Applied Statistics Probability Density Functions (PDFs)

Troels C. Petersen \& Mathias L. Heltberg (NBI)

"Statistics is merely a quantisation of common sense"

Probability Density Functions

Probability Density Functions

A Probability Density Function (PDF) $f(x)$ describes the probability of an outcome x :
probability to observe x in the interval $[x, x+d x]=f(x) d x$
PDFs are required to be normalised:

$$
\int_{S} f(x) d x=1
$$

The expectation value (aka. mean) and the variance (i.e. standard deviation squared) are then defined as follows:

$$
\begin{gathered}
\mu=\int_{-\infty}^{\infty} x f(x) d x \\
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
\end{gathered}
$$

Probability Density Functions

Just a word on the probability lingo:

In the literature it is often we use large letters for a random variable X. This means an outcome for an event! If I roll a die, we say that X takes on values in $\{1,2,3,4,5,6\}$.

Now the small letters x, is a normal variable that is a real number. So we could write: $\mathrm{P}(\mathrm{X}<\mathrm{x})$, which translated means that we calculate the probability that in one event, we obtain a variable with the value smaller than the real value x.

Probability Density Functions

Example:

Consider a uniform distribution:

$$
f(x)= \begin{cases}1 & x \in[0,1] \\ 0 & \text { else }\end{cases}
$$

Calculating the mean and width:

$$
\begin{aligned}
\mu= & \int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x d x=\left[\frac{1}{2} x^{2}\right]_{0}^{1}=\frac{1}{2} \\
\sigma^{2}= & \int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x= \\
& {\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{4} x\right]_{0}^{1}=\frac{1}{3}-\frac{1}{2}+\frac{1}{4}=\frac{1}{12} }
\end{aligned}
$$

Probability Density Functions

The number of PDFs is infinite, and nearly so is the list of known ones:

Discrete distributions (edit source I edit beta

With finite support (edit source I edit beta

The Bernoulli distribution, which takes value 1 with The Rademacher distribution, which takes value 1 The binomial distribution, which describes the num The beta-binomial distribution, which describes the The degenerate distribution at x_{0}. where X is certa random variables in the same formalsm.
The discrete uniform distribution, where all element shuffled deck.
The hypergeometric distribution, which describes : there is no replacement.
The Poisson binomial distribution, which describes Fisher's noncentral hypergeometric distribution Wallenius' noncentral hypergeometric distribution Benford's law, which describes the frequency of th

With infinite support [edit source l edit beta]
The beta negative binomial distribution
The Bolizmann distribution, a discrete distribution i analogue. Special cases include:

- The Gibbs distribution

The Maxwell-Boltzmann distribution
The Borel distribution
The extended negative binomial distribution The extended hypergeometric distribution
The generalized log-series distribution
The generalzed normal distribution
The geometric distribution, a discrete distribution w
The hypergeometric distribution
The logarithric (series) distribution
The negative binomial distribution or Pascal distrib. The parabolic fractal distribution
The Poisson distribution, which describes a very la Poisson, the hyper-Poisson, the general Poisson t

The Conway-Maxwell-Poisson distribution, a th The Polya-Eggenberger distribution
The Skellam distribution, the distribution of the diff The skew elliptical distribution
The skew normal distribution
The Yule-Simon distrbution
The zeta distribution has uses in appled statistics Zpf's law or the Zpf distribution. A discrete powerThe Zpf-Mandelbrot law is a discrete power law dis

Continuous distributions (edt source edt beta

Supported on a bounded interval (edt source | ed

The Arcsine distribution on $[a, b]$, which is a spec The Beta distribution on $[0,1]$, of which the unifor The Logitnormal distribution on $(0,1)$.
The Drac delta function although not strictly a fur but the notation treats it as if it were a continuou
The continuous uniform distribution on $[a, b]$, when

