Applied Statistics

Problem Set Example Solutions

“Statistics is merely a quantisation of common sense”



The solutions



Problem 1.1

Hypergeometric formula (or simple logic) solves this problem...

1.1.1

When taking a marble and not putting it back, we are changing the probabilities for the next marble. However
these changes are dependent of what exactly we marble we draw at the start. This setup follows the hyper-

geometric probability mass distribution:

n N —k
p(k,M,TL,N) = T /7N (1)

k M
N
Here k is the number of observed successes, M is the total amount of marbles, n is the number of success marbles
in the bag and N is the number of marbles that we draw. This then takes care of all the different micro states
that satisfy our conditions.
Now we take two marbles, and want at least one of them to be white, meaning that we have 3 success marbles.

This gives us:

p(k >1,15,3,2) = p(1,15,3,2) + p(2, 15,3, 2) (2)
p(k >1,15,3,2) = 0.3714 (3)

This means that there is a probability of 37.14% chance of getting 1 or more white marble.
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Problem 1.1

Binomial solutions...

1.1.2

This probability follows the binomial distribution and we can white it up as:

n!
P(r: — 7 1 — n—r
(ripyn) = p"(1 = p)"" (n— 1)
For 18 marples out of 25 this gives:
7 718 7 o5 13 25!
P(18; —,25) = — (1— —)° = 0.
(18; 15’ 5) 15 ( 15) 18!(25 — 18)! 0.0065

There is a 0.65% chance of drawing exactly 18 grey balls out of 25 tries.

If it was instead 18 or more, the probability is now the sum:

25

7 7 7 25!
P(>18: —.25) = — (1= —)%r = 0.93
(2 18; 15’ ) 7:218 15 ( 15) r!(25 —r)! 7o

There is a 0.93% chance of drawing 18 or more grey balls out of 25 tries.
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Problem 1.1

The p-value of the test, piest, is the ”integral” under the two tails of the binomial distribution including only
values that are further away (or equally far) from p (because the absence of grey marbles would be equally
suspicious), i.e:

Drest = P(k > 18) + P(k < 5) = 1.47- 1072 (2)
where the two probabilities have been calculated with scipy’s built-in binomial cdf and survival function.
Thus I cannot reject that my friend is telling the truth on a 1% confidence level.

Note that if this was not my friend but instead a more suspicious person I might have chosen another more
restrictive confidence level.




Almost all got this one right.

A few “inverted” it, and got 1/155!

Problem 1.2
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Problem 1.3

This was a problem to illustrate why one considers “this or more extreme...”

1.3.1

I assume that the ”signal” is some kind of background process such that they arrive to the telescope at a
constant rate and that the telescope measures continuously in time. Under these assumptions, the number
of signals measured in a period of time is a poisson process. Since the experiment has been going on for
many hours, the expected number of signals during an hour is A = 241089/24 ~ 10045 (the average number
of signals per day divided by 24).

The probability of observing exactly 9487 signals in an hour, P(k = 9487) can then be calculated with scipy’s
built-in poisson distribution. This gives P(k = 9487) = 5.55 - 1010,

Since A is large the gaussian is a very good approximation to the poisson. However, since 9487 lies pretty
far out in the tails I find it safer (and just as easy) to keep using the poisson distribution.

1.3.2

The null hypothesis is that the number of signals in the hour follow a poisson distribution with A = 241089/24.
The alternative hypothesis is that this hour contains something else than the ”background” process. Because
I have no theoretical reasons for doing a one sided test, a two sided test is appropriate. This means that the

local p-value, piocar is:
Dlocat = P(k < 9487) + P(k > 10603) = 2.667 - 10~ (7)

where the probabilities are obtained from scipy’s built in poisson cdf and survival function.

To obtain the global p-value, pgiopai, I need to correct with a trial factor because I assume that the telescope
have been looking for ”something” for the extent of 9 weeks. This means that they have been looking for
N = 1512 hours. This is the trial factor. Because piocqr is very small, I can obtain pgiopar by:

Dglobal = N - DPlocal = 4.03 - 1075 (8)

The p-value of the experiment observing a signal which is this far - or further - from the mean
is therefore pgop, = 4.03 - 10~°. The observation is definitely extraordinary assuming the null hypothesis.
Whether the null hypothesis should be rejected depends on the confidence level which again depends on the
nature of the discovery. If a ”50” confidence level is chosen (critical p-value of p ~ 3-10~"). However, using
all other standard confidence levels, the null hypothesis should be rejected.




Problem 1.4

This problem could also be solved using simulation (see “bad shooters” below).

Problem 1.4.1

Since the probability is 3% and not ~ 0 the number of hits will follow the binomial distribution. Furthermore the
number of triales is known, N.

