
Applied Statistics 
Multivariate analysis 

“Statistics is merely a quantisation of common sense”

Troels C. Petersen (NBI)
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MultiVariate Analysis & Fisher Discr.



Null Hypothesis Alternative Hypothesis
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Separating hypothesis



Simple Example
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Problem: You want to figure out a method for getting sample that is 95% male!
Solution: Gather height data from 10000 people, Estimate cut with 95% purity!



Simple Example
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Additional data: The data you find also contains shoe size!
How to use this? Well, it is more information, but should you cut on it?

The question is, what is the best way to use this (possibly correlated) information!



Simple Example
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So we look if the data is correlated, and consider the options:

Cut on each var?
Poor efficiency!

Advanced cut?
Clumsy and

hard to implement

Combine var?
Smart and
promising

The latter is the Linear Discriminant Analysis (LDA) aka. Fisher discriminant!
It has the advantage of being simple and applicable in many dimensions easily!



Simple Example

7

So we look if the data is correlated, and consider the options:

Cut on each var?
Poor efficiency!

Advanced cut?
Clumsy and

hard to implement

Combine var?
Smart and
promising

Interestingly, this is exactly 
the approach of tree-based 
learning in ML, through 
“brute force” of computers.

The latter is the Linear Discriminant Analysis (LDA) aka. Fisher discriminant!
It has the advantage of being simple and applicable in many dimensions easily!



Fisher’s friend, Anderson, came home from picking Irises in the Gaspe peninsula...
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Separating Classes/Types



You want to separate two types/classes (A and B) of events using several 
measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

Q: How to choose the values of w?
A: Inverting the covariance matrices:

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.
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F = w0 + ~w · ~x

~w = (⌃A +⌃B)
�1 (~µA � ~µB)

LDA / Fisher Discriminant



You want to separate two types/classes (A and B) of events using several 
measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

Q: How to choose the values of w?
A: Inverting the covariance matrices:

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.
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F = w0 + ~w · ~x

~w = (⌃A +⌃B)
�1 (~µA � ~µB)

This is exactly a projection!

LDA / Fisher Discriminant



You want to separate two types/classes (A and B) of events using several 
measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

Q: How to choose the values of w?
A: Inverting the covariance matrices:

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.
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F = w0 + ~w · ~x

~w = (⌃A +⌃B)
�1 (~µA � ~µB)

The optimal projection direction is calculated this way.

LDA / Fisher Discriminant



You want to separate two types/classes (A and B) of events using several 
measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

Q: How to choose the values of w?
A: Inverting the covariance matrices:

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.
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F = w0 + ~w · ~x

~w = (⌃A +⌃B)
�1 (~µA � ~µB)

LDA / Fisher Discriminant

From Fisher’s original paper:



You want to separate two types/classes (A and B) of events using several 
measurements.

Q: How to combine the variables?
A: Use the Fisher Discriminant:

Q: How to choose the values of w?
A: Inverting the covariance matrices:

This can be calculated analytically, and
incorporates the linear correlations into
the separation capability.
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F = w0 + ~w · ~x

~w = (⌃A +⌃B)
�1 (~µA � ~µB)

This is just an offset (one can also scale)!

LDA / Fisher Discriminant



Executive summary:
Fisher’s Discriminant uses a linear combination of variables to give a single
variable with the maximum possible separation (for linear combinations!).

It is for all practical purposes a projection (in a Euclidian space)!
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LDA / Fisher Discriminant
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~w = (⌃A +⌃B)
�1 (~µA � ~µB)

F = w0 + ~w · ~x

LDA / Fisher Discriminant



The details of the formula are outlined below:
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~w = (⌃A +⌃B)
�1 (~µA � ~µB)

F = w0 + ~w · ~x F is what you base 
your decision on.

Given weights (w), 
you take your input 
variables (x) and 
combine them 
linearly as follows:

For each input variable (x), 
you calculate the mean (µ), 
and form a vector of these.