- The rectangular distribution is a uniform distrib The Irwin-Hall distribution is the distribution of the The Kent distribution on the three-dimensional spl The Kumaraswamy distribution is as versatile as The loganthmic distribution (continuous) The PERT distribution is a special case of the bel The raised cosine distribution on $[\mu-s, \mu+s]$ The reciprocal distribution
The triangular distribution on $[a, b]$, a special cas The truncated normal distribution on $[a, b]$.
The U-quadratic distribution on $[a, b]$.
The von Mses distribution on the circle.
The von Mises-Fisher distribution on the N -dimens
The Wigner semicircle distribution is important in

Supported on semi-infinite intervals, usually $[0, \infty)$

The Beta prime distribution
The Birnbaum-Saunders distribution, also known The chi distribution

The noncentral chi distribution
The chi-squared distribution, which is the sum of 1
The inverse-chi-squared distribution
The noncentral chi-squared distribution
The Scaled-inverse-chi-squared distribution The Dagum distribution
The exponential distribution, which describes the The F-distribution, which is the distribution of the ratio of two chi-squared variates which are not no

- The noncentral F-distribution

Fisher's z-distribution
The folded normal distribution
The Fréchet distribution
The Gamma distribution, which describes the time
The Erlang distribution, which is a special cas
The inverse-gamma distribution
The generalzed Pareto distribution
The Gamma/Gompertz distribution
The Gompertz distribution
The hall-normal distribution

Hotelling's T-squared distribution
The inverse Gaussian distribution, also kn The Lévy distroution
The log-Cauchy distribution
The log-gamma distribution The log-Laplace distribution
The log-logistic distribution
The log-normal distribution, describing var The Mittag-Leffler distribution
The Nakagami distribution
The Pareto distribution, or "power law" dis The Pearson Type Ill distribution
The phased bi-exponential distribution is c The phased bi-Weibull distribution The Rayleigh distribution
The Rayleigh mixture distribution The Rice distribution
The shifted Gompertz distribution
The type-2 Gumbel distribution
The Weibull distribution or Rosin Rammler grinding, milling and crushing operations.

upported on the whole real line (edit sou

The Behrens-Fisher distribution, which anis The Cauchy distribution, an examole of a resonance energy distribution, impact and Chernoff's distribution
The Exponentially modified Gaussian distr The Fisher-Tippett, extreme value, or log-1 The Gumbel distribution, a special cas Fisher's z-distribution
The generalized logistic distribution The generalized normal distribution
The geometric stable distribution
The Holtsmark distribution, an example of The hyperbolic distribution The hyperbolc secant distribution The Johnson SU distnbution
The Landau distribution
The Laplace distribution
The Lêvy skew alpha-stable distribution or distribution, Lévy distribution and normal c The Linnik distribution
The logistic distribution
The map-Airy distribution
The normal distribution, also called the Ga independent, identically distributed variabi The Normal-exponential-gamma distributior The Pearson Type IV cistribution (see Pea The skew normal distribution

Student's t -distribution, useful for estimating
The noncentral t-d stribution
The type-1 Gumbel distribution
The Voigt distribution, or Voigt profile, is the c The Gaussian minus exponential distribution is

With variable support [edit source I edit beta] The generalzed extreme value distribution has parameter
The generalzed Pareto distribution has a supp The Tukey lambda distribution is either suppon The Wakeby distribution

Mixed discrete/continuous distributions [ed:
The rectified Gaussian distribution replaces nt Joint distributions [edit source I edit beta]

For any set of independent random variables the
Two or more random variables on the same sar
The Drichlet distribution, a generalization of th
The Evens's sampling formula is a probability
The Balding-Nchols model
The multinomial distribution, a generalization c The multivariate normal distribution, a general
The negative multinomial distribution, a geners
The generalzed multivariate log-gamma distrit
Matrix-valued distributions [edit source I edit t
The Wishart distrbution
The inverse-Wishart distribution
The matrix normal distribution
The matrix t -distribution
Non-numeric distributions [edit source I edit !
The categorical distribution
newton distribution
Miscellaneous distributions [edit source I edit

The Cantor distribution

The generalized logistic distribution family
The Pearson distribution family
The phase-type distribution

And surely more!