Problem 1.4.2

The probability of getting the first hit after 20 shots is equal to the probability of not hitting anything in the first 20
shots:
Poonir=1-3%=97%

P=(Pponin® =54%

Problem 1.4.3

The probability of needing more than 4000 shots to hit a 100 times is the summed probability of hitting between 0
or 99 times using 4000 shots:

99 3
Y. P (r, —,4000) =2.61% 6)
= U100

Not being completely sure of this calculation a simulation is run. For each step of the simulation 4000 shots are
made i.e. 4000 samples from a uniform distribution between 0 and 1 is drawn. If the "shot" is below 3% it counts
as a hit. If the number of hits at 4000 is 99 or below, implies that the shooter would need more than 4000 shots to
hit a 100 times. Running each step 400000 times and count the number of "bad shooters" gives:

Bad shooters=10472
10472

400000
Now seeing that both methods gives approximately the same result i accept both to be correct.

=2.62%

Probability =

10



Problem 2.1

z1 Uncorrelated
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Figure 1: distribution of z-values using uncorrelated x and y values

To sum up it seems that the uncertainty on r widens the central part of the distribution the
most while y produces extremely long tails
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Problem 2.2

This is actually original data from Gosset (“student”), and requires both the “N-1”
when calculating Std. and a t-test when comparing. We did not require the last of
the two, but gave bonus points for doing so.

Thanks to Mathias for digging this paper/data out - it is a very beautiful paper,
which might go on a reading list next year.

The null hypothesis is that the distributions from which the placebo and drug group are drawn have the
same means. The alternative hypothesis is that the mean of the drug group is larger than the mean of the
placebo group. Because I assume data to be distributed according to a gaussian, the sample size is small
and I estimate the standard deviation from the sample, a two sample t-test is appropriate for testing if
there is any difference between the drug group and the placebo group. I compute the ¢-score according to
equation (8.13) in Barlow. This yields ¢ = 0.73. This value is distributed according to a t-distribution with
545 — 2 = 8 degrees of freedom. Because the alternative hypothesis is that the drug group sleeps longer,
a one-sided test is appropriate. To perform the integral from 0.73 to oo of the t-distribution, I use scipy’s
built in t-distribution survival function. This gives the p-value p = 0.24.

Therefore the probability of obtaining a t-score this large or larger is 24% using a one sided test assuming
that the placebo and drug group have equal means. Therefore the null hypothesis cannot be rejected. The
effect of the drug on sleeping times is not significant.




Problem 3.1

This is an obvious case for the accept-reject method. The transformation method
fails, as the inversion can only be done numerically, and in any case, it does not
save one much in speed, as the A-R is fairly efficient here.
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Problem 3.1

The fitting required two considerations:
e [s the statistics high enough in the lower bins to fit with a ChiSquare?
e [s the binning fine enough to not distort the sharp right edge?

Some did both (bonus points)...

y
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Problem 3.1

In order to investigate how many events would be needed to measure a with
1% precision, people tried to repeat the process with different statistics, which
nicely shows the 1/sqrt(N) behaviour of uncertainties. A few even gave a range
of possible values.

Curiously, there seem to be convergence towards two ranges.
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Problem 3.1
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of possible values.
Curiously, there seen

Precission

0.024 A
\
00221 —— Precision
------- Precision
0.020 A
------- N where ¢
0.018 1
0.016
0.014 1
0.012 A
0.0104 = = =mmmmme—————-

2000

Relative error on a

0.01010 A

0.01005 A

0.01000

0.00995 A

The relative error on a near 1%, fontsize = Fontsize

—— Fit
t

Data

16000

16100

16200 16300 16400
Number of points

16500

16600

16



Problem 3.1

We counted up the
different estimates of N,
and two “camps” are
visible.

We of course allowed for
many values, especially if
the arguments/ principles
were in place.

However, below 1000 and
above 50000 is probably
outside a good range.

Imagine, that your
measurements had some
uncertainty in x...?

12

10

73 submissions
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Problem 4.1

This problem was meant to illustrate the power of paired tests!
e When not pairing, the distribution is wide, due to strong and weak persons.
e When pairing, the variation in strength cancels out...

A detail that several referred to: The distribution of G is not Gaussian.
But what is important is, that the mean is (due to CLT), so it is OK to compare

means with a z-test.

A simple alternative solution is to do a KS test! This would detect a shift, but
also a difference in distributions, which is not exactly what we are looking for!

Notice that “dominant hand” is defined by which you e.g. write with.

18



Problem 4.2

This problem had no labels, and could very well be a real world problem.

