Applied Statistics

Problem Set Solution and Discussion
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“Statistics is merely a quantisation of common sense”



Overall comments



This problem set was hard

The problem set is hard, and this one was no exception. If anything, on the
contrary.

So if you had a hard time, then there should be no surprise. But the point of
the problem set is of course also to give problems, so that every student will

be challenged.

This problem set (also) managed that...



The solutions



Problem 1.1

Problem 1.1.1:

e The appropriate distribution is binomial, as N and p are
fixed. Poisson is not a good approximation (N=20 is not large, and
p=1/6=16% is not small).

Problem 1.1.2:

e The probability to get 7 or more 3s is:

(20 — k) k!

20
Phk=7+|N,p) =} ( 20! ) (1/6)k(1 — 1/6)N—* = 0.0371
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Problem 1.2

Problem 1.2.1:
e The fraction of positives can for each test be calculated as

(binomial fractions with uncertainties):

+ + Il + Il
focr = LR & | 7 cr/Npcr! ~ Necr/Nicr) _ 4239 10,0005

N4 Nall
PCR \ PCR
Nt Nall all

fac = A7+ Nac/Nig( = Nig/Nic) _ 0188 1 0.0008
N4 Nall
AG \ AG

These uncertainties can safely be regarded as Gaussian, as the num-
ber of positives is high (>50).




Problem 1.2

Problem 1.2.2:

. . . . False negative
e The false negative rate (FNR) is defined as the ratio positive’

where Condition positive stands for all positive people. Since we as-
sume PCR tests have no errors, total # of people that were tested with

AG tests and were positive is fpcr X Nf}fé = 624. Then FNR =

624—N7+
62—4AG = (0.213 £+ 0.018.

Problem 1.2.3:
e The fraction of the Danish population truly infected can be

calculated from the following equation:

(50.0007%;  focteq) X 0-0002 + 11 c0e0q) X (1—0.2) =47 — 0.093£0.013%




Problem 1.3

This was a hard problem for several, who did not plot a histogram.
And even those who did a histogram, did not all see the (minor) peaks, as the
quality of the histogram was poor (make them large!).

In general, given many measurements, always plot a histogram simply to get an
idea of the distribution of values (even if you don’t use this afterwards).
We decided to give points for many ditferent attempts...
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Problem 1.3
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Problem 1.3

Fitting of voltage data

There were (fortunately) also

some very nice solutions...

Histogram of data
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Problem 1.3

The nicest plot of them all was this:

104

103}

102 2.922.932.942.952.962.97 2.98
. normg = 55.5736 +/- 3.1656
mu = 2.9514 +/- 0.0004
sigma = 0.0064 +/- 0.0004
norm2 = 166.7505 +/- 3.2378
101
100}
: | N
10-2 1073 102 101

P(¥%2=93.4, Ndof=95)=0.53

102

10!

normg = 0.5160 +/- 0.0339

mu = 7.4511 +/- 0.0004 1 00
frac = 0.2554 +/- 0.0549

sigmal = 0.0038 +/- 0.0006

sigma2 = 0.0144 +/- 0.0015

norm?2 = 144.6406 +/- 5.7145

P(y%=

P(y2=92.2, Ndof=95)=0.56

r=a

11.92 11.94 11.96 11.98 12.003

97.5, Ndof=93)=0.35 normg = 8.0267 +/- 1.2188
mu = 11.9528 +/- 0.0010

sigma = 0.0063 +/- 0.0010
norm?2 = 58.4653 +/- 3.3281

740 7.42 7.44 7.46 7.48 7.50 7.52
1 N p ol N

seal
109

T L Y/ AT ¢
Voltage (V)

This plot is closing in on “publishing quality”....
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Problem 2.1

Problem 2.1.1:
2
X

o(y) =o(x) 21

1
0(2) = o)/ g
e This is a classic error propagation exercise. The first part is

straight-forward: y = 0.207 £ 0.005 and z = 1.09 & 0.07.

Problem 2.1.2:

e The next part has a bit of a hiccup. While y = 0.52 £ 0.02,
the error propagation formula for z breaks down as the derivative
is highly non-constant, as the denominator approaches o as x ap-
proaches 1. While the result is z = 625 4= 937, it is not accurate. This

must be commented on for full points. 103 —— o : : —
- ,I"'"' '1.,, 1 z (rand-x)
[ u dz (rand-x) ]
10%F .
“A complete and utter |5 |
o
breakdown of the error |~
propagation formula” wl M.
101 103 10° 107 10°
Z
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Problem 2.2

The weighted mean gives an average of 9.82 + 0.02 m/s2, but...
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Problem 2.2

The weighted mean gives an average of 9.82 + 0.02 m/s2, but a very poor Chi2!
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Problem 2.2

The only measurement, which is inconsistent, is measurement 2.
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____ Mean, all points
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g I
o 9.6F Measurement Residuals (m/s?) No Probability =~ Conclusion
! 1 0.2841 1.894 0.05823 Accepted
94l 2 0.4641 4.641 0.000003468 Rejected
L 3 0.1959 1.781 0.07492 Accepted
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Measurement

After removing second measurement, everything is consistent and great:

x? = 9.96 and a P(x?, nDOF=8) = 0.19
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Problem 3.1

The generation of exponential numbers and 70 _ Camssimnft-p®
thus u-values was done by ~all. 60 — Histoaram (generated
50
Also, fitting to a Gaussian was done by the 1o
vast majority. Few did a KS or AD test. £,
20
Many functions fits the distribution, which
10
is in fact a Gamma distribution (and E time).
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Problem 3.2

In principle, the problem can be solved with the transformation method, and

the hard inversion can be solved with Labert’s W function...