Probability Density Functions

The number of PDFs is infinite, and nearly so is the list of known ones:

Discrete distributions [edit source I edit beta
With finite support [edit source I edit beta]
The Bernoulli distribution, which takes value 1 with The Rademacher distribution, which takes value 1 The binomial distribution, which describes the num The beta-binomial distribution, which describes the The degenerate distribution at x_{0}. where X is certa random variables in the same formalsm.
The discrete uniform distribution, where all element shuffled deck.
The hypergeometric distribution, which describes ti there is no replacement.
The Poisson binomial distribution, which describes Fisher's noncentral hypergeometric distribution

Continuous distributions [edit source I edit beta]

Supported on a bounded interval [edit source I edit The Arcsine distribution on $[\mathrm{a}, \mathrm{b}]$, which is a spec The Beta distribution on $[0,1]$, of which the unifor The Logitnormal distribution on $(0,1)$.
The Drac delta function although not strictly a fur but the notation treats it as if it were a continuous The continuous uniform distribution on $[a, b]$, when - The rectangular distribution is a uniform distrib The Irwin-Hall distribution is the distribution of the The Kent distribution on the three-dimensional spl The Kumaraswamy distribution is as versatile as t The loganithmic distribution (continuous) The PERT distribution is a special case of the bet The raised cosine distribution on $[\mu-s, \mu+s]$

Hotelling's T-squared distribution
The inverse Gaussian distribution, also kn The Lévy distribution
The log-Cauchy distribution
The log-gamma distribution The log-Laplace distribution The log-Laplace distribution The log-logistic distribution The log-normal distribution, describing van The Mittag-Leffler distribution The Nakagami distribution The Pareto distribution, or "power law" dis! The Pearson Type III distribution The phased bi-exponential distribution is c The phased bi-Weibull distribution The Rayleigh distribution The Rayleigh mixture distribution The Rice distribution

Student's t -distribution, useful for estimating L The noncentral t -distribution
The type-1 Gumbel distribution
The Voigt distribution, or Voigt profile, is the c The Gaussian minus exponential distribution is
With variable support [edit source I edit beta] The generalized extreme value distribution has parameter
The generalzed Pareto distribution has a supp The Tukey lambda distribution is either suppon The Wakeby distribution
Mixed discrete/continuous distributions [edl

- The rectified Gaussian distribution replaces n! Joint distributions [edit source I edit beta] For any set of independent random variables the

https://docs.scipy.org/doc/scipy/reference/stats.html

The Gibbs distribution

The Maxwell-Bolizmann distribution
The Borel distribution
The extended negative binomial distribution The extended hypergeometric distribution
The generalized log-series distribution
The generalized normal distribution
The geometric distribution, a discrete distribution n The hypergeometric distribution
The logarithric (series) distribution
The negative binomial distribution or Pascal distribr The parabolic fractal distribution
The Poisson distribution, which describes a very la Poisson, the hyper-Poisson, the general Poisson t

The Conway-Maxwell-Poisson distribution, a tw The Polya-Eggenberger distribution
The Skellam distribution, the distribution of the diff The skew elliptical distribution
The skew normal distribution
The Yule-Simon distribution
The zeta distribution has uses in appled statistics Zpf's law or the Zpf distribution. A discrete powerThe Zpf-Mandelbrot law is a discrete power law dis

Supported on semi-infinite intervals, usually [0, 0)

The Beta prime distribution

The Birnbaum-Saunders distribution, also known : The chi distribution

- The noncentral chi distribution

The chi-squared distribution, which is the sum of 1
The inverse-chi-squared distribution
The noncentral chi-squared distribution
The Scaled-inverse-chi-squared distribution The Dagum distribution
The exponential distribution, which describes the The F-distribution, which is the distribution of the ratio of two chi-squared variates which are not not

