Applied Statistics
 Multivariate analysis

Troels C. Petersen (NBI)

"Statistics is merely a quantisation of common sense"

MultiVariate Analysis \& Fisher Discr.

Separating hypothesis

REALITY

STATISTICAL DECISION:	Do Not Reject Null	Null is True	Null is False
		$1-\alpha$ Correct	β Type II error
	Reject Null	α Type I error	$1-\beta$ Correct

Simple Example

Problem: You want to figure out a method for getting sample that is 95% male! Solution: Gather height data from 10000 people, Estimate cut with 95% purity!

Simple Example

Additional data: The data you find also contains shoe size! How to use this? Well, it is more information, but should you cut on it?

Height

Shoe size

The question is, what is the best way to use this (possibly correlated) information!

Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var?
 Poor efficiency!

Advanced cut?
Clumsy and hard to implement

Combine var?
Smart and promising

The latter is the Linear Discriminant Analysis (LDA) aka. Fisher discriminant! It has the advantage of being simple and applicable in many dimensions easily!

Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var?
Poor efficiency!

Advanced cut?

Combine var?
Smart and promising

The latter is the Linear Discriminant Analysis (LDA) aka. Fisher discriminant! It has the advantage of being simple and applicable in many dimensions easily!

Separating Classes/Types

Fisher's friend, Anderson, came home from picking Irises in the Gaspe peninsula...
180 MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS

Table I

LDA / Fisher Discriminant

You want to separate two types / classes (A and B) of events using several measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

$$
\mathcal{F}=w_{0}+\vec{w} \cdot \vec{x}
$$

Q: How to choose the values of w ? $\underline{\text { A }}$: Inverting the covariance matrices:

$$
\vec{w}=\left(\boldsymbol{\Sigma}_{A}+\boldsymbol{\Sigma}_{B}\right)^{-1}\left(\vec{\mu}_{A}-\vec{\mu}_{B}\right)
$$

This can be calculated analytically, and incorporates the linear correlations into the separation capability.

Iris Data (red=setosa,green=versicolor,blue=virginica)

LDA / Fisher Discriminant

You want to separate two types / classes (A and B) of events using several measurements.

Q: How to combine the variable A: Use the Fisher Discriminant:

This is exactly a projection!

$$
\mathcal{F}=w_{0}+\vec{w} \cdot \vec{x}
$$

Q: How to choose the values of w ?
$\underline{\mathbf{A}}$: Inverting the covariance matrices:

$$
\vec{w}=\left(\boldsymbol{\Sigma}_{A}+\boldsymbol{\Sigma}_{B}\right)^{-1}\left(\vec{\mu}_{A}-\vec{\mu}_{B}\right)
$$

This can be calculated analytically, and incorporates the linear correlations into the separation capability.

LDA / Fisher Discriminant

You want to separate two types / classes (A and B) of events using several measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

Iris Data (red=setosa,green=versicolor,blue=virginica)
 ments are given. We shall first consider the question: What linear function of the four measurements

$$
X=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}+\lambda_{4} x_{4}
$$

will maximize the ratio of the difference between the specific means to the standard deviations within species? The observed means and their differences are shown in Table II.

This can be calculated analytically, and incorporates the linear correlations into the separation capability.

LDA / Fisher Discriminant

You want to separate two types/classes (A and B) of events using several measurements.

Q: How to combine A: Use the Fisher D

This is just an offset (one can also scale)!

$$
\mathcal{F}=w_{0}+\vec{w} \cdot \vec{x}
$$

Q: How to choose the values of w ?
$\underline{\text { A }}$: Inverting the covariance matrices:

$$
\vec{w}=\left(\boldsymbol{\Sigma}_{A}+\boldsymbol{\Sigma}_{B}\right)^{-1}\left(\vec{\mu}_{A}-\vec{\mu}_{B}\right)
$$

This can be calculated analytically, and incorporates the linear correlations into the separation capability.

LDA / Fisher Discriminant

Executive summary:

Fisher's Discriminant uses a linear combination of variables to give a single variable with the maximum possible separation (for linear combinations!).

It is for all practical purposes a projection (in a Euclidian space)!