Fl(x) =

“W((x—1)/e) -1

But that might be slightly beyond the math of most of us!
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Problem 3.2

1.0 —— Original function
Box function

0.8 1 Generated values
E 0.6 ; If not doing it with a combined transformation
:-% and accept-reject method, then make a LARGE
g 04 box for the accept-reject method.
g Most picked 10 (borderline!) or 20 (OK)... but,

why not 100? We have fast computers :-)
0.2
0.0 -
0 2 4 6 8 10 12 14
Value

Notice, that since there is an EVEN number of entries, the median is not perfectly
well defined. Possibly, one could take the average of the 500th and 501st entry.



Problem 4.1 - inspiration
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Problem 4.1

Problem 4.1.1:
e Itis a good assumption, that the sample size is equal for the
two experiments. The two numbers are to a very good approximation

Poisson distributed (i.e. the uncertainty is the square root), and to a
rough approximation, these errors are Gaussian.

The null-hypothesis Hy ="the vaccine has no effect" implies that
the two experiments were drawn from the same (Poisson) distri-
bution, which has a mean between 8 and 162. With the Gaussian
assumption, we thus conduct a two-sample test:

, . _ le8—8
posttives 168 + 8

The p-value of this separation is the double-sided integral of the

=12 (3)
unit-gaussian, computed outside the z,,tiyes boundary:

Zypositives
P— value(zpositives) =2x /_:o PAfsauss(x)dx = 74e7* << 1 (4)
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Problem 4.1

The confidence interval (CI) can be approximated using the Gaussian

approximation, which gives almost full points.

To get a precise CI, simulation is the easiest. Since the Poisson is asymmetric

(especially for A=8), so is the resulting CI.

Frequency

| 68% Confidence Level
[ 1 Histogram (Generated)

e=0.951"

0.017
0.018

0.86

0.88

0.90

092 094 096 0.98 1.00
Efficacy
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Problem 4.1

The Fisher’s exact test can actually be used for both 4.1.1, and 4.1.3, but
especially in the latter case, it is really useful:

(P720) (21728)  170143278121720!21728!

P = (43238 81162!121712!21566!43448!

~ 7.6663 x 1073

Again, the result is VERY clear - the vaccine works!!!

For the severe cases (i.e. low statistics), this test is really useful, as the
Gaussian approximation is.... well, an approximation:

(*'7%°) (*'5%)  10'43438121720!21728!

p= (#348) 119121719!21719!43448!

~ 7.6663 x 107> ~ 0.00977
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Problem 4.1

The Fisher’s exact test can actually be used for both 4.1.1, and 4.1.3, but
especially in the latter case, it is really useful:

(P720) (21728)  170143278121720!21728!

P = (43238 81162!121712!21566!43448!

~ 7.6663 x 1073

Again, the result is VERY clear - the vaccine works!!!

For the severe cases (i.e. low statistics), this test is really useful, as the
Gaussian approximation is.... well, an approximation:

21720\ (21728
10143438121720!21728!
po U1 )0 oT) @63 x 1@ 0.00977
(359) 119121719/21719/43448!

10

We of course recognise copy-and-paste-errors :-)
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Problem 4.2

e The number of aces will follow a binomial distribution with

p = 4/52 and n = 4, as displayed in figure 4. The chance of getting 3
aces or more is obtained by summing the probabilities for 3 aces and
4 aces: 1.7-1073 +3.5- 107> = 0.0017.

Problem 4.2.2:

e Drawing cards without replacement corresponds to a hyper-
geometric distribution, with the total number of objects M = 52, the
total number of aces n = 4 and number of draws N = 4. The chance

of getting 3 aces or more is obtained by summing the probabilities for
3 aces and 4 aces: 7.1-107* + 3.7 - 10~ = 0.00071. The problem can
also be calculated using a combination of binomials.

draw number is not ace/draw prob | draw 1 | draw 2 | draw 3 | draw 4 total
4 4/52 3/51 2/50 | 48/49 | 1.773 x 10~*
3 4/52 3/51 48 /50 2/49 | 1.773 x 10~
2 4/52 | 48/51 | 3/50 2/49 | 1.773 x 104
1 48/52 | 4/51 3/50 2/49 | 1.773 x 104
all aces 4/52 3/51 2/50 1/49 | 3.694 x 107°
Result 7.129 x 10~*

4




Problem 4.2

e The number of aces will follow a binomial distribution with
p = 4/52 and n = 4, as displayed in figure 4. The chance of getting 3
aces or more is obtained by summing the probabilities for 3 aces and
4 aces: 1.7-1073 +3.5- 107> = 0.0017.