- The noncentral F-distribution

isher's z -distribution

The folded normal distribution
The Fréchet distribution
The Gamma distribution, which describes the time
The Erlang distribution, which is a special cas4
The inverse-gamma distribution The generalized Pareto distribution The Gamma/Gompertz distribution The Gompertz distribution
The hall-normal distribution
resonance energy distribution, impact and Chernoff's distribution
The Exponentially modfied Gaussian distr The Fisher-Tippett, extreme value, or log-1 The Gumbel distribution, a special cas Fisher's z-distribution
The generalized logistic distribution The generalzed normal distribution
The geometric stable distribution
The Holtsmark distribution, an example of The hyperbolic distribution The hyperbolic secant distribution The Johnson SU distribution
The Landau distribution
The Laplace distribution
The Lévy skew alpha-stable distribution or distribution, Lévy distribution and normal d The Linnik distribution
The logistic distribution
The map-Airy distribution
The normal distribution, also called the Ga independent, identically distributed variabl The Normal-exponential-gamma distributior The Pearson Type IV distribution (see Pea The skew normal distribution

The generalized multivariate log-gamma distrit

Matrix-valued distributions [edit source l edit t

The Wishart distribution
The inverse-Wishart distribution
The matrix normal distribution
The matrix t-d stribution
Non-numeric distributions [edit source I edit !
The categorical distribution

newton distribution

Miscellaneous distributions [edit source I edit

The Cantor distribution

The generalized logistic distribution family The Pearson distribution family
The phase-type distribution

And surely more!

Probability Density Functions

The number of PDFs is infinite, and nearly so is the list of known ones:

Discrete distributions [edit source I edit beta]
With finite support [edit source I edit beta]
The Bernoulli distribution, which takes value 1 with The Rademacher distribution, which takes value 1 The binomial distribution, which describes the num! The beta-binomial distribution, which describes the The degenerate distribution at x_{0}. where X is certa random variables in the same formalsm.
The discrete uniform distribution, where all element

Continuous distributions [edit source I edit beta]
Supported on a bounded interval (edit source I edit
The Arcsine distribution on $[\mathrm{a}, \mathrm{b}]$, which is a speci The Beta distribution on $[0,1]$, of which the uniforr The Logitnormal distribution on $(0,1)$.
The Dirac delta function although not strictly a fur but the notation treats it as if it were a continuous The continuous uniform distribution on $[a, b]$, when - The rectangular distribution is a uniform distrib

Hotelling's T-squared distribution
The inverse Gaussian distribution, also kn The Lévy distribution
The log-Cauchy distribution
The log-gamma distribution The log-Laplace distribution The log-logistic distribution The log-normal distribution, describing vani The Mitag-Leffler distribution The Nakagami distribution
The Pareto distribution, or "power law" dist

Student's t -distribution, useful for estimating L -The noncentral t-distribution
The type-1 Gumbel distribution
The type-1 Gumbel distroution
The Voigt distribution, or Voigt profile, is the c The Gaussian minus exponential distribution is With variable support [edt source I edit beta] The generalized extreme value distribution has parameter
The generalzed Pareto distribution has a sup; The Tukey lambda distribution is either suppon The Wakeby distribution

"Essentially, all models are wrong,

but some are useful"

[George E. P. Box, British Statistician, 1919-2013]
butions [ed
a replaces nt edit beta] variables the the same sar pralzation of t) sa probabilty
eneralization c ion, a generali ution, a geners source I edit t

The generalized log-senes distinculion
The geometric distribution, a discrete distribution w
The hypergeometric distribution
The logarithric (series) distribution
The negative binomial distribution or Pascal distribs The parabolic fractal distribution
The Poisson distribution, which describes a very la Poisson, the hyper-Poisson, the general Poisson t

The Conway-Maxwell-Poisson distribution, a th The Polya-Eggenberger distribution
The Skellam distribution, the distribution of the diff The skew elliptical distribution
The skew normal distribution
The Yule-Simon distribution
The zeta distribution has uses in appled statistics Zpf's law or the Zpf distribution. A discrete powerThe Zpf-Mandelbrot law is a discrete power law dis

