Applied Statistics Estimating the length of the table

Troels C. Petersen and Mathias Luidor Heltberg (NBI)

"Statistics is merely a quantisation of common sense"

The table in auditorium A

"Everything is vague to a degree you do not realise till you have tried to make it precise."
[Bertrand Russell, 1872-1970]

The data at first glance

Conclusion: By only looking at the raw data we obtain the value:

$$
\begin{aligned}
\mu & =3.3266 \pm 0.0077 \mathrm{~m} \\
\sigma & =0.2148 \pm 0.0054 \mathrm{~m} \\
N & =785
\end{aligned}
$$

However we can do better than this...

Crosschecking

These measurements seem to be in OK agreement - however the 2018 seems to be off...

First rejection criteria

We will start by removing the "worst" points. Here I remove the points that are more than 4 std's away from the mean.

With this we reject 24 points - so the data sample consist of 761 points.

Removing data points

Removing improbable data points is formalised in Chauvenet's
Criterion, though many other methods exists (see Peirce, Grubbs, etc.)

The idea is to assume that the distribution is Gaussian, and ask what the probability of the farthest point is. If it is below some value, which is to be determined ahead of applying the criterion, then the point is removed, and the criterion is reapplied until no more points should be removed.

We choose to say, that if the outermost point in the Gaussian case has less than 5\% chance of being this far out (taking the total number of points into account), then I reject it.

However, ALWAYS keep a record of your original data, as it may contain more effects than you originally thought.

Is the central peak gaussian?

In order to apply the criterion however, we should have something that is somewhat gaussian.

We therefore want to start by identifying the "most gaussian" part of the distribution be increasing the window size of the fitting

Finding the most gaussian
 window

Here we search for the value of the maximal likelihood as a function of the window size.

This means that if we consider this window, we will work with data as gaussian as it comes for this distribution.

Is the central peak gaussian?

As we follow how the likelihood changes, we can extract the parameter estimates and their uncertainties as extracted from the parameter fits.

Is the central peak gaussian?

At this optimal likelihood, we note that we include 571 datapoints out of the original 761.
Drawing the green lines, to show our range of fitting, we can now use this standard deviation and reject points more than 4 sigmas away.

Weighted results

Considering the quoted uncertainties, we first need to evaluate their quality.
The plot to consider is a PULL plot, i.e. the distribution of: $z=\frac{x_{i}-\mu}{\sigma_{i}}$

Fitting the centered data with a double gaussian - unweighted case

We realised that the center around the peak fitted OK with a double gaussian.

This also allows foran interpretation of the model: All measurers can be divided into two groups the precise
("experimentalists") and the sloppy ("Others").

Weighted results with double gauss fit - 30cm

$$
f\left(x \mid \mu, \sigma_{1}, \sigma_{2}, A\right)=\frac{A}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma_{1}}\right)^{2}}+\frac{1-A}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma_{2}}\right)^{2}}
$$

$$
\begin{aligned}
\mu & =3.36207 \pm 0.00047 \\
\sigma_{1} & =0.159 \pm 0.012 \\
\sigma_{2} & =0.01015 \pm 0.00046 \\
A & =0.1676 \pm 0.0177 \\
N & =648
\end{aligned}
$$

Weighted results with double gauss fit - 2 m

$$
\begin{aligned}
\mu & =3.363519 \pm 0.00015 \\
\sigma_{1} & =0.00919 \pm 0.00057 \\
\sigma_{2} & =0.0026 \pm 0.00017 \\
A & =0.362 \pm 0.042 \\
N & =661
\end{aligned}
$$

This is within 3 sigma away from the 30 cm measurements!

Fitting for a result

A completely different approach is to fit the RAW data, hence describing all data points instead of excluding some.

This approach is philosophically more clean, but certainly not easy!
Challenges:

- Measurements has many different resolutions.
- There are several peaks in the data (30 cm case).
- Some measurements are clearly rounded.

While all of these can be accommodated, it is still a challenge, at the following "fitting around" took me half and hour!

