Applied Statistics ### Error propagation Troels C. Petersen (NBI) "Statistics is merely a quantisation of common sense" Imagine that y is a function of x_i $$y(x_i)$$ $$\sigma(x_i) = 0.8$$ $$\sigma(x_i) = 0.8$$ $$\sigma(y(x_i)) = ?$$ Imagine that y is a function of x_i $$y(x_i)$$ $$\sigma(x_i) = 0.8$$ $$\sigma(y(x_i)) = ?$$ $$\pi(x_i) = 0.8$$ Imagine that y is a function of x_i $$y(x_i)$$ $$\sigma(x_i) = 0.8$$ $$\sigma(y(x_i)) = \underbrace{\frac{\partial y}{\partial x_i} \times 0.8}$$ #### Note, the approximation here: The derivative of y - dy/dx_i - should be relatively constant. If not, the error propagation formula breaks down. $$\sigma(x_i) = 0.8$$ $$\sigma(y(x_i)) = \underbrace{3}_{\sigma(x_0)} \underbrace{\beta(x_0)}_{\Delta x} \times 0.8$$ ### General formula (i.e. can always be used!) Imagine that y is a function of x_i , and that we wish to find the error on y from the errors on x_i . Making a Taylor expansion of the function y gives: $$y(\bar{x}) \simeq y(\bar{\mu}) + \sum_{i}^{n} \frac{\partial y}{\partial x_{i}} (x_{i} - \mu_{i})$$ In order to get the uncertainty of y as a function of the variables x_i we calculate: $$\sigma_x^2 = \overline{x^2} - \overline{x}^2 = E[x^2] - E^2[x]$$ $$E[y(\overline{x})] \simeq y(\overline{\mu})$$ $$E[y^2(\overline{x})] \simeq y^2(\overline{\mu}) + \sum_{i,j}^n \left[\frac{\partial y}{\partial x_i} \frac{\partial y}{\partial x_j} \right] V_{ij}$$ Subtracting the two formulae, we obtain: $$\sigma_y^2 = \sum_{i}^{n} \sum_{j}^{n} \left[\frac{\partial y}{\partial x_i} \frac{\partial y}{\partial x_j} \right] V_{ij}$$ Subtracting the two formulae, we obtain: $$\sigma_y^2 = \sum_{i}^{m} \sum_{j}^{m} \left[\frac{\partial y}{\partial x_i} \frac{\partial y}{\partial x_j} \right] V_{ij}$$ If there are no correlations, only the diagonal (individual errors) enter: $$\sigma_y^2 = \sum_{i}^{n} \left[\frac{\partial y}{\partial x_i} \right]_{\bar{x}}^2 \sigma_i^2$$ The "simple" (i.e. uncorrelated) formula is thus: $$\sigma_y = \sqrt{\left[\frac{\partial y}{\partial x_1}\right]_{\bar{x}_1}^2} \sigma_1^2 + \left[\frac{\partial y}{\partial x_2}\right]_{\bar{x}_1}^2 \sigma_2^2 + \dots$$ The "simple" (i.e. uncorrelated) formula is thus: $$\sigma_y = \sqrt{\left[\frac{\partial y}{\partial x_1}\right]_{\bar{x}_1}^2} \sigma_1^2 + \left[\frac{\partial y}{\partial x_2}\right]_{\bar{x}_1}^2 \sigma_2^2 + \dots$$ Note, that **each term** represents the **individual contributions** of x_i to the uncertainty on y. Thus, the uncertainty on y from e.g. x_1 is: $$\sigma_y = \sqrt{\left[\frac{\partial y}{\partial x_1}\right]_{\bar{x}_1}^2} \, \sigma_1^2 = \frac{\partial y}{\partial x_1} \sigma_1$$ ## Specific formula (i.e. for special simple cases!) ## Specific error propagation formula Addition $$y = x_1 + x_2$$ $$\sigma_y^2 = \sigma_{x_1}^2 + \sigma_{x_2}^2 + 2V_{x_1, x_2}$$ $$y = ax_1 + bx_2$$ $$\sigma_y^2 = a^2 \sigma_{x_1}^2 + b^2 \sigma_{x_2}^2 + 2abV_{x_1, x_2}$$ "When adding numbers, their errors add in quadrature" # Specific error propagation formula Multiplication $$y = x_1 x_2$$ $$\sigma_y^2 = (x_2 \sigma_{x_1})^2 + (x_1 \sigma_{x_2})^2 + 2x_1 x_2 V_{x_1, x_2}$$ Dividing by x^2 to get relative terms, we obtain: $$\frac{\sigma_y^2}{y^2} = \frac{\sigma_{x_1}^2}{x_1^2} + \frac{\sigma_{x_2}^2}{x_2^2} + 2\frac{V_{x_1, x_2}}{x_1 x_2}$$ "When multiplying numbers, their RELATIVE errors add in quadrature" ## Error propagation at work... John Harrison (24 March 1693 – 24 March 1776) British clockmaker extraordinaire "Won" the Longitude Act prize (3 sec/day). Harrison's first sea clock (H1) Harrison build H1-H5. K1 (Copy of H4) was used by James Cook. ## Error propagation at work... Harrison's Gridiron pendulum is designed to cancel the change in length (in fact moment of inertia) with temperature. Coefficient of thermal expansion: $Iron = 11.8 \times 10^{-6} / C^{\circ} \quad Zinc = 30.2 \times 10^{-6} / C^{\circ}$ ### Error propagation at more work... Analysis of tiny differences in Uranus' orbit from Newtonian prediction led to the prediction and discovery of Neptune! Continuing with Mercury... Table II. Contributions to the motion of the perihelia of Mercury and the earth. | Cause | | | | Motion of perihelion | | | |---------------------------------|--|--|------------|----------------------|--|---| | Venus
Earth | 6 000 000
408 000
329 390
3 088 000
1 047 .