The chi-squared distribution, which is the sum of 1

The inverse-chi-squared distribution

The noncentral chi-squared distribution
The Scaled-inverse-chi-squared distribution

The Dagum distribution

The exponential distribution, which describes the The F-distribution, which is the distribution of the ratio of two chi-squared variates which are not no - The noncentral F-distribution Fisher's z-distribution
The folded normal distribution
The Fréchet distribution
The Gamma distribution, which describes the time
The Erlang distribution, which is a special cas
The inverse-gamma distribution
The generalized Pareto distribution The Gamma/Gompertz distribution The Gompertz distribution
The halt-normal distribution

Fisher's z-distribution
The generalzed logistic distribution The generalized normal distribution The geometric stable distribution
The Holtsmark distribution, an example of The hyperbolic distribution The hyperbolic secant distribution The Johnson SU distribution
The Landau distribution
The Laplace distribution
The Lêvy skew alpha-stable distribution or distribution, Lévy distribution and normal c The Linnik distribution
The logistic distribution
The map-Airy distribution
The normal distribution, also called the Ga independent, identically distributed variabi The Normal-exponential-gamma distrbutior The Normal-exponential-gamma distnbutio The Pearson Type IV cistribution (see Pes The skew normal distribution

The matrix t-distribution
Non-numeric distributions [edit source I edit !
The categorical distribution
newton distribution
Miscellaneous distributions [edit source I edit

The Cantor distribution

The generalized logistic distribution family The Pearson distribution family
The phase-type distribution

And surely more!

Why PDF's

We basically want to extract information about the system we are studying based on the data. Why not just estimate a mean and a variance and call it a day?

PDFs makes us able to ask what the probability of a certain event given the underlying model - and this allows for new discoveries!

Probability Density Functions

An almost complete list of those we will deal with in this course is:

- Gaussian (aka. Normal)
- Poisson
- Binomial (and also Multinomial)
- Students t-distribution

See Barlow chap. 3 and Cowan chap. 2

- Uniform
- ChiSquare
- Exponential
- Error function (integral of Gaussian)

You should already know most of these, and the rest will be explained.

Binomial, Poisson, Gaussian

$$
f(n ; N, p)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n}
$$

Given \mathbf{N} trials each with \mathbf{p} chance of success, how many successes \mathbf{n} should you expect in total?

This distribution is... Binomial:

$f(n ; N, p)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n}$
Mean $=\mathrm{Np}$
Variance $=N p(1-p)$

This means, that the error on a fraction $f=n / N$ is:

$$
\sigma(f)=\sqrt{\frac{f(1-f)}{N}}
$$

Binomial, Poisson, Gaussian

You count 100 cars, and see 15 red cars. What is your estimate of the fraction (i.e. probability) of red cars and its uncertainty?
a) 0.150 ± 0.050
b) 0.150 ± 0.026
c) 0.150 ± 0.036
d) 0.125 ± 0.030
e) 0.150 ± 0.081

From previous page: $\sigma(f)=\sqrt{\frac{f(1-f)}{N}}$
A friend tells you, that 8% of the cars on Blegdamsvej are red. What is the chance of that? Could he be right?

Binomial, Poisson, Gaussian

You count 100 cars, and see 15 red cars. What is your estimate of the fraction (i.e. probability) of red cars and its uncertainty?
a) 0.150 ± 0.050
b) 0.150 ± 0.026
c) 0.150 ± 0.036
$(0.150-0.080) / 0.036=1.9 \sigma$
d) 0.125 ± 0.030
e) 0.150 ± 0.081

From previous page: $\sigma(f)=\sqrt{\frac{f(1-f)}{N}}$
A friend tells you, that 8% of the cars on Blegdamsvej are red. What is the chance of that? Could he be right?