Using the input variables (x), 
you calculate the covariance 
matrix (Σ) for each species 
(A/B), add these and invert.

You have two samples, A and B, 
that you want to separate.

LDA / Fisher Discriminant



Classical case (signal peak on background)…

Simple enough - we select cases between two values around peak!
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Selecting signal in 1D
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While the Fisher Discriminant uses all separations and linear correlations,
it does not perform optimally, when there are non-linear correlations present:

If the PDFs of signal and background are known, then one can use a likelihood.

But this is very rarely the case, and therefore more “tough” methods are needed...

✓
?

Selecting signal in 2D
Now let us try in 2 dimensions (two cases):
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Relation to ML
Machine Learning



Unsupervised vs. Supervised
Classification vs. Regression
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Machine Learning can be supervised (you have correctly labelled examples) or 
unsupervised (you don’t)… [or reinforced]. Following this, one can be using ML 
to either classify (is it A or B?) or for regression (estimate of X).



Unsupervised vs. Supervised
Classification vs. Regression
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Machine Learning can be supervised (you have correctly labelled examples) or 
unsupervised (you don’t)… [or reinforced]. Following this, one can be using ML 
to either classify (is it A or B?) or for regression (estimate of X).

LDA/Fisher



Unsupervised vs. Supervised
Classification vs. Regression
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Machine Learning can be supervised (you have correctly labelled examples) or 
unsupervised (you don’t)… [or reinforced]. Following this, one can be using ML 
to either classify (is it A or B?) or for regression (estimate of X).

LDA/Fisher

LDA/Fisher
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Relation to PCA
Principle Component Analysis
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Principle Component Analysis (PCA)
PCA is a technique for dimensionality reduction of a dataset, accomplished 
through linearly transforming the data into a new coordinate system where the 
maximum variation in the data is spanned by fewer (usually two!) dimensions 
than the initial data.

https://en.wikipedia.org/wiki/Coordinate_system


25

Principle Component Analysis (PCA)
PCA is a technique for dimensionality reduction of a dataset, accomplished 
through linearly transforming the data into a new coordinate system where the 
maximum variation in the data is spanned by fewer (usually two!) dimensions 
than the initial data.

https://en.wikipedia.org/wiki/Coordinate_system


26

Principle Component Analysis (PCA)
PCA is a technique for dimensionality reduction of a dataset, accomplished 
through linearly transforming the data into a new coordinate system where the 
maximum variation in the data is spanned by fewer (usually two!) dimensions 
than the initial data.

PCA2: ~Shape
PCA1: ~Volume

https://en.wikipedia.org/wiki/Coordinate_system
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Principle Component Analysis (PCA)
PCA is a technique for dimensionality reduction of a dataset, accomplished 
through linearly transforming the data into a new coordinate system where the 
maximum variation in the data is spanned by fewer (usually two!) dimensions 
than the initial data.

The PCA directions constitute an orthonormal basis. PCA is the process of 
computing the principal components and using them to perform a change of 
basis on the data, often using only the first few principal components.

PCA2: ~Shape
PCA1: ~Volume

https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Orthonormal_basis
https://en.wikipedia.org/wiki/Change_of_basis
https://en.wikipedia.org/wiki/Change_of_basis
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Principle Component Analysis (PCA)
The principal components of data (points in N-dimensional space) are a 
sequence of unit vectors, where the i-th vector is the direction of a line that best 
fits the data while being orthogonal to the first i-1 vectors. Here, a best-fitting 
line is defined as one that minimises the average squared perpendicular 
distance from the points to the line.

https://en.wikipedia.org/wiki/Unit_vector
https://en.wikipedia.org/wiki/Orthogonal
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Principle Component Analysis (PCA)
PCA is defined as an orthogonal linear transformation to a new coordinate 
system, where the i’th greatest variance by some scalar projection of the data 
comes to lie on the i’th coordinate (called the i'th principal component).

