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Simple Example

Problem: You want to figure out a method for getting sample that is 95% male!
Solution: Gather height data from 10000 people, Estimate cut with 95% purity!
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Simple Example

Additional data: The data you find also contains shoe size!
How to use this? Well, it is more information, but should you cut on it?

Male 1 Male
Female Female
\ Cut Cut?
N R N N
Height Shoe size

The question is, what is the best way to use this (possibly correlated) information!



Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var? Advanced cut? Combine var?
Poor efficiency! Clumsy and Smart and
hard to implement promising
A A A
Q () ()
N N N
() () ()
o o o
e i -
w wn wn
Male Male Male
Female Female Female
Cut!? Cut? Cut?
Height Height Height

The latter is the Linear Discriminant Analysis (LDA) aka. Fisher discriminant!
It has the advantage of being simple and applicable in many dimensions easily!



Shoe size

Simple Example

So we look if the data is correlated, and consider the options:

Cut on each var?
Poor efficiency!

Male

Female
Cut?

—
Height

Advanced cut?

Interestingly, this is exactly
the approach of tree-based
learning in ML, through
“brute force” of computers.

Shoe siz
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Shoe size
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Combine var?
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The latter is the Linear Discriminant Analysis (LDA) aka. Fisher discriminant!
It has the advantage of being simple and applicable in many dimensions easily!



Separating Classes/Types

Fisher’s friend, Anderson, came home from picking Irises in the Gaspe peninsula...

180 MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS

Table I
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LDA / Fisher Discriminant

You want to separate two types/classes (A and B) of events using several

measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

F=wyg+w-x

Q: How to choose the values of w?
A: Inverting the covariance matrices:

Iris Data (red=setosa,green=versicolor,blue=virginica)
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This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.
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LDA / Fisher Discriminant

You want to separate two types/classes (A and B) of events using several
measurements.
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LDA / Fisher Discriminant

You want to separate two types/classes (A and B) of events using several
measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

F=wyg+w-x

Q: How to choose the values of w?
A Inverting the covariance matrices:

Iris Data (red=setosa,green=versicolor,blue=virginica)
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LDA / Fisher Discriminant

You want to separate two types/classes (A and B) of events using several
measurements.

Q: How to combine the variables?
A' Use the FiSheI' Discriminant° Iris Data (red=setosa,green=versicolor,blue=virginica)
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Q: How to choose the values of w? | From Fisher’s original paper:
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ments are given. We shall first consider the question: What linear function of the four
measurements X=Ao, + A2+ A3 25 + A2,

will maximize the ratio of the difference between the specific means to the standard
deviations within species? The observed means and their differences are shown in Table I1.
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LDA / Fisher Discriminant

You want to separate two types/classes (A and B) of events using several

measurements.

Q: How to combin

A: Use the FisherDEI This is just an offset (one can also scale)!

- =

w - X

F%w()

Q: How to choose the values of w?
A: Inverting the covariance matrices:

Sepal.Length

lllll
0

lllll
0

W= (Za+25)"" (Ga—iB)

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.

w7 eeEle o0 * X o °
o |eeg o ware _ || Sepal.Width f 3
: 2 ﬂ-. ‘5'%‘,: 0.: :gf o . X
R 2
o J. L o.. H R :..o
° Q" ° o :.!..:' ° e 'o “..g_
ife‘. o oo b
:,‘?“ :isz. Petal.Length i.l!!!;'
F ks T L ot
a ..gLo’ "g:s. l-.’;::
Xl ﬁ“ 5
SN X X Petal.Width
SR 0 | S

13



LDA / Fisher Discriminant

Executive summary:
Fisher’s Discriminant uses a linear combination of variables to give a single
variable with the maximum possible separation (for linear combinations!).

x2 A x2 A Fisher’s discriminant
Class 2 Class 2

Class 1

projection
e

vZ

It is for all practical purposes a projection (in a Euclidian space)!



LDA / Fisher Discriminant
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LDA / Fisher Discriminant

The details of the formula are outlined below:

You have two samples, A and B,
that you want to separate.

For each input variable (x),
you calculate the mean (p),
and form a vector of these.

AN

@ = (Sa+32p) (fa— i)

Using the input variables (x),
you calculate the covariance
matrix (2) for each species
(A/B), add these and invert.

Given weights (w),
you take your input

variables (x) and \
_|_

combine them f’ — Wy
linearly as follows:

?17 . T F is what you base
your decision on.
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Selecting signal in 1D

Intensity

Photon Energy

Classical case (signal peak on background)...

Simple enough - we select cases between two values around peak!

17



T Selecting signal in 2D

Now let us try in 2 dimensions (two cases):

X1 J <4 Don’t use Fisher
Background . Background

Signal Signal

Use Fisher
> >
X| X|

While the Fisher Discriminant uses all separations and linear correlations,
it does not perform optimally, when there are non-linear correlations present:

If the PDFs of signal and background are known, then one can use a likelihood.

But this is very rarely the case, and therefore more “tough” methods are needed... 4



Relation to ML

Machine Learning

19



Unsupervised vs. Supervised
Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).
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Unsupervised vs. Supervised
Classification vs. Regression

Machine Learning can be supervised (you have correctly labelled examples) or
unsupervised (you don’t)... [or reinforced]. Following this, one can be using ML
to either classify (is it A or B?) or for regression (estimate of X).
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Relation to PCA

Principle Component Analysis

23



Principle Component Analysis (PCA)

PCA is a technique for dimensionality reduction of a dataset, accomplished
through linearly transforming the data into a new coordinate system where the
maximum variation in the data is spanned by fewer (usually two!) dimensions
than the initial data.

