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The performance of optical atomic clocks is improving at a high pace. Their stability is surpass-
ing atomic fountain clocks based on the 133Cs microwave hyperfine transition defining the S.I. 
second 1-4. Furthermore, Optical lattice clocks using strontium atoms have demonstrated uncer-
tainties at the 10-16 level 3. Currently, the blackbody radiation (BBR) shift is the largest correc-
tion and the largest contribution to the strontium clock uncertainty. In the future, the BBR shift 
will be severe limitation at the 10-17 level. Owing to its low sensitivity to blackbody radiation 5, a 
mercury atom standard has the potential to achieve an uncertainty at the low of the 10-18 and to 
compete with the best single ion optical clocks 1. After achieving magneto-optic trapping (MOT) 
of mercury 5, 6 and after preliminary measurement of the clock absolute frequency on laser cooled 
free falling atoms 6, the next important step is to demonstrate the feasibility of dipole lattice trap-
ping at a magic wavelength. This is a challenging task in many respects, due to several aspects 
specific to mercury atom, such as the comparatively low polarizability, the relatively high power 
requirement at a difficult and yet significantly uncertain wavelength, the fact that 2 photon ioni-
zation for the excited clock state is energetically allowed, etc. 
 

In this talk, I will report on our work toward the realization of a dipole lattice trap at the magic 
wavelength suitable for the 1S0-3P0 transition in neutral Hg. This work includes the development 
of a suitable laser source at the predicted magic wavelength of 362 nm, the detailed characteriza-
tion of the MOT7 which will be the starting point to load the lattice trap, the development of a 
detection system with suitably low noise and the first observation of the neutral mercury atoms 
in shallow dipole traps8. The previous Doppler-free spectroscopy using clock laser source refer-
enced on an ultra-stable cavity with instability of 10-16 /√τ will be briefly reviewed, together with 
some renewed results corresponding to the characterization of the sub-hertz’s linewidth laser9. 
 


