
Applied Statistics 
Bayesian statics and Markov Chains

“Statistics is merely a quantisation of common sense”

Mathias Luidor Heltberg (NBI)
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Bayesian statistics

2

Bayesian statistics is something that often first really 
appreciated after one has worked on a problem 
needs bayesian statistics.

In many situations, we have much information that 
can be used, before using the available data to draw 
a conclusion.

The criticism of Bayesian statistics is often the choice 
of a prior, where we as scientists should try to 
quantify our belief in something. 

However often the choice of this prior can really be 
quantified - or it is something that does not alter the 
results (too much)…



Bayesian statistics
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You know by now that the Bayes theorem takes the form:

To write this out, there is a discrete version and a continuous version:

The point is that we need to integrate out the dependency of A in the 
denominator. That is to say: what is the probability of getting B, given I try all 
values of A. 



Bayesian statistics
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Structure of the terms in the bayesian setup:

Typically we calculate the likelihood based on our statistical methods. Then 
the prior typically causes a lot of concern - because how to quantify our 
knowledge? 

For many population samples the prior is well known and can be used 
directly. But for many cases, we can start with a flat prior and then update it as 
we move along.



Updating the prior
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One important element in Bayesian statistics is the update of the prior 
probability. Lets start with a classical example:
We take a test of some disease. 
P(positive|disease) = 0.93. 
P(negative|healthy) = 0.99.
Also the fraction of people having the disease in the population is 
0.148%.

Lets say we get a positive test result. 
What is the probability that we have the disease:  
Likelihood: 0.93
Prior: 0.00148
Marginal likelihood: 
P(positive|disease)*P(disease) + P(positive|healthy)*P(healthy) = 
0.93*0.00148 + 0.01*0.9985 = 0.01136

Combining these we have P(disease|positive) = 0.12.
OK - so we only have a 12 percent chance of having the disease…
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But lets now say we take a new test - and this is also positive!
Now the test statistics are naturally the same so we have:
P(positive|disease) = 0.93. 
P(negative|healthy) = 0.99.
However now the prior is no longer the small 0.00148 but instead our 
posterior from the previous calculation: p(disease) = 0.12.

This means we can setup the following:
Likelihood: 0.93
Prior: 0.00148
Marginal likelihood: 
P(positive|disease)*P(disease) + P(positive|healthy)*P(healthy) = 
0.93*0.00148 + 0.01*0.9985 = 0.01136

Combining these we have P(disease|positive) = 0.12.
OK - so we only have a 12 percent chance of having the disease…
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Maximum A Posteriori (MAP) 
Estimation

A concept of specific interest in the framework of Bayesian statistics is 
the concept of Maximum A Posteriori Estimation.

Note this sounds a lot like Maximum likelihood. Remember in 
maximum likelihood we use probabilities to obtain the most probable 
value given all probabilities.

The MAP tries to measure some known quantity, that equals the 
mode of the posterior distribution. The MAP can be used to obtain a 
point estimate of an unobserved quantity on the basis of empirical 
data.
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Maximum A Posteriori (MAP) 
Estimation

OK - lets look at an example. 
Suppose I measure a diffusing particle. It diffuses like 
brownian motion and it takes a gaussianly distributed 
step:

So after this step the particle has a true position X.
However there is noise in our measurements. This means 
that we measure a parameter Y = X+W.

PDF for the 
position of 
the particle

Position of 
the particle
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Maximum A Posteriori (MAP) 
Estimation

OK - lets look at an example. 
Suppose I measure a diffusing particle. It diffuses like 
brownian motion and it takes a gaussianly 
distributed step:

So after this step the particle has a true position X.
However there is noise in our measurements. This 
means that we measure a parameter Y = X+W.

However as is typically the case, the noise is also 
gaussian so:

PDF for the 
position of 
the particle

Position of 
the particle

PDF for 
what we will 
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What we 
measure
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Maximum A Posteriori (MAP) 
Estimation

So let’s say we measure the value Y = 2.25 m. What is our best estimate for the 
position of the particle?
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Maximum A Posteriori (MAP) 
Estimation

Lets see what we happened if we directly attacked the problem using Maximal 
likelihood. This would simply be:

From this is it clear that the most likely value is X = Y.

But what happens if we use the bayesian Maximum A Posteriori Estimation?

If I want to find the most probable value of the x-value, I should find the minimum of this 
function. This means I should minimise the function:

Simply differentiating this and setting to zero gives:



12

Maximum A Posteriori (MAP) 
Estimation

This shows that the MAP gives a different result than the ML method. Does this 
matter?

σx = 1,σw = 0.5 σx = 1,σw = 2ML

MAP
ML

MAP

Conclusion: If we measure a point and we know the measurement error, the best 
estimate is not just point itself.
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The Bayesian approach is heavily used in parameter estimation called Bayesian 
inference. This is an enormous field, that we just want to touch upon in this lecture. 

The idea is to start with some prior knowledge of the parameters, and then use the 
likelihood based on a series of events to extract optimal parameter values.
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Bayesian Inference
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3

4
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Suppose we measure a diffusing particle at 5 positions. There is 
an experimental error to the measurements so we do not even 
know the precise position.

For this set of datapoints, we want to infer the underlying 
diffusion coefficient. We do know that there is structure in the 
data-points. That is 3 comes after 2 that comes after 1 etc.  

But our certainty in the position of 3 is definitely affected by 
our certainty in the position of 2 and so on. 

This means that we can calculate the probability of each 
position based on the previous position - and update these 
probabilities accordingly. 

In the end we can use Bayes theorem to find infer the optimal 
parameters:
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Entering: Markov chains
It is now hopefully clear, that Bayesian statistics has a 
strong ability to estimate the structure of sequential data. 