LDA / Fisher Discriminant

$$
\vec{w}=\left(\boldsymbol{\Sigma}_{A}+\boldsymbol{\Sigma}_{B}\right)^{-1}\left(\vec{\mu}_{A}-\vec{\mu}_{B}\right)
$$

LDA / Fisher Discriminant

The details of the formula are outlined below:
You have two samples, A and B, that you want to separate.

For each input variable (x), you calculate the mean (μ), and form a vector of these.

$$
\vec{w}=\left(\boldsymbol{\Sigma}_{A}+\boldsymbol{\Sigma}_{B}\right)^{-1}\left(\vec{\mu}_{A}-\vec{\mu}_{B}\right)
$$

Using the input variables (x), you calculate the covariance matrix (Σ) for each species $(\mathrm{A} / \mathrm{B})$, add these and invert.

Given weights (w), you take your input variables (x) and combine them linearly as follows:

$$
\mathcal{F}=w_{0}+\vec{w} \cdot \vec{x}
$$

F is what you base your decision on.

Selecting signal in 1D

Classical case (signal peak on background)...
Simple enough - we select cases between two values around peak!

Selecting signal in 2D

Now let us try in 2 dimensions (two cases):

While the Fisher Discriminant uses all separations and linear correlations, it does not perform optimally, when there are non-linear correlations present:

If the PDFs of signal and background are known, then one can use a likelihood.
But this is very rarely the case, and therefore more "rough" methods are needed...

Relation to ML Machine Learning

Unsupervised vs. Supervised Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or unsupervised (you don't)... [or reinforced]. Following this, one can be using ML to either classify (is it A or B ?) or for regression (estimate of X).

Unsupervised vs. Supervised Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or unsupervised (you don't)... [or reinforced]. Following this, one can be using ML to either classify (is it A or B?) or for regression (estimate of X).

Unsupervised vs. Supervised Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or unsupervised (you don't)... [or reinforced]. Following this, one can be using ML to either classify (is it A or B?) or for regression (estimate of X).

Relation to PCA Principle Component Analysis

Principle Component Analysis (PCA)

PCA is a technique for dimensionality reduction of a dataset, accomplished through linearly transforming the data into a new coordinate system where the maximum variation in the data is spanned by fewer (usually two!) dimensions than the initial data.

Principle Component Analysis (PCA)

PCA is a technique for dimensionality reduction of a dataset, accomplished through linearly transforming the data into a new coordinate system where the maximum variation in the data is spanned by fewer (usually two!) dimensions than the initial data.

Principle Component Analysis (PCA)

PCA is a technique for dimensionality reduction of a dataset, accomplished through linearly transforming the data into a new coordinate system where the maximum variation in the data is spanned by fewer (usually two!) dimensions than the initial data.

Principle Component Analysis (PCA)

PCA is a technique for dimensionality reduction of a dataset, accomplished through linearly transforming the data into a new coordinate system where the maximum variation in the data is spanned by fewer (usually two!) dimensions than the initial data.

The PCA directions constitute an orthonormal basis. PCA is the process of computing the principal components and using them to perform a change of basis on the data, often using only the first few principal components.

Principle Component Analysis (PCA)

The principal components of data (points in N -dimensional space) are a sequence of unit vectors, where the i-th vector is the direction of a line that best fits the data while being orthogonal to the first i-1 vectors. Here, a best-fitting line is defined as one that minimises the average squared perpendicular distance from the points to the line.

Principle Component Analysis (PCA)

PCA is defined as an orthogonal linear transformation to a new coordinate system, where the i'th greatest variance by some scalar projection of the data comes to lie on the i'th coordinate (called the i'th principal component).

$$
\vec{w}_{1}=\underset{\|w\|=1}{\arg \max }\left[\sum_{i}\left(\vec{x}_{i} \cdot \vec{w}\right)^{2}\right]
$$

Principle Component Analysis (PCA)

PCA is defined as an orthogonal linear transformation to a new coordinate system, where the i'th greatest variance by some scalar projection of the data comes to lie on the i^{\prime} th coordinate (called the i^{\prime} th principal component).