24


https://en.wikipedia.org/wiki/Coordinate_system

Principle Component Analysis (PCA)

PCA is a technique for dimensionality reduction of a dataset, accomplished
through linearly transforming the data into a new coordinate system where the
maximum variation in the data is spanned by fewer (usually two!) dimensions
than the initial data.
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https://en.wikipedia.org/wiki/Coordinate_system

Principle Component Analysis (PCA)

PCA is a technique for dimensionality reduction of a dataset, accomplished
through linearly transforming the data into a new coordinate system where the
maximum variation in the data is spanned by fewer (usually two!) dimensions
than the initial data.
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https://en.wikipedia.org/wiki/Coordinate_system

Principle Component Analysis (PCA)

PCA is a technique for dimensionality reduction of a dataset, accomplished
through linearly transforming the data into a new coordinate system where the
maximum variation in the data is spanned by fewer (usually two!) dimensions

than the initial data.

The PCA directions constitute an orthonormal basis. PCA is the process of
computing the principal components and using them to perform a change of

basis on the data, often using only the first few principal components. 07


https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Orthonormal_basis
https://en.wikipedia.org/wiki/Change_of_basis
https://en.wikipedia.org/wiki/Change_of_basis

Principle Component Analysis (PCA)

The principal components of data (points in N-dimensional space) are a
sequence of unit vectors, where the i-th vector is the direction of a line that best
fits the data while being orthogonal to the first i-1 vectors. Here, a best-fitting
line is defined as one that minimises the average squared perpendicular
distance from the points to the line.

LINEAR REGRESSION PRINCIPAL COMRINENT

v A Y A

A\
- i RIGHT ANGLE TO
—| RIGHT ANGLE TO PC\ LINE
Y-AXIS

- LN REG L\NE
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https://en.wikipedia.org/wiki/Unit_vector
https://en.wikipedia.org/wiki/Orthogonal

Principle Component Analysis (PCA)

PCA is defined as an orthogonal linear transformation to a new coordinate
system, where the i'th greatest variance by some scalar projection of the data
comes to lie on the i’th coordinate (called the i'th principal component).

=)

| = arg max Z(f" . 0)?
[lwl|=1
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Principle Component Analysis (PCA)

PCA is defined as an orthogonal linear transformation to a new coordinate
system, where the i'th greatest variance by some scalar projection of the data
comes to lie on the i’th coordinate (called the i'th principal component).

The PCA transformation is defined as a set of size q of p-dimensional vectors:

w(k) — (wl, h ,wp)(k.)

that map each data point to a new vector of principle component “scores”, given
by: t_'\ . t = —
() = (B, W) (@) = T(i) - Wny

in such a way that the individual variables of t considered over the data set
successively inherit the maximum possible variance from the original data.

The PC are calculated as: - —

U71 — arg IMnax E (fz y 217)2
[Jwl[]=1
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https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Coordinate_system

Principle Component Analysis (PCA)

PCA is defined as an orthogonal linear transformation to a new coordinate
system, where the i'th greatest variance by some scalar projection of the data
comes to lie on the i’th coordinate (called the i'th principal component).

Shown below is an example of a PCA transformation from 3D to 2D,
considering the two PCs with the greatest variance:

Gene 3

original data space

component space

X
| + ><
I i %8
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e
=8
Sl
=]
PC 1
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Principle Component Analysis (PCA)

Why consider the largest variation? Well, the “hope” is that any possible signal
lies in the (principle) direction of maximal variance, while noise in the data lies
along the “lesser” directions:

Principal

X2 Component




Principle Component Analysis (PCA)

Why consider the largest variation? Well, the “hope” is that any possible signal
lies in the (principle) direction of maximal variance, while noise in the data lies
along the “lesser” directions:

Principal

X2 Component
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Principle Component Analysis (PCA)

PCA can be used to determine “proximity” in very high dimensional spaces:
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PCA vs. LDA (Fisher)

So what is the difference, and when to use one or the other method?
PCA is an unsupervised algorithm while LDA is a supervised algorithm.

This means that PCA finds directions of maximum variance regardless of class
labels while LDA finds directions of maximum class separability.
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PCA vs. LDA (Fisher)

So what is the difference, and when to use one or the other method?

PCA is an unsupervised algorithm while LDA is a supervised algorithm.

This means that PCA finds directions of maximum variance regardless of class

labels while LDA finds directions of maximum class separability.
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PCA vs. LDA (Fisher)

So what is the difference, and when to use one or the other method?

PCA is an unsupervised algorithm while LDA is a supervised algorithm.
This means that PCA finds directions of maximum variance regardless of class
labels while LDA finds directions of maximum class separability.

Height and weight for men and women
Conclusion: . SizemAge
Use LDA, if you have labelled © oA oy
(training) data and want good 201 b ¢
classification. e .
19 . .. s
—_ ) )
Use PCA, if you don’t have data | £, A ]
with labels, and want to find g * g o
. 17 e © ¢
structures in data. ¢y *
o . '
16 et
The dimensionality reduction
of the PCA allows you to get a 15
visual inspection in 2D! % @ gt oL o o
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