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk. John von Neumann

Fitting with double gaussian unweighted 2 m case

$$
\begin{aligned}
\mu & =3.36299 \pm 0.00022 \\
\sigma_{1} & =0.01404671374004074 \pm 0.00087 \\
\sigma_{2} & =0.00292 \pm 0.00018 \\
A & =0.303 \pm 0.032 \\
N & =681
\end{aligned}
$$

Fitting all three peaks - with a double gaussian

$$
\begin{aligned}
\mu & =3.36182 \pm 0.00043 \\
\sigma_{1} & =0.00898 \pm 0.00042 \\
\sigma_{2} & =0.0629 \pm 0.0045 \\
A & =0.749 \pm 0.023 \\
C_{1} & =0.0439 \pm 0.0075 \\
C_{2} & =0.107 \pm 0.011
\end{aligned}
$$

With this function, we have 6 free parameters and included "all" datapoints (except the outliers) so $\mathrm{N}=761$.

Note the uncertainty on the length of the table is 430 micrometer!

This is also within 3 sigma away from the 2 m measurements!

Does it have to be gaussian?

The Central limit Theorem, tells us that data is typically gaussian. This is a strong argument, that is typically good enough for our main hypotheses to be approximatively right.

However having looked at the data, it is clearly not gaussian... The double gaussian worked better because the tails were not punished as much...
ince the gaussian falls like $\exp \left(-x^{\wedge} 2\right)$, then maybe something decaying more slowly - as $\exp (-x) \ldots$

The Laplace distribution

$$
f(x \mid \mu, b)=\frac{1}{2 b} \exp \left(-\frac{|x-\mu|}{b}\right)
$$

Fitting with the Laplace distribution

$$
\begin{aligned}
\mu & =3.363000 \pm 0.000019 \\
b & =0.00815 \pm 0.00034 \\
N & =571.0
\end{aligned}
$$

Finding the region with the lowest likelihood gives a range with 571 datapoints included. Here we can use Minuit to find the two parameters and their uncertainty

Fitting "all" data with the Laplace distribution

FCN $=-1403$		
EDM $=0.000112$ (Goal: 0.0001)	Ncalls = 208 (208 total)	
Valid Minimum	Valid Parameters	Up 0.5
Below EDM threshold (goal x 10)	No Pameters at limit	
Hesse ok	Has Covariance	Accurate

$$
\begin{aligned}
\mu & =3.3629999 \pm 0.0000162 \\
b & =0.01740 \pm 0.00065 \\
C_{1} & =0.0445 \pm 0.0076 \\
C_{2} & =0.1080 \pm 0.0113 \\
N & =765
\end{aligned}
$$

With this function, we need only 4 free parameters and need only to reject the datapoints more than 4 sigma away from the original dataset!

Note the uncertainty on the length of the table is 16 micrometer!

Comparing with the 2 m case

$$
\begin{aligned}
\mu & =3.3639999 \pm 0.0000025 \\
b & =0.00362 \pm 0.00014 \\
N & =663
\end{aligned}
$$

From the dataset of two meters, we can apply the same method, fitting the Laplace distribution, and here we get an uncertainty on the micrometer. Note however that the actual value is 1 millimetre longer than the 30 cm case...

Do we trust errors this small...? Hmm by using common sense we would expect an error on the mean to be approximately $2 \mathrm{~mm} / \operatorname{sqrt}(625)$ approx $80 \mathrm{um} . .$.

Your analyses

Your measurement results

The number of measurements used varied quiet a bit.

But remember that the impact is only sqrt(N), and thus not that important!

Length results

Results are relatively consistent... though some are above 3.4 m , which is not correct!

I got: $\mathrm{L}($ unweighted $)=3.36227 \pm 0.00061 \mathrm{~m}, \mathrm{~L}($ weighted $)=3.36371 \pm 0.00035 \mathrm{~m}$

Uncertainties

The uncertainties varied quite a bit - almost a factor 100! Think about that.

I got: $\mathrm{L}($ unweighted $)=3.36227 \pm 0.00061 \mathrm{~m}, \mathrm{~L}($ weighted $)=3.36371 \pm 0.00035 \mathrm{~m}$

Conclusions

Specifically on the analysis:

- Greatest improvement came from simply removing mis-measurements!
- Weighted result was a further improvement, but required good uncertainties.
- The uncertainties are accepted as "reasonable", as they have good pull distributions, and improve the result.
- The 30 cm and 2 m results match, giving credibility to the stated precision.

More generally:

- What appears to be a trivial task, turns out to require some thought anyhow. (Ask yourself how many fellow students would have been able to get a good result and error?)
- There were several choices to be made in the analysis:

1. Which measurements to accept.
2. Which uncertainties to accept.
3. To correct or discard understood mis-measurements.

- All this can be solved with simple Python code.

Bonus Slides

...a fair hearing?

