathbf{N}_{\text {dof }}$ equal to the difference in dimensionality of the Null and the Alternative (nested) hypothesis.
Alternatively, one can choose a simpler (and usually fully acceptable test)...

Common statistical tests

- One-sample test compares sample (e.g. mean) to known value:

Example: Comparing sample to known constant ($\mu_{\exp }=2.91 \pm 0.01$ vs. $\mathrm{c}=2.99$).

$$
z=\frac{\bar{x}-\mu_{0}}{\sigma(\bar{x})}
$$

- Two-sample test compares two samples (e.g. means).

$$
z=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\sigma\left(\overline{x_{1}}\right)^{2}+\sigma\left(\overline{x_{2}}\right)^{2}}}
$$

- Paired test compares paired member difference (to control important variables).

Example: Testing environment influence on twins to control genetic bias ($\mu_{\text {diff }}=0.81 \pm 0.29 \mathrm{vs} .0$).

- Chi-squared test evaluates adequacy of model compared to data.

Example: Model fitted to (possibly binned) data, yielding p-value $=\operatorname{Prob}\left(\chi^{2}=45.9, \mathrm{~N}_{\mathrm{dof}}=36\right)=0.125$

- Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value $=0.87$

- Wald-Wolfowitz runs test is a binary check for independence.
- Fisher's exact test calculates p-value for contingency tables.
- F-test compares two sample variances to see, if grouping is useful.

Which test to use?

In principle all statistical tests can be used on every problem, but they are not all equally powerful, and some might also be biased (low stat.) or otherwise unfit. Finally, they may not all be equally easy to implement!

The figure of merit is typically the Power of a Test*, defined as $(1-\beta)$, complement of the false negative rate, β.

This is thus the test's probability of correctly rejecting the null hypothesis.
Example:
This is a powerful test: Thus, since the result is negative, we can confidently say that the null hypothesis is not rejected (e.g. the patient does not have the condition).

In medical science, it is typically important to have a powerful test (i.e. low β), while in criminal science it is a low type I error rate (i.e. low α), convicting innocents.
In the end, choosing a test comes down to experience, importance of power, ease of use, and even standards in the field of research in question.

[^0]
Student's t-distribution

Discovered by William Gosset (who signed "student"), student's t-distribution takes into account lacking knowledge of the variance.

$$
\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

When variance is unknown, estimating it from sample gives additional error:
Gaussian: $z=\frac{x-\mu}{\sigma}$
Student's: $t=\frac{x-\mu}{\hat{\sigma}}$

Simple tests (Z- or T-tests)

- One-sample test compares sample (e.g. mean) to known value:

Example: Comparing sample to known constant ($\mu_{\text {exp }}=2.91 \pm 0.01$ vs. $\mathrm{c}=3.00$).

$$
z=\frac{\bar{x}-\mu_{0}}{\sigma(\bar{x})}
$$

- Two-sample test compares two samples (e.g. means).

$$
z=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\sigma\left(\overline{x_{1}}\right)^{2}+\sigma\left(\overline{x_{2}}\right)^{2}}}
$$

- Paired test compares paired member difference (to control important variables).

Example: Testing environment influence on twins to control genetic bias ($\mu_{\text {diff }}=0.81 \pm 0.29 \mathrm{vs} .0$).
Things to consider:

- Variance known (Z-test) vs. Variance unknown (T-test).

Rule-of-thumb: If $\mathrm{N}>10-20$ or σ known then Z-test, else T-test.

- One-sided vs. two-sided test.

Rule-of-thumb: If you want to test for difference, then use two-sided. If you care about specific direction of difference, use one-sided.

Chi-squared test

Without any further introduction...

$$
\chi^{2}(\bar{\theta})=\sum_{i=1}^{N} \frac{\left(y_{i}-\lambda\left(x_{i} ; \bar{\theta}\right)\right)^{2}}{\sigma_{i}^{2}}
$$

- Chi-squared test evaluates adequacy of model compared to data.

Example: Model fitted to (possibly binned) data, yielding p-value $=\operatorname{Prob}\left(\chi^{2}=45.9, \mathrm{~N}_{\text {dof }}=36\right)=0.125$
If the p-value is small, the hypothesis is unlikely...

Chi-squared test

Kolmogorov-Smirnov test

- Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value $=0.87$

The Kolmogorov test measures the maximal distance between the integrals of two distributions and gives a probability of being from the same distribution.

Kolmogorov-Smirnov test

- Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value $=0.87$

"A Kolmogorov-Smirnov test shows that the probability that the two distributions are not drawn randomly from the same parent population is greater than 99.96%; that is, the two distributions differ by more than 3.5σ ". [Quote from figure caption]

Kolmogorov-Smirnov test

- Kolmogorov-Smirnov test compares if two distributions are compatible.

Example: Compatibility between function and sample or between two samples, yielding p-value $=0.87$

"A Kolmogorov-Smirnov test shows that the probability that the two distributions are not drawn randomly from the same parent population is greater than 99.96%; that is, the two distributions differ by more than 3.5σ ". [Quote from figure caption]

Kuiper test

Is a similar test, but it is more specialised in that it is good to detect SHIFTS in distributions (as it uses the maximal signed distance in integrals).