However we need a mathematical framework that can 
connect probabilities as we take new steps: entering 
Markov chains.

Andrey Markov was a Russian mathematician that 
developed the concept in the beginning of the 20th 
century and has further been studied by many 
mathematicians, but most notably our hero Kolmogorov.



Markov chains
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A very useful mathematical approach to statistics of a series of events, is the 
construction of Markov Chains. 

Disclaimer: The use of Markov Chains is combination with Bayesian statistics and 
Monte Carlo methods is covered in depth in the course “Advanced methods in 
Applied Statistics” - so here we will have a small taste of it.

Mathematically we define Markov chains:

Translated this means that the probability to move to a specific state is completely 
determined by the state we are currently in - and not where we have been 
previously. It is therefore memoryless.
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We can visualise this to make it much more easy to understand.

Lets assume I had a system for which I could quantify 3 states and assign 
probabilities to move between states. This could be visualised in the following 
way:

Based on these 9 probabilities, I can construct a matrix, taking the form:

Translated this means that the probability to move to a specific state is completely 
determined by the state we are currently in - and not where we have been 
previously. It is therefore memoryless.
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So far so good - how can this be used?

Assume I as the question: we start in state 1. What is the probability to be in state 2 
after 3 iterations?

Try to count the number of ways we can end up in state 2. It could take the form:
1 -> 2 -> 2 -> 2
1 -> 1 -> 2 -> 2
1 -> 1 -> 1 -> 2
1 -> 2 -> 1 -> 2
1 -> 2 -> 3 -> 2
1 -> 3 -> 2 -> 2

Luckily there is a much nicer calculation that makes sure we do not have to count 
all possibilities every time. Imagine if it was after 20 iterations….
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It turns out that the way we add the probabilities is exactly given by the structure 
of the transition matrix P. 

The probability to be in either of N states (here we have 3), after n iterations is 
given by the equation:

Note that here φ is the row vector of initial probabilities. If we know it starts in 
state 1 in the above example it will take the form φ=(1,0,0).
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Discrete Markov chains
So lets just see this in action. I now assign probabilities to the general 3-state 
matrix:

What is the probability to in the states after 4 iterations - given I start in state 2?

Our matrix takes the form:

And making the calculations: (0,1,0)*P4 =  (0.28 , 0.5 ,  0.22)

This is the vector of all probabilities after 4 iterations.
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Discrete Markov chains
It happens quite often that some statistical problem can be formulated by a Markov 
Chain. We look at one example that is also covered in the excersizes - the Ehrenfest 
urn problem.

Suppose we have two urns (containers) and N balls (say 5). Now at each time step 
we pick a random ball and move it from one urn to the other. 

What is the probability to have 3 balls in the blue container after 10 iterations? This 
can be formulated as a Markov chain. Can you see why?



Irreducibility and 
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Based on the structure of Markov chains, there can be separate communications 
classes. Suppose you start in state 4.

Once you reach state 3 or state 7 you can never return. And you can never go 
between state 3 and state 7. Therefore we say that 1-3 is a recurrent communication 
class, 4-6 is a transient class, and 7-12 is also a recurrent class.

If there is only one communication class the Chain is called irreducible.
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We can for many purposes say that state 3 and state 7 are absorbing states. Once 
you reach either of these there is no coming back. When we have absorbing states 
we can organise the matrix based on recurrent and transient states:

This comes in handy, because often our question would be: Given we start in state 
4, what is the expected number of iterations before absorption in to either state?

Or is the probability to be absorbed by 7 instead of 3, given I start in state 4?
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Exactly this we can calculate by manipulation by the organisation mentioned 
above. We can calculate the expected number of visits in a specific transient state, 
by constructing the matrix M:

Also, with this we can calculate the probability that a specific absorbing state will 
be the first we reach, by constructing the matrix:



Absorption probabilities
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So far so good - let’s see it in action.

I have restructured the matrix, and made the two states 3 and 7 
absorbing - so I don’t care what is going on in state 12.

Now the expected number of visits to state 5 before absorption, given 
we start in state 4, is now: 

And the probability that 7 is the first absorbing state we reach is:
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26

Assume we are measuring DNA from ancient samples. At all places (alleles), we 
have two bases - one from the father and one from the mother. It could for instance 
look like this:

Now at position 1, both from the father and the mother we have an A. Lets say we 
have extracted some DNA for position 38 in an egyptic prince. We don’t have 
much useful DNA so we get the sequence out:

[A,A,C,A,A]

Given that transitions can occur, and thus even though we measure a C, it could be 
an A, that has just changed due to errors in equipment and mutations in the DNA.

What is the probability for each of the possible genotypes?

A A T G C C T G G

A A T T C C T G A

1 2 3 4 5 6 7 8 9



Example from DNA estimation
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So here we measure some base, and we want to determine the probability of the 
true base and in the end that it comes from a specific genotype. To visualise this, 
we can set up a network:

But with this we could imagine it is a Markov chain where all genotypes in the 
bottom are absorbing states.

What we measure

What it is

Where it comes from
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If I write up a total matrix it will be super large and ugly. But since I only need the 
transient state probabilities, I can take out the coloured parts and use these for 
matrix multiplication.

Example from DNA estimation
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Now I get the information that some some genotypes are much more abundant 
than others. Should I use this in my analysis?

This is an example of a Bayesian prior that is easily quantifiable. If I do not include 
this, I directly ignore a lot of information and therefore I make the analysis more 
ignorant that is should be. 

Therefore I can include a Bayesian prior on all genotype probabilities. Does this 
affect the results? Yes indeed. 

But it quantifies how much the data should be overwhelming, before trusting a 
genotype that is otherwise rarely found.

Example from DNA estimation