Rejected 30cm measurements:

304: L=1.275 dL=2.071 Nsig=10.89 368: L=1.365 dL=1.985 Nsig=11.97 42: L=1.370 dL=1.984 Nsig=14.19 44: $\mathrm{L}=4.260 \mathrm{dL}=0.902 \mathrm{Nsig}=8.39$ 146: L=2.563 dL=0.793 Nsig= 7.97 158: L=4.140 dL=0.782 Nsig= 8.41 143: $\mathrm{L}=2.670 \mathrm{dL}=0.686 \mathrm{Nsig}=7.98$ 477: L=2.700 dL=0.658 Nsig= 8.19 308: L=4.004 dL=0.645 Nsig= 8.64 427: $\mathrm{L}=2.744 \mathrm{dL}=0.614 \mathrm{Nsig}=8.93$ 407: L=2.759 dL=0.600 Nsig= 9.55 313: $L=3.955 \mathrm{dL}=0.595 \mathrm{Nsig}=10.49$ 269: L=2.768 dL=0.591 Nsig=11.86 380: L=2.769 dL=0.591 Nsig=14.10 133: L=3.180 dL=0.182 Nsig= 5.65 71: $L=3.200 \mathrm{dL}=0.162 \mathrm{Nsig}=5.21$ 320: L=3.205 dL=0.157 Nsig= 5.20 319: L=3.215 dL=0.148 Nsig= 5.02 194: L=3.221 dL=0.142 Nsig= 4.96 1: L=3.250 dL=0.113 Nsig= 4.06 175: L=3.471 dL=0.108 Nsig= 3.92 133: L=3.470 dL=0.107 Nsig= 3.95 13: L=3.470 dL=0.107 Nsig= 4.02 154: L=3.467 dL=0.104 Nsig= 3.98 130: L=3.260 dL=0.103 Nsig= 3.98 230: L=3.260 dL=0.103 Nsig= 4.05 444: L=3.461 dL=0.098 Nsig= 3.93 79: L=3.460 dL=0.097 Nsig= 3.96 43: L=3.455 dL=0.092 Nsig= 3.83 113: L=3.455 dL=0.093 Nsig= 3.90 433: L=3.272 dL=0.090 Nsig= 3.85 81: L=3.450 dL=0.088 Nsig= 3.80 345: L=3.450 dL=0.088 Nsig= 3.87 351: L=3.450 dL=0.088 Nsig= 3.93 333: $\mathrm{L}=3.450 \mathrm{dL}=0.088 \mathrm{Nsig}=4.01$ 324: L=3.448 dL=0.086 Nsig= 3.99 167: L=3.447 dL=0.086 Nsig= 4.02 126: L=3.445 dL=0.084 Nsig= 4.00 162: $\mathrm{L}=3.445 \mathrm{dL}=0.084 \mathrm{Nsig}=4.08$ 340: L=3.280 dL=0.081 Nsig= 4.00 393: L=3.285 dL=0.076 Nsig= 3.82 121: L=3.433 dL=0.072 Nsiq $=3.66$
$\mathrm{p} 1=0.00000000, \mathrm{p}$ _all $=0.00000000>$? pmin $=0.050 \mathrm{~N}=495$ mean $=3.3460 \mathrm{rms}=0.1901$ $\mathrm{p} 1=0.00000000, \mathrm{p}$ _all $=0.00000000>$? pmin $=0.050 \mathrm{~N}=494$ mean=3.3501 rms=0.1659 $\mathrm{p} 1=0.00000000, \mathrm{p}$ all $=0.00000000>$? $\mathrm{pmin}=0.050 \mathrm{~N}=493$ mean=3.3542 $\mathrm{rms}=0.1398$ $\mathrm{p} 1=0.00000000$, p_all $=0.00000000>$? pmin $=0.050 \quad \mathrm{~N}=492$ mean $=3.3582 \mathrm{rms}=0.1075$ $\mathrm{p} 1=0.00000000, \mathrm{p}$ all $=0.00000000>$? pmin $=0.050 \mathrm{~N}=491$ mean=3.3564 rms=0.0995 $\mathrm{p} 1=0.00000000$, p_all $=0.00000000>? \mathrm{pmin}=0.050 \mathrm{~N}=490$ mean=3.3580 rms=0.0929 $\mathrm{p} 1=0.00000000, \mathrm{p}$ _all $=0.00000000>$? pmin $=0.050 \mathrm{~N}=489$ mean=3.3564 rms=0.0860 $\mathrm{p} 1=0.00000000, \mathrm{p}$ _all $=0.00000000>$? $\mathrm{pmin}=0.050 \mathrm{~N}=488$ mean=3.3578 rms=0.0803 $\mathrm{p} 1=0.00000000, \mathrm{p}$ _all $=0.00000000>$? pmin $=0.050 \mathrm{~N}=487$ mean=3.3591 rms=0.0746 $\mathrm{p} 1=0.00000000$, p_all $=0.00000000>$? pmin=$=0.050 \mathrm{~N}=486$ mean=3.3578 rms=0.0687 $\mathrm{p} 1=0.00000000, \mathrm{p}$ _all $=0.00000000>$? pmin $=0.050 \mathrm{~N}=485$ mean=3.3591 rms=0.0628 $\mathrm{p} 1=0.00000000, \mathrm{p}_{-}$all $=0.00000000>$? pmin $=0.050 \mathrm{~N}=484$ mean=3.3603 rms=0.0567 $\mathrm{p} 1=0.00000000, \mathrm{p}$ _all $=0.00000000>$? pmin $=0.050 \mathrm{~N}=483$ mean $=3.3591 \mathrm{rms}=0.0498$ $\mathrm{p} 1=0.00000000$ _ - \quad all $=0.00000000>$ pmin $=0.050 \quad \mathrm{~N}=482$ mean $=3.3603 \mathrm{rms}=0.0419$