Binomial, Poisson, Gaussian

$$
f(n ; N, p)=\frac{N!}{\left.n!(N-n) p^{n}(1-p)\right)^{N-n}}
$$

The binomial distribution was first introduced by the famous mathematician/ physicist Jacob Bernoulli in 1713 (posthumously).

The binomial distribution basically consists of two elements: The binomial coefficient and the probabilities of n such events.

$$
(x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
$$

$\left.\begin{array}{|llllllllllllll|}\hline \text { 0: } & & & & & & 1 & & & & & & \\ \text { 1: } & & & & & & 1 & & 1 & & & & & \\ \text { 2: } & & & & & 1 & & 2 & & 1 & & & & \\ \hline\end{array}\right)$

Even though a system has many outcomes, it is typically possible to refer to either "success" of "failure".

Assume the probability to have COVID19 is 1\%. In a sample of 50 people the chance to have 1 or more infected is: $1-p(0)=1-0.99 \wedge 50=0.60$

Binomial, Poisson, Gaussian

Requirements to be Binomial:

- Fixed number of trials, N
- Independent trials.
- Only two outcomes (success / failure).
- Constant probability of success / failure.

If number of possible outcomes is more than two \Rightarrow Multinomial distribution.

Examples of Binomial experiments:

- Tossing a coin 20 times counting number of tails.
- Asking 200 people if they watch sports on TV.
- Rolling a die to see if a 6 appear (Multinomial for all outcomes!).
- Asking 100 die-hards from Enhedslisten, if they would vote for Konservative at the next election!

Examples which aren't Binomial experiments:

- Rolling a die until a 6 appears (not fixed number of trials).
- Drawing 5 cards for a poker hand (no replacement \Rightarrow not independent)

Binomial, Poisson, Gaussian

If $\mathrm{N} \rightarrow \infty$ and $\mathrm{p} \rightarrow 0$, but $\mathrm{Np} \rightarrow \lambda$ then a Binomial approaches a Poisson: (see Barlow 3.3.1)
$f(n, \lambda)=\frac{\lambda^{n}}{n!} e^{-\lambda}$
In reality, the approximation is already quite good at e.g. $\mathrm{N}=50$ and $\mathrm{p}=0.1$.

The Poisson distribution only has one parameter, namely λ.
Mean $=\lambda$
Variance $=\lambda$

So the error on a number is...

> ...the square root of that number!

Binomial, Poisson, Gaussian

The error on a

(Poisson) number...
is the square root
of that number!!!

Binomial, Poisson, Gaussian

The error on a

(Poisson) nımher

A very useful case of this is the error to assign a bin in a histogram, if there is reasonable statistics $\left(N_{i}>5-20\right)$ in each bin.
is the square root
of that number!!!

The error on a

(Poisson) number...

is the square root of that number!!!

Note: The sum of two Poissons with λ_{a} and λ_{b} is a new Poisson with $\lambda=\lambda_{\mathrm{a}}+\lambda_{\mathrm{b}}$. (See Barlow pages 33-34 for proof)

Binomial, Poisson, Gaussian

Examples of the Poisson distribution:

There are 122 deaths by horse kicks over 10 different regiments, over 20 years. What is the predicted number of deaths in a specific year?

Here we use exactly the Poisson distribution. First we estimate the mean value:

$$
\mu=\frac{122}{20 * 10}=0.61
$$

This means that the probability that 0 will die is given by:

$$
P(0)=e^{0} \frac{0.61^{0}}{0!}=0.54
$$

Binomial, Poisson, Gaussian

All fields encounter the Gaussian, and for this reason, its scale has many names!

Binomial, Poisson, Gaussian

If $\lambda \rightarrow \infty$, the Poisson becomes a Gaussian...
...and $\lambda>20$ is enough!
Poisson and Gaussian distribution comparison

Binomial, Poisson, Gaussian

If $\lambda \rightarrow \infty$, the Poisson becomes a Gaussian...
...and $\lambda>20$ is enough!
Poisson and Gaussian distribution comparison

This is the very reason for the difference between Chi2 and (binned) likelihood!