3 499
22 800
19 500 | ###################################### | 300
300 | .03 | $\begin{array}{c} \text{Mercury} \\ 0\rlap.{''}025\pm0\rlap.{''}00 \\ 277.856\pm0.68 \\ 90.038\pm0.08 \\ 2.536\pm0.00 \\ 153.584\pm0.00 \\ 7.302\pm0.01 \\ 0.141\pm0.00 \\ 0.042\pm0.00 \\ 0.010\pm0.02 \\ \\ 5025.645\pm0.50 \end{array}$ | 345.49 ± 0.8 97.69 ± 0.1 696.85 ± 0.0 18.74 ± 0.0 0.57 ± 0.0 0.18 ± 0.0 0.00 ± 0.0 7.68 ± 0.0 | | Sum
Observed motion | | | , | | 5557.18 ± 0.85
5599.74 ± 0.41 | | | Difference
Relativity effect | | | , | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | Urbain Le Verrier (1811-1877) Advanced example of error propagation (Higgs particle mass): ## Reporting uncertainties The systematic uncertainties of a measurement should be reported in a table, and if measurements are combined, the correlation needs consideration. | Selection criteria | Systematic uncertainties (%) | |-----------------------------|------------------------------| | K/π PID | 1.0 | | μ PID | 0.6 | | Muon selection | 0.6 | | Trigger | 1.0 | | Yields of reference channel | 0.4 | | Efficiency modeling | 5.3 | ## Reporting uncertainties The systematic uncertainties of a measurement should be reported in a table, and if measurements are combined, the correlation needs consideration. | CDF II preliminary | | | L = 200 pb ⁻¹ | |----------------------------------|-----------|-------|--------------------------| | m _⊤ Uncertainty [MeV] | Electrons | Muons | Common | | Lepton Scale | 30 | 17 | × 17 | | Lepton Resolution | 9 | 3 | 0 | | Recoil Scale | 9 | 9 | 9 | | Recoil Resolution | 7 | 7 | 7 | | u _{II} Efficiency | 3 | 1 | 0 | | Lepton Removal | 8 | 5 | 5 | | Backgrounds | 8 | 9 | 0 | | p _⊤ (W) | 3 | 3 | 3 | | PDF | 11 | 11 | 11 | | QED | 11 | 12 | 11 | | Total Systematic | 39 | 27 | 26 | | Statistical | 48 | 54 | 0 | | Total | 62 | 60 | 26 | ## Applying error propagation For the project, we'll be working with two measurements, which result from two formulae. Work out the error propagation formula for these two cases, and use these, when we discuss typical size of uncertainties. $$g = L \left(\frac{2\pi}{T}\right)^2$$ ## Applying error propagation For the project, we'll be working with two measurements, which result from two formulae. Work out the error propagation formula for these two cases, and use these, when we discuss typical size of uncertainties. ## Simulating error propagation Imagine that y is a very complicated function of x_i , perhaps not even parametric (i.e. not a function, but rather a model). A simple method is to use simulation: - Choose random values of x_i , corresponding to mean and Std of each x. - \bullet Calculate $y(x_i)$ and record the resulting values. - The standard deviation (and distribution) of y reflects the impact of x_i . Note that the distribution of y may NOT be Gaussian, if the error propagation formula breaks down. It is then important to make this clear to the reader. However, simulation exactly allows one to see to what degree the resulting distribution in y is Gaussian. #### Errors on errors The "uncertainty on the uncertainty" follows the approximate rule: $$\sigma_{\sigma} = \frac{1}{\sqrt{2N - 2}}$$ As we don't want to pursue an infinite line of uncertainties, we simply state the uncertainty, and only include one or two significant digits. #### Errors on errors The "uncertainty on the uncertainty" follows the approximate rule: $$\sigma_{\sigma} = \frac{1}{\sqrt{2N - 2}}$$ As we don't want to pursue an infinite line of uncertainties, we simply state the uncertainty, and only include one or two significant digits. I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.