Rejected:

41 data points from the 30 cm sample,

 63 data points from the 2 m sample. Each and every one was inspected!p1 $=0.00002883$, p_all $=0.01354566>$? pmin $=0.050 \mathrm{~N}$ $\mathrm{p} 1=0.00003406$, p_all $=0.01594736>$? pmin $=0.050$ $\mathrm{p} 1=0.00003423, \mathrm{p}_{-}$all $=0.01599227>$? pmin $=0.050$ $\mathrm{p} 1=0.00002507$, p_all $=0.01171573>$? pmin $=0.050$ $\mathrm{p} 1=0.00004185, \mathrm{p}_{-}$all $=0.01943772>$? pmin $=0.050$ $\mathrm{p} 1=0.00003687, \mathrm{p}$ all $=0.01710909>$? pmin $=0.050$ p1 $=0.00006418, p_{-}$all $=0.02952774>$? pmin $=0.050$ $\mathrm{p} 1=0.00004898, \mathrm{p}$ all $=0.02256478>$? pmin $=0.050$ p1 $=0.00005881, p_{\text {_all }}=0.02697886>?$ pmin $=0.050$ p1 $=0.00007216$, p_all $=0.03292944>$? pmin $=0.050 \mathrm{~N}$ $\mathrm{p} 1=0.00005540$, p_all $=0.02532365>?$ pmin $=0.050$ p1 $=0.00004175$, p_all $=0.01910567>$? pmin $=0.050$ p1 $=0.00003083$, p_all $=0.01411413>?$ pmin $=0.050$ p1 $=0.00003299$, p_all $=0.01506122>$? pmin $=0.050$ p1 $=0.00002922$, p_all $=0.01332302>?$ pmin $=0.050$ p1 $=0.00003155$, p_all $=0.01434519>?$ pmin $=0.050$ $\mathrm{p} 1=0.00002276, \mathrm{p}$ all $=0.01034822>$? $\mathrm{pmin}=0.050$ $\mathrm{p} 1=0.00003223$, p_all $=0.01458856>$? pmin $=0.050$ $\mathrm{p} 1=0.00006640$, p_all $=0.02975990>$? pmin $=0.050$ $\mathrm{p} 1=0.00012405, \mathrm{p}$ all $=0.05476548>$ pmin $=0.050 \mathrm{~N}$
$=473 \mathrm{mean}=3.3632 \mathrm{rms}=0.0270$ mean $=3.3630 \mathrm{rms}=0.0266$ $\mathrm{N}=472$ mean=3.3628 rms=0.0262 $\mathrm{N}=471$ mean $=3.3625 \mathrm{rms}=0.0258$ $\mathrm{N}=470$ mean $=3.3628 \mathrm{rms}=0.0253$ $\mathrm{N}=469$ mean $=3.3630 \mathrm{rms}=0.0249$ $\mathrm{N}=468$ mean $=3.3628 \mathrm{rms}=0.0245$ $\mathrm{N}=467$ mean $=3.3626 \mathrm{rms}=0.0241$ $\mathrm{N}=466$ mean $=3.3624 \mathrm{rms}=0.0238$ $\mathrm{N}=465$ mean=3.3622 rms=0.0234 $\mathrm{N}=464$ mean $=3.3624 \mathrm{rms}=0.0231$ $\mathrm{N}=463$ mean $=3.3622 \mathrm{rms}=0.0227$ $\mathrm{N}=462$ mean $=3.3620 \mathrm{rms}=0.0224$ $\mathrm{N}=461$ mean $=3.3618 \mathrm{rms}=0.0220$ $\mathrm{N}=460$ mean $=3.3616 \mathrm{rms}=0.0217$ $\mathrm{N}=459$ mean $=3.3614 \mathrm{rms}=0.0213$ $\mathrm{N}=458$ mean $=3.3612 \mathrm{rms}=0.0209$ $\mathrm{N}=457$ mean $=3.3610 \mathrm{rms}=0.0206$ $\mathrm{N}=456$ mean $=3.3609 \mathrm{rms}=0.0202$ $\mathrm{N}=455$ mean=3.3610 rms=0.0199 $\mathrm{N}=454$ mean $=3.3612 \mathrm{rms}=0.0196$ an=3.3634 rms=0.0274 $\mathrm{an}=3.3632 \mathrm{rms}=0.0270$
an $=3.3616 \mathrm{rms}=0.0321$ $\mathrm{nn}=3.3619 \mathrm{rms}=0.0311$ an=3.3623 rms=0.0302 an=3.3626 rms=0.0294 an $=3.3629 \mathrm{rms}=0.0286$ $\mathrm{h}=3.3632 \mathrm{rms}=0.0279$ -> Rejected -> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Rejected
-> Accepted