~w1 = arg max
||w||=1

"
X

i

(~xi · ~w)2
#

<latexit sha1_base64="u6iMnAK/KjmCAapQYc1FDqt4FDw=">AAACSXicbVBNbxMxFPSmfJTwFeDIxWqEVC7RblWpcKhUwYVjK5G2UrwsXu/bxKo/VvbbNtFm/x4Xbtz4D1w4FCFOddI9QMtIlkYz8+znySslPcbx96i3cefuvfubD/oPHz1+8nTw7Pmxt7UTMBZWWXeacw9KGhijRAWnlQOucwUn+dn7lX9yDs5Laz7iooJU86mRpRQcg5QNPrNzEM1FmyV0n7LaFCEL2CyXF8vlftI2TOd23nA3pZrP25YyBSVOKPO1ziTdXk/P20CZKCzS7rbXn3Yoc3I6wzQbDONRvAa9TZKODEmHw2zwjRVW1BoMCsW9nyRxhWlYAaVQ0PZZ7aHi4oxPYRKo4Rp82qybaOmroBS0tC4cg3St/j3RcO39QuchqTnO/E1vJf7Pm9RYvkkbaaoawYjrh8paUbR0VSstpAOBahEIF06GXamYcccFhkL7oYTk5pdvk+OdUbI7enu0Ozx419WxSV6SLbJNErJHDsgHckjGRJAv5Ae5JL+ir9HP6Hf05zrai7qZF+Qf9DauALnFs/c=</latexit>
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Principle Component Analysis (PCA)
PCA is defined as an orthogonal linear transformation to a new coordinate 
system, where the i’th greatest variance by some scalar projection of the data 
comes to lie on the i’th coordinate (called the i'th principal component).

The PCA transformation is defined as a set of size q of p-dimensional vectors:

that map each data point to a new vector of principle component “scores”, given
by: 

in such a way that the individual variables of t considered over the data set 
successively inherit the maximum possible variance from the original data.
The PC are calculated as:

~w1 = arg max
||w||=1

"
X

i

(~xi · ~w)2
#

<latexit sha1_base64="u6iMnAK/KjmCAapQYc1FDqt4FDw=">AAACSXicbVBNbxMxFPSmfJTwFeDIxWqEVC7RblWpcKhUwYVjK5G2UrwsXu/bxKo/VvbbNtFm/x4Xbtz4D1w4FCFOddI9QMtIlkYz8+znySslPcbx96i3cefuvfubD/oPHz1+8nTw7Pmxt7UTMBZWWXeacw9KGhijRAWnlQOucwUn+dn7lX9yDs5Laz7iooJU86mRpRQcg5QNPrNzEM1FmyV0n7LaFCEL2CyXF8vlftI2TOd23nA3pZrP25YyBSVOKPO1ziTdXk/P20CZKCzS7rbXn3Yoc3I6wzQbDONRvAa9TZKODEmHw2zwjRVW1BoMCsW9nyRxhWlYAaVQ0PZZ7aHi4oxPYRKo4Rp82qybaOmroBS0tC4cg3St/j3RcO39QuchqTnO/E1vJf7Pm9RYvkkbaaoawYjrh8paUbR0VSstpAOBahEIF06GXamYcccFhkL7oYTk5pdvk+OdUbI7enu0Ozx419WxSV6SLbJNErJHDsgHckjGRJAv5Ae5JL+ir9HP6Hf05zrai7qZF+Qf9DauALnFs/c=</latexit>

~w(k) = (w1, . . . , wp)(k)