Binomial, Poisson, Gaussian

"If the Greeks had known it, they would have deified it."

"If the Greeks had known it, they would have deified it. It reigns with serenity and in complete self-effacement amids the wildest confusion. The more huge the mob and the greater the apparent anarchy, the more perfect is its sway. It is the supreme Law of Unreason. Whenever a large sample of chaotic elements are taken in hand and marshalled in the order of their magnitude, an unsuspected and most beautiful form of regularity proves to be latent all along." [Karl Pearson]

Binomial, Poisson, Gaussian

The Gaussian defines the way we consider uncertainties.

Range	Inside	Outside
$\pm 1 \sigma$	$\mathbf{6 8} \%$	32%
$\pm 2 \sigma$	$\mathbf{9 5} \%$	5%
$\pm 3 \sigma$	$\mathbf{9 9 . 7} \%$	0.3%
$\pm 5 \sigma$	99.99995%	0.00005%

Student's t-distribution

Assume we are measuring a small sample, i.e. 5 measurements.

Now we don't even know the uncertainty on the measurements, but we assume that they are normally distributed. We can rewrite our variable of interest:

$$
t=\frac{x-\mu}{\hat{\sigma}^{2}}=\frac{y}{\sqrt{\chi^{2} / n}}
$$

This distribution we have seen before:

$$
f(x)= \begin{cases}\frac{x^{k / 2-1} e^{-x / 2}}{2^{k / 2} \Gamma(k / 2)} & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

When variance is unknown, estimating it from sample gives additional error:
Gaussian: $z=\frac{x-\mu}{\sigma} \quad$ Student's: $t=\frac{x-\mu}{\hat{\sigma}}$

Student's t-distribution

Discovered by William Gosset (who signed "student"), student's t-distribution takes into account lacking knowledge of the variance.

$$
\frac{\Gamma\left(\frac{4+1}{2}\right)}{\sqrt{\sqrt{n \pi} \Gamma\left(\frac{2}{2}\right)}}\left(1+\frac{x^{2}}{\nu}\right)^{-\frac{v_{1}}{2}}
$$

When variance is unknown, estimating it from sample gives additional error:
Gaussian: $z=\frac{x-\mu}{\sigma}$
Student's: $t=\frac{x-\mu}{\hat{\sigma}}$

Exponential distribution

One particularly important PDF is the exponential distribution. This takes the shape:

$$
f(x)=\lambda e^{-\lambda x}
$$

With this we can also calculate the mean value:

$$
\begin{aligned}
\mu & =\int_{0}^{\infty}{ }_{x \lambda e} e^{-\lambda x} d x \\
& =\lambda\left(\left[1-\frac{1}{\lambda} x e^{-\lambda}\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{1}{\lambda} e^{-\lambda x d x}\right. \\
& =\frac{\lambda}{\lambda^{2}}=\frac{1}{\lambda}
\end{aligned}
$$

And also the variance by performing similar integration:

$$
\begin{aligned}
\sigma^{2} & =\int_{0}^{\infty}(x-\mu)^{2} \lambda e^{-\lambda} d x \\
& =\frac{1}{\lambda^{2}}
\end{aligned}
$$

Exponential distribution

Why is the exponential distribution so important?

There are several good examples, but the one we will show here is the following:

If a process occurs with a constant rate, the distribution of time before the event happens will be exponentially distributed

This is really the case for many systems. Of course the most prominent example is the decay of atoms.

Exponential distribution

Assume that an atom decays with rate λ.