Excluded data due to bad pull

30 cm : Warning! Large pull: $L=3.4700+-0.0080$ 30 cm : Warning! Large pull: $L=3.3700+-0.0010$ 30 cm : Warning! Large pull: $\mathrm{L}=1.3700+-0.0100$ 30cm: Warning! Large pull: $L=4.2600+-0.1000$ 30 cm : Warning! Large pull: L $=3.3000+-0.0100$ 30 cm : Warning! Large pull: $L=2.6700+-0.0100$ 30 cm : Warning! Large pull: $L=2.5630+-0.0200$ 30 cm : Warning! Large pull: $\mathrm{L}=4.1400+-0.0400$ 30 cm : Warning! Large pull: $L=3.4670+-0.0120$ 30 cm : Warning! Large pull: L $=3.4710+-0.0050$ 30cm: Warning! Large pull: L $=3.4470+-0.0050$ 30 cm : Warning! Large pull: $\mathrm{L}=3.2210+-0.0310$ 30cm: Warning! Large pull: L = $3.3470+-0.0010$ 30 cm : Warning! Large pull: $\mathrm{L}=3.3650+-0.0005$ 30 cm : Warning! Large pull: $L=3.3670+0.0010$ 30 cm : Warning! Large pull: $L=3.3290+0.00$ 30 cm : Warning! Large pull: L $=3.2600+-0.00$ 30 cm : Warning! Large pull: $\mathrm{L}=3.4240+0.00$ 30 cm : Warning! Large pull: $\mathrm{L}=3.3050+-0.01$ 30 cm : Warning! Large pull: $\mathrm{L}=3.3000+-0.01$ 30 cm : Warning! Large pull: $\mathrm{L}=2.7680+0.02$ 30 cm : Warning! Large pull: L $=3.4200+-0.004$ 30 cm : Warning! Large pull: $\mathrm{L}=3.3900+0.00$ 30 cm : Warning! Large pull: $\mathrm{L}=1.2750+-0.00$ 30cm: Warning! Large pull: L = $4.0040+-0.0300$ 30 cm : Warning! Large pull: $L=3.9550+-0.0550$ 30 cm : Warning! Large pull: $L=3.2150+-0.0110$ 30 cm : Warning! Large pull: $L=1.3650+-0.0050$ 30 cm : Warning! Large pull: $L=3.4110+-0.0050$ 30 cm : Warning! Large pull: $L=3.4500+-0.0050$ 30cm: Warning! Large pull: L $=2.7690+-0.0050$ 30 cm : Warning! Large pull: $L=3.3080+-0.0100$ 30 cm : Warning! Large pull: $L=3.3700+-0.0010$ 30 cm : Warning! Large pull: $L=2.7590+-0.0020$ 30 cm : Warning! Large pull: $\mathrm{L}=2.7440+-0.0500$ 30cm: Warning! Large pull: L $=3.3350+-0.0010$ 30 cm : Warning! Large pull: $L=3.4610+-0.0100$ 30 cm : Warning! Large pull: $L=2.7000+-0.0300$
pull $=13.60$
pull $=8.80$
pull $=-199.12$
pull $=8.99$
pull $=-6.12$
pull $=-69.12$
pull $=-39.91$
pull $=19.47$
pull $=8.82$
pull $=21.96$
pull $=17.16$
pull $=-4.52$
pull $=-14.20$
pull $=7.60$
pull $=5.80$
Rejected:

38 data points from the 30 cm sample,

 45 data points from the 2 m sample. Each and every one was inspected!2m: Warning! Large pull: $L=3.0600+-0.0050$ 2 m : Warning! Large pull: $\mathrm{L}=3.7500+-0.0200$ 2 m : Warning! Large pull: $\mathrm{L}=3.3680+-0.0010$ 2m: Warning! Large pull: $L=3.6500+-0.0300$ 2 m : Warning! Large pull: $\mathrm{L}=3.3200+-0.0050$ 2 m : Warning! Large pull: $\mathrm{L}=3.6660+-0.0500$ 2 m : Warning! Large pull: $\mathrm{L}=3.5750+-0.0020$ 2 m : Warning! Large pull: $\mathrm{L}=3.0360+-0.0400$ 2 m : Warning! Large pull: $\mathrm{L}=3.3500+-0.0010$ 2 m : Warning! Large pull: $\mathrm{L}=3.0360+-0.0050$ 2 m : Warning! Large pull: $\mathrm{L}=2.3630+0.0050$ 2 m : Warning! Large pull: $\mathrm{L}=3.3150+-0.0006$ 2 m : Warning! Large pull: $L=3.4170+-0.0120$ 2 m : Warning! Large pull: $\mathrm{L}=3.6400+-0.0100$ 2 m :Warnina!_arge_nulli $\mathrm{L}=4.0400+0.0200$
pull $=21.43$
pull $=10.80$ pull $=-13.29$
pull $=-399.24$
pull $=9.96$ pull $=17.76$ pull $=-118.44$ pull $=-5.32$ pull $=8.80$ pull $=-301.10$ pull $=-12.34$ pull $=-26.20$ pull $=9.98$
pull $=-22.04$

2 m : Warning! Large pull: 2m: Warning! Large pul: : Large pull: L = $3.1500+-0.0100$ 2 m : Warning! Large pull: L = $2.3640+-0.0300$ 2 m : Warning! Large pull: $\mathrm{L}=3.4200+-0.0050$ 2 m : Warning! Large pull: $\mathrm{L}=3.3720+-0.0011$ 2 m : Warning! Large pull: $\mathrm{L}=3.3970+-0.0030$ 2 m : Warning! Large pull: $L=3.6050+-0.0150$ 2 m : Warning! Large pull: $\mathrm{L}=3.3070+-0.0050$ 2 m : Warning! Large pull: $\mathrm{L}=3.3730+-0.0020$ 2 m : Warning! Large pull: $L=3.3760+-0.0020$ 2 m : Warning! Large pull: $\mathrm{L}=2.3650+-0.0050$ 2 m : Warning! Large pull: $\mathrm{L}=2.3650+0.0040$ 2 m : Warning! Large pull: $L=3.0020+-0.0700$ 2 m : Warning! Large pull: $\mathrm{L}=3.2600+-0.0200$ 2 m : Warning! Large pull: $L=3.2650+-0.0010$ 2 m : Warning! Large pull: $\mathrm{L}=3.5000+-0.0200$ 2 m : Warning! Large pull: $\mathrm{L}=3.1695+-0.0020$ 2 m : Warning! Large pull: L $=3.3660+-0.0003$ 2 m : Warning! Large pull: $\mathrm{L}=3.6540+-0.0200$ 2 m : Warning! Large pull: $\mathrm{L}=3.3710+-0.0010$ 2 m : Warning! Large pull: $\mathrm{L}=3.0650+-0.0050$ $L=3.3720+-0.0020$