<latexit sha1_base64="34DsZAQUId7Fqoj8+GUsg0J0/+A=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0VIoZRECupCKLpxWcE+oAlhMpm2QycPZiYtJeQX3Pgrblwo4tadO//GaZuFth64cDjnXu69x4sZFdI0v7XC2vrG5lZxu7Szu7d/oB8etUWUcExaOGIR73pIEEZD0pJUMtKNOUGBx0jHG93O/M6YcEGj8EFOY+IEaBDSPsVIKsnVDXtMcDrJ3NQYVTJ4DY2Ja1WhzfxIiiqcuHFlYbl62ayZc8BVYuWkDHI0Xf3L9iOcBCSUmCEhepYZSydFXFLMSFayE0FihEdoQHqKhiggwknnH2XwTCk+7EdcVSjhXP09kaJAiGngqc4AyaFY9mbif14vkf1LJ6VhnEgS4sWifsKgjOAsHuhTTrBkU0UQ5lTdCvEQcYSlCrGkQrCWX14l7fOaVa9d3dfLjZs8jiI4AafAABa4AA1wB5qgBTB4BM/gFbxpT9qL9q59LFoLWj5zDP5A+/wBrXObqw==</latexit>

~t(i) = (t1, . . . , wq)(i) = ~x(i) · ~w(k)

<latexit sha1_base64="c0Wt8OtlLQOyeExGbojT6mEHlyk=">AAACNXicbVDLSgMxFM34tr6qLt0Ei9BCKTMiqAuh6MaFCwWrhc4wZNK0Dc08TO5YyzA/5cb/cKULF4q49RdMp1W09UDgcM653NzjRYIrMM1nY2p6ZnZufmExt7S8srqWX9+4UmEsKavRUISy7hHFBA9YDTgIVo8kI74n2LXXPRn417dMKh4Gl9CPmOOTdsBbnBLQkps/s28ZTSB1kyIvpfgIF8G1ytgWzRBUGffcm9KPlUXvvqM21ZGh1hto3VLq5gtmxcyAJ4k1IgU0wrmbf7SbIY19FgAVRKmGZUbgJEQCp4KlOTtWLCK0S9qsoWlAfKacJLs6xTtaaeJWKPULAGfq74mE+Er1fU8nfQIdNe4NxP+8RgytAyfhQRQDC+hwUSsWGEI8qBA3uWQURF8TQiXXf8W0QyShoIvO6RKs8ZMnydVuxdqrHF7sFarHozoW0BbaRkVkoX1URafoHNUQRffoCb2iN+PBeDHejY9hdMoYzWyiPzA+vwBLnaoE</latexit>

https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Coordinate_system
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Principle Component Analysis (PCA)
PCA is defined as an orthogonal linear transformation to a new coordinate 
system, where the i’th greatest variance by some scalar projection of the data 
comes to lie on the i’th coordinate (called the i'th principal component).

Shown below is an example of a PCA transformation from 3D to 2D, 
considering the two PCs with the greatest variance:
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Principle Component Analysis (PCA)
Why consider the largest variation? Well, the “hope” is that any possible signal 
lies in the (principle) direction of maximal variance, while noise in the data lies 
along the “lesser” directions:
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Principle Component Analysis (PCA)
Why consider the largest variation? Well, the “hope” is that any possible signal 
lies in the (principle) direction of maximal variance, while noise in the data lies 
along the “lesser” directions:

Signal?

Noise?
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Principle Component Analysis (PCA)
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PCA can be used to determine “proximity” in very high dimensional spaces:



PCA vs. LDA (Fisher)
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So what is the difference, and when to use one or the other method?

PCA is an unsupervised algorithm while LDA is a supervised algorithm.
This means that PCA finds directions of maximum variance regardless of class 
labels while LDA finds directions of maximum class separability.
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PCA vs. LDA (Fisher)
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So what is the difference, and when to use one or the other method?

PCA is an unsupervised algorithm while LDA is a supervised algorithm.
This means that PCA finds directions of maximum variance regardless of class 
labels while LDA finds directions of maximum class separability. 
 
Conclusion: 
Use LDA, if you have labelled
(training) data and want good
classification.
 
Use PCA, if you don’t have data
with labels, and want to find
structures in data.

The dimensionality reduction
of the PCA allows you to get a
visual inspection in 2D!