There were many great plots of this problem - thank you for those. They were

very much appreciated.
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Problem 4.2
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Problem 4.2

The result of the double Gaussian fit depends on several things:

¢ Functional form (NG+NG or N(fG+(1-)QG))

e Fit type (ChiSquare vs. LLH, later preferred due to low statistics)
e Initial values (of course!)

e J
How clean a distribution of molecules we can get depending on cut position St and We d]‘dn t Care What mOlecule you Chose!
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Problem 4.2

Two double Gaussian fits of size and intensity actually gives you the parameters
for a Fisher discriminant. Alternatively, one can project using a PCA or “by eye”.
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Figure 8: Molecule size fitted with a double Gaussian, rotated to componentl and component2 (All data).




Problem 5.1

The 3rd degree polynomial fit and WW runs test worked nicely for almost all.
Several also commented on the fact, that the residuals did not have a
Gaussian distribution - smart (admittedly, I didn’t think of this).

It is unclear whether the oscillation should be multiplied or added to the fit, since the words ’term’ and
‘multiplicative’ seem conflicting. We have tried both, but only adding the oscillation works. This does
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Problem 5.1

The 3rd degree polynomial fit and WW runs test worked nicely for almost all.
Several also commented on the fact, that the residuals did not have a
Gaussian distribution - smart (admittedly, I didn’t think of this).

It is unclear whether the oscillation should be multiplied or added to the fit, since the words ’term’ and
‘multiplicative’ seem conflicting. We have tried both, but only adding the oscillation works. This does

Most added a term (corresponding to a fit of the residuals):

fA)=at? + bt +ct+d+e-sin(f-t+yg).

Some multiplied an oscillation function on (as the data was generated):

f(z) = (az® + bz® + cz + d) [1 + Asin 27z + §))] .

g(z) = (ax® + bz + cx +d) - (1 + gsin(ex + f)).
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Problem 5.1

The 3rd degree polynomial fit and WW runs test worked nicely for almost all.
Several also commented on the fact, that the residuals did not have a
Gaussian distribution - smart (admittedly, I didn’t think of this).

It is unclear whether the oscillation should be multiplied or added to the fit, since the words ’term’ and
‘multiplicative’ seem conflicting. We have tried both, but only adding the oscillation works. This does

Most added a term (corresponding to a fit of the residuals):

fA)=at? + bt +ct+d+e-sin(f-t+yg).

Some multiplied an oscillation function on (as the data was generated):

f(z) = (az® + bz® + cz + d) [1 + Asin 27z + §))] .

g(z) = (ax® + bz + cx +d) - (1 + gsin(ex + f)).

We see the fit gives f=6.301 which corresponds to a frequency of 24 hours in units of the data, so that is
quite satisfactory. We now get a p-value=1, which suggests overfitting. In fact a chi2-value 4 times as large,
would still give a p-value above 0.99.
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The 3rd degree polynomial fit and WW runs test worked nicely for almost all.
Several also commented on the fact, that the residuals did not have a
Gaussian distribution - smart (admittedly, I didn’t think of this).

It is unclear whether the oscillation should be multiplied or added to the fit, since the words ’term’ and
‘multiplicative’ seem conflicting. We have tried both, but only adding the oscillation works. This does

Most added a term (corresponding to a fit of the residuals):

fA)=at? + bt +ct+d+e-sin(f-t+yg).

Some multiplied an oscillation function on (as the data was generated):

f(z) = (az® + bz® + cz + d) [1 + Asin 27z + §))] .

g(z) = (ax® + bz + cx +d) - (1 + gsin(ex + f)).

We see the fit gives f=6.301 which corresponds to a frequency of 24 hours in units of the data, so that is
quite satisfactory. We now get a p-value=1, which suggests overfitting. In fact a chi2-value 4 times as large,
would still give a p-value above 0.99.

It is good to keep a cross check, if possible!
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Problem 5.1

Very nice plot of residuals...
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Problem 5.1

Very nice plot of the two fits... impressive to have the time and surplus for

this...
—— (3rd degree pol) Chi2 fit
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-+ Data with initially assumed uncertaint
y ' LA
| ] ,
I‘ A‘l'h. rl"‘llk‘m” "
1900 ‘ " ‘., ‘:l'
ll‘ VY
‘ﬂ |
~ 1800 J 2 W' I
‘|I'~, 7 . 0  1460.950 +/- 24.986
Ny K1 cl 103.059 +/- 14.952
‘ s c2 -8.006 +/- 2.564
o\ O 1432.889 +/- 24.685 3 53 018 +/- 3 010
1600 ' C2 ‘10-869 +/' 2-531 WO 1'333 +/- 0.302
/ <) c3 0.414 +/- 0.129 L JEEE A
o) | A Chi2 71.636 chi2 13509
| ndf 86
- Prob 0.867 Prob 1.000

6

time (days)

10

12

28



Problem 5.2

One student started wrongly, and got this plot. Impressively, the student
carried on, and did 4/6 questions, before giving into the fact, that something
was not as expected! Admirable... (and giving some points)
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Problem 5.2

Plotting the range (with many bins) gives a nice overview of what is to come.