$L=4.0160+-0.1010$

 $L=3.0640+0.0050$ $L=3.6600+-0.0120$ $L=3.3550+-0.0010$ $L=3.7500+-0.0050$ $L=3.3690+-0.0010$ $L=3.0070+-0.0080$ $\mathrm{L}=3.1680+-0.0050$ $L=3.0600+-0.0050$pupullpull $=-33.30$pull $=11.41$
pull $=11.41$pull $=11.35$
pull $=16.14$
pull $=16.14$

pull $=-11.19$pull $=5.03$pull $=6.53$ pull $=-199.59$ pull $=-249.49$ pull $=-5.16$ pull $=-5.15$ pull $=-97.95$ pull $=6.85$ pull $=-96.72$ pull $=12.20$ pull $=14.55$ pull $=8.05$ pull $=-59.59$
pull $=-60.59$
pull $=19.35$
pull $=5.05$
pull $=9.57$
pull $=-8.59$
pull $=6.06$
pull $=106.03$
pull $=-8.17$ pull $=-12.95$ pull $=-65.39$ pull $=-199.99$ pull $=-79.92$ pull $=4.50$ pull $=27.71$ pull $=33.85$ pull $=6.47$ pull $=-59.79$ pull $=24.75$ pull $=-7.95$ pull $=77.41$ pull $=6.05$ pull $=-44.49$ pull $=-38.99$ pull $=-60.59$ pull $=4.53$ ull $=-21.29$ pull $=8.23$ pull $=5.03$ pull $=-5.16$
pull $=-5.15$

Excluded data due to bad pull

30 cm : Warning! Large pull: $L=3.4700+-0.0080$ 30cm: Warning! Large pull: L $=3.3700+-0.0010$ 30 cm : Warning! Large pull: $\mathrm{L}=1.3700+0.0100$ 30 cm : Warning! Large pull: $L=4.2600+-0.1000$ 30 cm : Warning! Large pull: L $=3.3000+-0.0100$ 30 cm : Warning! Large pull: $L=2.6700+-0.0100$ 30 cm : Warning! Large pull: $L=2.5630+-0.0200$ 30cm: Warning! Large pull: L $=4.1400+-0.0400$ 30 cm : Warning! Large pull: $L=3.4670+-0.0120$ 30 cm : Warning! Large pull: $L=3.4710+-0.0050$ 30cm: Warning! Large pull: L $=3.4470+-0.0050$ 30 cm : Warning! Large pull: $L=3.2210+-0.0310$ 30 cm : Warning! Large pull: L $=3.3470+-0.0010$ 30 cm : Warning! Large pull: $\mathrm{L}=3.3650+-0.0005$ 30 cm : Warning! Large pull: $\mathrm{L}=3.3670+0.0010$ 30 cm : Warning! Large pull: L $=3.3290+-0.005$ 30 cm : Warning! Large pull: L $=3.2600+-0.00$ 30 cm : Warning! Large pull: $\mathrm{L}=3.4240+0.00$ 30 cm : Warning! Large pull: $\mathrm{L}=3.3050+-0.01$ 30 cm : Warning! Large pull: $\mathrm{L}=3.3000+-0.01$ 30 cm : Warning! Large pull: $\mathrm{L}=2.7680+0.02$ 30 cm : Warning! Large pull: L $=3.4200+-0.004$ 30 cm : Warning! Large pull: $L=3.3900+-0.00$ 30 cm : Warning! Large pull: $\mathrm{L}=1.2750+-0.00$ 30cm: Warning! Large pull: L = $4.0040+-0.0300$ 30 cm : Warning! Large pull: $\mathrm{L}=3.9550+-0.0550$ 30 cm : Warning! Large pull: $\mathrm{L}=3.2150+-0.0110$ 30cm: Warning! Large pull: L = $1.3650+-0.0050$ 30 cm : Warning! Large pull: $\mathrm{L}=3.4110+-0.0050$ 30 cm : Warning! Large pull: $\mathrm{L}=3.4500+-0.0050$ 30cm: Warning! Large pull: L $=2.7690+-0.0050$ 30 cm : Warning! Large pull: $L=3.3080+-0.0100$ 30 cm : Warning! Large pull: $\mathrm{L}=3.3700+-0.0010$ 30 cm : Warning! Large pull: L $=2.7590+-0.0020$ 30 cm : Warning! Large pull: $\mathrm{L}=2.7440+-0.0500$ 30cm: Warning! Large pull: L $=3.3350+-0.0010$ 30 cm : Warning! Large pull: L $=3.4610+-0.0100$ 30 cm : Warning! Large pull: $\mathrm{L}=2.7000+-0.0300$
pull $=13.60$
pull $=8.80$
pull $=-199.12$
pull $=8.99$
pull $=-6.12$
pull $=-69.12$
pull $=-39.91$
pull $=19.47$
pull $=8.82$
pull = 21.96
pull $=17.16$
pull $=-4.52$
pull $=-14.20$
pull $=7.60$
pull $=5.80$
Rejected:

38 data points from the 30 cm sample,

 45 data points from the 2 m sample. Each and every one was inspected!2m: Warning! Large pull: $L=3.0600+-0.0050$ 2 m : Warning! Large pull: $\mathrm{L}=3.7500+-0.0200$ 2 m : Warning! Large pull: $\mathrm{L}=3.3680+-0.0010$ 2m: Warning! Large pull: $L=3.6500+-0.0300$ 2 m : Warning! Large pull: $\mathrm{L}=3.3200+-0.0050$ 2 m : Warning! Large pull: $L=3.6660+-0.0500$ 2 m : Warning! Large pull: $\mathrm{L}=3.5750+-0.0020$ 2 m : Warning! Large pull: $\mathrm{L}=3.0360+-0.0400$ 2 m : Warning! Large pull: $\mathrm{L}=3.3500+-0.0010$ 2 m : Warning! Large pull: $\mathrm{L}=3.0360+-0.0050$ 2 m : Warning! Large pull: $\mathrm{L}=2.3630+0.0050$ 2 m : Warning! Large pull: $L=3.3150+-0.0006$ 2 m : Warning! Large pull: $L=3.4170+-0.0120$ 2 m : Warning! Large pull: $\mathrm{L}=3.6400+0.0100$ 2 m : Warninal_Large_null: $\mathrm{L}=4.0400+0.0200$
pull $=21.43$
pull $=21.43$
pull $=10.80$
pull $=-13.29$
pull $=-399.24$
pull $=9.96$
pull $=17.76$
pull $=-118.44$
pull $=-5.32$
pull $=8.80$
pull $=-301.10$
pull $=-12.34$
pull $=-26.20$
pull $=9.98$
pull $=-22.04$

Notice, that close measurement with too small errors are rejected!
2m: Warning! Large pull: L $=3.3720+0.0020$
2 m : Warning! Large pull: $L=3.1500+-0.0100$
2 m : Warning! Large pull: $\mathrm{L}=2.3640+-0.0300$
2 m : Warning! Large pull: $\mathrm{L}=3.4200+-0.0050$
2 m : Warning! Large pull: $\mathrm{L}=3.3720+-0.0011$
2 m : Warning! Large pull: $\mathrm{L}=3.3970+-0.0030$
2 m : Warning! Large pull: $L=3.6050+-0.0150$
2 m : Warning! Large pull: $\mathrm{L}=3.3070+-0.0050$
2 m : Warning! Large pull: $\mathrm{L}=3.3730+-0.0020$
2 m : Warning! Large pull: $\mathrm{L}=3.3760+-0.0020$
2 m : Warning! Large pull: $\mathrm{L}=2.3650+-0.0050$
2 m : Warning! Large pull: L = $2.3650+-0.0040$
2 m : Warning! Large pull: $L=3.0020+-0.0700$
2 m : Warning! Large pull: $\mathrm{L}=3.2600+-0.0200$
2m: Warning! Large pull: $L=3.2650+-0.0010$
2 m : Warning! Large pull: $\mathrm{L}=3.5000+-0.0200$
pull $=4.53$
pull $=-21.29$
pull $=-33.30$
pull $=11.41$
pull $=8.23$
pull $=11.35$
pull $=16.14$
pull $=-11.19$
pull $=5.03$
pull $=6.53$
pull $=-199.59$
pull $=-249.49$
pull $=-5.16$
pull $=-5.15$
pull $=-97.95$
pull $=6.85$

2 m : Warning! Large pull: L = $3.3660+-0.0003$
2 m : Warning! Large pull: $\mathrm{L}=3.3710+0.0010$ 2 m : Warning! Large pull: $\mathrm{L}=3.0650+-0.0050$
pull $=-60.59$
pull $=19.35$
pull $=5.05$
pull $=9.57$
pull $=-8.59$
pull $=6.06$
pull $=106.03$
pull $=-8.17$ pull $=-12.95$ pull $=-65.39$ pull $=-199.99$ pull $=-79.92$ pull $=4.50$ pull $=27.71$ pull $=33.85$ pull $=6.47$ pull $=-59.79$ pull $=24.75$ pull $=-7.95$ pull $=77.41$ pull $=6.05$ pull $=-44.49$ pull $=-38.99$ pull $=-60.59$
pull $=12.20$
pull $=8.05$
pull $=-59.59$