The PCA transformation is defined as a set of size q of p-dimensional vectors:

$$
\vec{w}_{(k)}=\left(w_{1}, \ldots, w_{p}\right)_{(k)}
$$

that map each data point to a new vector of principle component "scores", given by: $\vec{t}_{(i)}=\left(t_{1}, \ldots, w_{q}\right)(i)=\overrightarrow{x_{(i)}} \cdot \vec{w}_{(k)}$
in such a way that the individual variables of t considered over the data set successively inherit the maximum possible variance from the original data. The PC are calculated as:

$$
\vec{w}_{1}=\underset{\|w\|=1}{\arg \max }\left[\sum_{i}\left(\vec{x}_{i} \cdot \vec{w}\right)^{2}\right]
$$

Principle Component Analysis (PCA)

PCA is defined as an orthogonal linear transformation to a new coordinate system, where the i'th greatest variance by some scalar projection of the data comes to lie on the i'th coordinate (called the i'th principal component).

Shown below is an example of a PCA transformation from 3D to 2D, considering the two PCs with the greatest variance:

Principle Component Analysis (PCA)

Why consider the largest variation? Well, the "hope" is that any possible signal lies in the (principle) direction of maximal variance, while noise in the data lies along the "lesser" directions:

Principle Component Analysis (PCA)

Why consider the largest variation? Well, the "hope" is that any possible signal lies in the (principle) direction of maximal variance, while noise in the data lies along the "lesser" directions:

Principle Component Analysis (PCA)

PCA can be used to determine "proximity" in very high dimensional spaces:

Abkhasian	Iraqi_Jew
- Adygei	Jordanian
\diamond Armenian	\diamond Lebanese
- Balkar	- Palestinian
$\stackrel{*}{*}$ Chechen	$\stackrel{\text { Saudi }}{ }$
* Georgian	* Syrian
+ Georgian_Jew	+ Yemen
\times Kumyk	\times Yemenite_Jew
\triangle Lezgin	\bigcirc BedouinA
\triangle North_Ossetian	- BedouinB
- Iranian	\diamond Canary_Islanders
- Iranian_Jew	- Druze
\diamond Mordovian	* Libyan_Jew
- Russian	\star Moroccan_Jew
* Turkish	+ Tunisian
* Turkish_Jew	\times Tunisian_Jew
\bigcirc Albanian	- Basque
- Ashkenazi_Jew	- English
\diamond Belarusian	\diamond French
- Bulgarian	- Icelandic
* Croatian	is Italian_South
\star Cypriot	\star Maltese
+ Czech	+ Norwegian
\times Estonian	\times Orcadian
\triangle Finnish	\triangle Sardinian
\triangle Greek	\triangle Scottish
∇ Hungarian	∇ Sicilian
- Lithuanian	\checkmark Spanish
\triangleleft Ukrainian	\triangleleft Spanish_North

Abkhasian
\diamond Armenian
« Chechen

+ Georgian_Jew
\times Kumyk
\triangle Lezgin
Iranian_Jew
\diamond Mordovian
* Turkish

夫 Turkish_Jew
Ashkenazi_Jew
\rightarrow Belarusian

- Bulgarian

Croatian
+
\times Estonian
Δ Finnish
∇ Hungarian
\triangleleft Ukrainian

Jordanian
\checkmark Lebanese
Palestinian
Syrian

+ Yemen
\times Yemenite_Jew
- BedouinA

BedouinB
\checkmark Canary_Islanders
Druze
\& Libyan_Jew

+ Tunisian
\times Tunisian_Jew

English
French

Italian_South
\star Maltese

+ Norwegian
Orcadian
Sardinian
Scottish
∇ Sicilian
\triangleleft Spanish_North

PCA vs. LDA (Fisher)

So what is the difference, and when to use one or the other method?
PCA is an unsupervised algorithm while LDA is a supervised algorithm. This means that PCA finds directions of maximum variance regardless of class labels while LDA finds directions of maximum class separability.

PCA vs. LDA (Fisher)

So what is the difference, and when to use one or the other method?

PCA is an unsupervised algorithm while LDA is a supervised algorithm. This means that PCA finds directions of maximum variance regardless of class labels while LDA finds directions of maximum class separability.

PCA vs. LDA (Fisher)

So what is the difference, and when to use one or the other method?

PCA is an unsupervised algorithm while LDA is a supervised algorithm. This means that PCA finds directions of maximum variance regardless of class labels while LDA finds directions of maximum class separability.

Conclusion:
Use LDA, if you have labelled (training) data and want good classification.

Use PCA, if you don't have data with labels, and want to find structures in data.

The dimensionality reduction of the PCA allows you to get a visual inspection in 2D!