Common statistical tests

- One-sample test compares sample (e.g. mean) to known value. heat: μ_{0} Example: Comparing sample to known constant ($\mu_{\text {exp }}=2.91 \pm 0.01 \mathrm{vs} \mathrm{C}^{\top} \mathrm{J}$).
- Two-sample test compares two samplesic. means). educations

- Thosebievalyould jury of the not curet o data

Possibly binned 1 \&ielaing p-value $=\operatorname{Prob}\left(\chi^{2}=45.9, \mathrm{~N}_{\text {oof }}=36\right)=0.125$

Example: (anility between function and sample or between two samples, yielding p-value $=0.87$

- Wald-Wolfowitz runs test is a binary check for independence.
- Fisher's exact test calculates p-value for contingency tables.
- F-test compares two sample variances to see, if grouping is useful.

Wald-Wolfowitz runs test

Barlow, 8.3.2, page 153
A different test to the Chi2 (and in fact a bit orthogonal!) is the Wald-Wolfowitz runs test.

It measures the number of "runs", defined as sequences of same outcome (only two types).

Example:

If random, the mean and variance is known:

$$
\begin{aligned}
& \mu=\frac{2 N_{+} N_{-}}{N}+1 \\
& \sigma^{2}=\frac{2 N_{+} N_{-}\left(2 N_{+} N_{-}-N\right)}{N^{2}(N-1)}=\frac{(\mu-1)(\mu-2)}{N-1} .
\end{aligned}
$$

Note: The WW runs test requires $N>10-15$ for the output to be approx. Gaussian! 41

Fisher's exact test

When considering a contingency table (like below), one can calculate the probability for the entries to be uncorrelated. This is Fisher's exact test.

	Row 1	Row 2	Row Sum
Column 1	A	B	$\mathrm{A}+\mathrm{B}$
Column 2	C	D	$\mathrm{C}+\mathrm{D}$
Column Sum	$\mathrm{A}+\mathrm{C}$	$\mathrm{B}+\mathrm{D}$	N

$$
p=\frac{\binom{A+C}{A}\binom{B+D}{B}}{\binom{N}{A+B}}=\frac{(A+B)!(C+D)!(A+C)!(B+D)!}{A!B!C!D!N!}
$$

Simple way to test categorial data (Note: Barnard's test is "possibly" stronger).

Fisher's exact test - example

Consider data on men and women dieting or not. The data can be found in the below table:

	Men	Women	Row total
Dieting	1	9	10
Non-dieting	11	3	14
Column total	12	12	24

Is there a correlation between dieting and gender?
The Chi-square test is not optimal, as there are (several) entries, that are very low (<5), but Fisher's exact test gives the answer:
$p=\binom{10}{1}\binom{14}{11} /\binom{24}{12}=\frac{10!14!12!12!}{1!9!11!3!24!} \simeq 0.00135$

F-test

To test for differences between variances in two samples, one uses the F-test:

$$
F=\frac{S_{X}^{2}}{S_{Y}^{2}}
$$

$H_{a}: \sigma_{1}^{2}>\sigma_{2}^{2}$
(a)

(b)

Note that this is a two-sided test. One is generally testing, if the two variances are the same.

How many sigmas?

The number of sigmas (or p-value) required to make a claim should perhaps vary, according to the target of the data analysis.

Louis Lyons has below given his take on it (aimed at particle physics searches).

Search	Degree of surprise	Impact	LEE	Systematics	Number of σ
Higgs search	Medium	Very high	Mass	Medium	5
Single top	No	Low	No	No	3
SUSY	Yes	Very high	Very large	Yes	7
B_{s} oscillations	Medium/low	Medium	Δm	No	4
Neutrino oscillations	Medium	High	$\sin ^{2}(2 \theta), \Delta m^{2}$	No	4
$B_{s} \rightarrow \mu \mu$	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High $/$ very high	M, decay mode	Medium	7
$(g-2)_{\mu}$ anomaly	Yes	High	No	Yes	4
H spin $\neq 0$	Yes	High	No	Medium	5
$4^{\text {th } \text { generation } q, l, \nu}$	Yes	High	M, mode	No	6
$\mathrm{v}_{\nu}>\mathrm{c}$	Enormous	Enormous	No	Yes	>8
Dark matter (direct)	Medium	High	Medium	Yes	5
Dark energy	Yes	Very high	Strength	Yes	5
Grav waves	No	High	Enormous	Yes	7

How many sigmas?

The number of sigmas (or p-value) required to make a claim should perhaps vary, according to the target of the data analysis.

Louis Lyons has below given his take on it (aimed at particle physics searches).

Search	Degree of surprise	Impact	LEE	Systematics	Number of σ
Higgs search	Medium	Very high	Mass	Medium	5
Single top	No	Low	No	No	3
SUSY	Yes	Very high	Very large	Yes	7
B_{s} oscillations	Medium/low	Medium	Δm	No	4
Neutrino oscillations	Medium	High	$\sin ^{2}(2 \theta), \Delta m^{2}$	No	4
$B_{s} \rightarrow \mu \mu$	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High/very high	M, decay mode	Medium	7
$(g-2)_{\mu}$ anomaly	Yes	High	No	Yes	4
H spin $\neq 0$	Yes	High	No	Medium	5
$4^{t h}$ generation q, l, ν	Yes	High	M, mode	No	6
v $_{\nu}>$ c	Enormous	Enormous	No	Yes	>8
Dark matter $($ direct $)$	Medium	High	Medium	Yes	5
Dark energy	Yes	Very high	Strength	Yes	5
Grav waves	No	High	Enormous	Yes	7

The more extraordinary the claim, the more extraordinary the evidence needed!

[^0]: * Power of a test is often termed sensitivity in biostatistics.