Several fitted the whole range and two peaks, but that is not necessary.

Frequency

— Histogram with 216545 entries, 2000 bins
Entries 13322 Entries 10761 = Fit: p(Chi2=88.971,Ndof=53) = 0.001
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1000 " - " AR — Fit: p(Chi2=42.990,Ndof=53) = 0.835
b -6867.71 +/- 164.01 b -1076.09 +/- 2678.63 I Histogram of wavelenngth
N 4072.78 +/- 108.41 N 6299.93 +/- 101.20
8001 mu 1268.22 +/- 0.45 mu 1851.86 +/- 1.63
sigma 0.82 +/- 0.05 sigma 0.45 +/- 0.06
alpha 10.09 +/- 1.06 alpha 31.00 +/- 7.45
600 { chi2/ndf 43.0 / 53 Chi2/ndf 89.0 / 53
Prob 0.835302 Prob 0.001441
Resoluti] 0.0078 Resolution 0.0127
400
200
0+ : v : ; !
1200 1400 1600 1800 2000 2200

There are actually no Trial Factors here, as the positions of the peaks are known!

Only exception is the first two peaks used for calibration, but they are very
significant.
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Problem 5.2
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Problem 5.2

Since the two dominant peaks are slightly shifted, they can used for correcting
the scale (assuming that their true position is known). Written in many ways:

ib — — . 'LL(Q)tTUC _ /'L(l)true
Acalib ()\ /‘L(l)ObS) ,U»(Z)obs - /-L(l)obs +u(1)t7‘u@




Problem 5.2

Since the two dominant peaks are slightly shifted, they can used for correcting
the scale (assuming that their true position is known). Written in many ways:

L= () — _ 1(2)true — (1) true
/\calzb - ()\ ,Uf(l)obs) N(2)obs _ /.L(l)obs -+ /‘L(l)true

/\1 — /\1,t7‘ue — a/\l,obs +0b
/\2 — /\2,t'rue — a/\2,obs + ba

which yields the solution

. /\2,t1'ue - )\2,t7‘ue . /\2,t7'ue - /\2,t7'ue

) b= /\1,true -

)\l,obs-

/\1,obs - )\2,obs /\l,obs - /\2,obs

The calibrated estimates for the wavelength is then

NG
A=adys +b+ \] (8(/3)\5 ) O3 obs = AAobs + b £ a0 ops-

Including the uncertainties is actually how you would assign a systematic
uncertainty to the fact, that you shift the measured values.
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Problem 5.2

Here is a really nice figure... impressive! Maybe the insert is not needed...
Most people found between 3 and 8 peaks. Beyond that (uncalibrated) it is hard!
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Here is a really nice figure...

Problem 5.2

impressive! Maybe the insert is not needed...

Most people found between 3 and 8 peaks. Beyond that (uncalibrated) it is hard!
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Problem 5.2

Comparing several CALIBRATED peak positions should generally be done
with a ChiSquare! There are no fitting parameters, but it is still an over

constrained system of equations.

Wavelength (nm)

2100

2000

1900

Admittedly, the problem was
designed to confirm Bohr’s
theory... how could one
otherwise?

=)
=]
o

2.0

1700
1.0

1600
0.0

Wavelength Residual (nm)
)
(5]

-0.5

Peak number -1.0

ChiSquare fit yields: Prob(Chi2= 10.7, Ndof=10) = 0.3820

Peak number
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Problem 5.2

Damn... calibration, probably many thought! Yes, it was a tough end problem.

But the two main peaks show clear signs of (the same) linear shift with voltage.
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Problem 5.2

Damn... calibration, probably many thought! Yes, it was a tough end problem.

But the two main peaks show clear signs of (the same) linear shift with voltage.

'l The calibration not only renders the peaks much sharper

1} (reduces resolution by factor ~3), but also very Gaussian.
The damn thing works!!!

- I | °
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mu 1282.033 +/- 0.015 | Data (calibrated) 2 mu 1875.388 +/- 0.010 | Data (calibrated)
0.744 +/- 0.013 s alihrata . TR
-0.747 +/- 0.431 { Data (uncalibrated) { Data (uncalibrated)
1 b 772.496 +/- 6.498 1500
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Some statistics

...of course!



Average score per problem

The following figure summarises the average score per problem, divided
between Censors (blue) and TAs (red).

Average score
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Average fraction per problem

The following figure summarises the average fraction per problem, divided
between Censors (blue) and TAs (red). Is there a downward trend?!?

Average fraction

10 M Censors
mm TAs

111 112 113 12 131 132 141 142 143 211 212 213 221 222 311 312 313 411 412 413 414 415 421 422 423 424 511 512 513 514 521 522 523 524 525 526
Task number

o
™

o
o

o
i

o
N

o