The probability that the atom will decay in a short time interval dt , must be:

$$
p_{\text {decay }}=\lambda d t \quad p_{\text {not }}=(1-\lambda) d t
$$

Now we can define a time that is the sum of a lot of small time intervals: $\quad \tau=n \cdot d t$

$$
\left.p_{n o t}(\tau)=\left(1-\frac{\tau}{n} \lambda\right)\right)^{n}
$$

And finally, the probability that an event occurs after exactly some time tau must be:

$$
\left.p\left(t_{\text {first }}=\tau\right)=\left(1-\frac{\tau}{n} \lambda\right)\right)^{n} \lambda d t=\lambda e^{-\lambda \tau} d t
$$

Where we have used the definition of the exponential distribution

Rayleigh distribution

Let's assume that a particle moves in two dimensions. It diffuses so in both dimensions, it will take the step with distribution (for simplicity assuming std=1):

$$
p(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

This means that the probability that the particle will be at exactly position x^{*} and y^{*} will be:

$$
p(x, y)=\frac{1}{2 \pi} e^{-\frac{1}{2}\left(x^{2}+y^{2}\right)}
$$

This looks like the radius, but in order to compute to total probability of a radius, we must factor in the possibility of obtaining a particular radius.

Rayleigh distribution

To count the number of ways to obtain the radius r, is exactly the perimeter of a circle with radius r, i.e. 2π r.

Multiplying with this we get:

$$
p(r)=r e^{-\frac{1}{2} r^{2}}
$$

This is exactly the Rayleigh distribution for $\operatorname{std}=1$.

If we simulate the 1000 of the steps, we see that we such a distribution in the rcoordinate.

Note that the must probable point is $x=y=0$, but that the probability of $r=0$ is zero.

Some particular elements of PDF

Cumulative distributions functions

Completely basic to every PDF is the cumulative distribution function, the CDF.

The CDF is defined by:

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t
$$

In words, this means that it is the probability of getting x, or something below that value.

The CDF is used in many ways, and we will meet it again soon, when we discuss hypothesis testing and statistical tests.

Convolution of probabilities

Suppose we draw two random numbers from a probability distribution $f(x)$. How can we calculate the probability of their sum?

$$
\begin{aligned}
f(z) & =\iint f\left(x_{1}\right) \cdot f\left(x_{2}\right) \delta\left(z-a x_{1}-a x_{2}\right) d x_{1} d x_{2} \quad \text { we substitute } s=a x_{1} \text { so } \frac{d s}{d x_{1}}=a \\
& =\iint f\left(\frac{s}{a}\right) \cdot f\left(x_{2}\right) \delta\left(z-s-a x_{2}\right) \frac{1}{a} d s d x_{2} \quad \text { we integrate using the } \delta \text { function } \\
& =\frac{1}{a} \int f\left(\frac{z}{a}-x_{2}\right) \cdot f\left(x_{2}\right) d x_{2}
\end{aligned}
$$

For the gaussian for instance, we will get, that this is a new gaussian distribution.

Characteristic functions

Typically when studying statistics, one stumble upon the term characteristic function.

Every PDF has a characteristic function that is simply the Fourier transform of the PDF itself:

$$
G_{x}(t)=\int_{-\infty}^{\infty} f(x) e^{i t x} d x=\mathbb{E}\left(e^{i x t}\right)
$$

The characteristic function has some properties that makes it neat to use, for instance that it can generate all moments for the PDF itself (note that the first moment is the mean, the second is the variance etc.).

The gaussian has a characteristic function given by:

$$
\begin{aligned}
G_{z}(t) & =\int e^{i t z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d z \text { noting that }(z-i t)^{2}=z^{2}-t^{2}-i t z \\
& =\int \frac{1}{\sqrt{2 \pi}} e^{-\frac{(z-i t)^{2}}{2}} e^{-\frac{t^{2}}{2}} d z \text { substituting } u=z-i t \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} \int e^{-\frac{u^{2}}{2}} d z \text { noting the integral is } \sqrt{2 \pi} \text { (for the gaussian to be normalized) } \\
& =e^{-\frac{t^{2}}{2}}
\end{aligned}
$$

Sum up of the lecture

All PDFs are normalized functions, that describe the probability of getting a value from a function.

The most fundamental are the binomial, the Poisson and the Gaussian.
Remember that the error on a (Poisson) number is the square root of that number!

Remember that the Gaussian distribution defines the uncertainties, that we report on experiments.