Problem 4.2.2:

Probability

10V 4

1071 4

102

10
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1075 4

Binomial distribution Hypergeometric distribution

10V 4
®
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109 o
o

104 4

T 107 o
T T T ,

2 | 6 ba) 0 2 | 6 8

Number of aces Number of aces
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Problem 4.2

Plotting the data is always a good idea, as your eyes are very good at seeing
patterns in low (< 3) dimensions. Looking, there are clearly patterns.

Index




Problem 4.2

Plotting the values, it seems that every second card is higher than the next
one. How to test if this is more pronounced than in a shuffled deck?

Well, plotting the distribution of differences, one gets a histogram, the
distribution of which is known for a shuffled deck. From here, it is a KS test!
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Face-value
0]

Face-value of the "shuffled" cards
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il ER—.,

count

mean

0 10 20 .30 40 50 ""100 <75 %0 35 0.0 25 5.0 75
Number in deck

Diffence in Value
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Problem 4.2

The suits can be tested by showing the distribution of the first and last half of
the deck. As it happens, there are 0 hearts in the first half, which can be tested!

4.01
3.51
3.0
525
2.0
1.51 [ First 21 Cards
. 121 Last 21 Cards
10 o ¢
10 20 30 40 101
Number 5’
o 81
)
=
o 6]
o
[
4-
2<
0 , — ' '
Clubs Diamonds Hearts Spades
Suit
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Problem 4.2

Suit

Count of cards in suit

121

10 1

¢ Suit 1 eecccecescsseeen
. Suit 2 T eeene
@ Suit 3 T Y111 s
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Card drawn

o] | |
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More tests...

Problem 4.2

50

40

30

20

Draw number distribuiton for the different suits of cards

A diagram over the p-values given by the KS-test

-0.8

- 0.6

- 0.4

- 0.2
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201

170.0 +/- 13.1

Not all tests yields a result showing
“unshuffled”. Here, the value of two
consecutive cards are considered.
There are 52 such with 170
possibilities, so most should be zero,
and only few should be two or more.
And that is how they are distributed.
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Problem 5.1

Plotting is an art, and you should give it a least a little thought.

The below example has nice labels, but a poor choice axis...

Price of solar power [$ / W]
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Cumulative solar power capacity [MW] X10°
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Problem 5.1

Here is a quick test of different types of axis, and given a power low fit, the
log-log plot is clearly preferable.
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Problem 5.1

The fit is poor, except if you exclude the years 2003-2010 (oil prices high!):

Chi2 / ndof 18.318 / 34 - Fit
Prob 0.987 - Fit Mask
1024 ¢ " b 0.390 +/- 0.006 : Data Mask
L
¢
Q
L 101 4
a ;
Chi2 / ndof 86.598 / 42
Prob 0.000
100 - a 72.888 +/- 3.346 $
] b 0.381 +/- 0.006 ¢,’,
¢
**{
LELALILA) | ’ LENNLENLIL LAY | ¢ LB L L LA | ' LENELENL AL L ALRL | ' LENNLENLIL LAY | ' LN LB AL ) | ' LI LA
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Problem 5.1

Careful with extrapolating models into the future.... don’t use a polynomial!

= = =
o o o
B w (o)}

Cumulative solar power capacity [MW]
2

Someone did this case for illustration,
and it never reaches 1000000 MW!

Thanks for not doing this :-)

0.48852721 +/- 0.00320335
-0.03030576 +/- 0.00013375
0.00090435 +/- 0.00000383
-0.00000891 +/- 0.00000007
-0.63107887 +/- 0.02576277

—— Polynomial fit: p(Chi2=26.2, Ndof=39) = 0.94185

0 10 20 30 40 50
time [year]
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Problem 5.1

Several ways of extrapolation...

—— Exponential fit: p(Chi2=0.3, Ndof=6) = 0.99958
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This yields an expected price of 0.38 + O.O5USWD.
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—— Exponetial Fit
—— Piecewise Exponential Fit
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44

1.501 +/- 0.047
5.641 +/- 0.282
2.932 +/- 0.064
1863 +/- 369
1984.7 +/- 0.3
2001.3 +/- 0.7

24.890 / 38
0.950
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Time [Year]
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Problem 5.2

Alas - I put a wrong sign in the scaling of positives given tests. It doesn’t change
the problem, but it would have been nice to be closer to reality!

3000
Exponential fit
————— Exponential fit
250071 4 t  Number of Positives
+ Scaled Positives (Given Calibration)
?2000- st ' Scaled Positives (Alternative calibration)
QJ \\\\\\
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£ 1500 e ;FI -
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Problem 5.2

Adding a (large) systematic uncertainty makes the fit good:

Scaled positives

3000 4

2500 4

2000 1

=
w
(=3
(=]
s

1000 1

500 A

—— Power law fit: p(Chi2=14.6,Ndof=11) = 0.2022719

r 0.5981 +/- 0.0355

12 14 16 18
Day
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Problem 5.2

The impact of not knowing the generation time gives an asymmetric error on R.

6001 —— Gaussian fit
[ 1 Histogram of R

Frequency
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Your scores



General distribution
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