Toward a mercury optical lattice clock: **Development of a dipole lattice trap**

Lin Yi, John J. Mcferran, Sinda Mejri, Sébastien Bize

LNE-SYRTE, Observatoire de Paris, UMR CNRS 8630, UPMC 61 avenue de l'Observatoire, 75014, Paris, France,

Email: lin.yi@obspm.fr

The performance of optical atomic clocks is improving at a high pace. Their stability is surpassing atomic fountain clocks based on the ¹³³Cs microwave hyperfine transition defining the S.I. second ¹⁻⁴. Furthermore, Optical lattice clocks using strontium atoms have demonstrated uncertainties at the 10⁻¹⁶ level³. Currently, the blackbody radiation (BBR) shift is the largest correction and the largest contribution to the strontium clock uncertainty. In the future, the BBR shift will be severe limitation at the 10^{-17} level. Owing to its low sensitivity to blackbody radiation⁵, a mercury atom standard has the potential to achieve an uncertainty at the low of the 10^{-18} and to compete with the best single ion optical clocks¹. After achieving magneto-optic trapping (MOT) of mercury ^{5,6} and after preliminary measurement of the clock absolute frequency on laser cooled free falling atoms⁶, the next important step is to demonstrate the feasibility of dipole lattice trapping at a magic wavelength. This is a challenging task in many respects, due to several aspects specific to mercury atom, such as the comparatively low polarizability, the relatively high power requirement at a difficult and yet significantly uncertain wavelength, the fact that 2 photon ionization for the excited clock state is energetically allowed, etc.

In this talk, I will report on our work toward the realization of a dipole lattice trap at the magic wavelength suitable for the ${}^{1}S_{0}$ - ${}^{3}P_{0}$ transition in neutral Hg. This work includes the development of a suitable laser source at the predicted magic wavelength of 362 nm, the detailed characterization of the MOT⁷ which will be the starting point to load the lattice trap, the development of a detection system with suitably low noise and the first observation of the neutral mercury atoms in shallow dipole traps⁸. The previous Doppler-free spectroscopy using clock laser source referenced on an ultra-stable cavity with instability of $10^{-16} / \sqrt{\tau}$ will be briefly reviewed, together with some renewed results corresponding to the characterization of the sub-hertz's linewidth laser⁹.

² M. M. Boyd et al., "⁸⁷Sr Lattice Clock with Inaccuracy below 10⁻¹⁵", Phys.Rev.Lett., vol. 98, p. 083002, 2007. ³ A. D. Ludlow et al., "Sr Lattice Clock at 1 x 10^{-16} Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock", Science, vol. 319, p. 1805, 2008.

⁴ T. Schneider, E. Peik, and C.Tamm, "Sub-Hertz Optical Frequency Comparisons between Two Trapped ¹⁷¹Yb⁺ Ions", Phys. Rev. Lett., vol. 94, p. 230801, 2005.

⁵ H. Hachisu et al., "Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks", Phys. Rev. Lett., vol. 100, p. 053001, 2008

⁶ M. Petersen et al., "Doppler-Free Spectroscopy of the ¹S₀-³P₀ Optical Clock Transition in Laser-Cooled Fermionic Isotopes of Neutral Mercury", Phys. Rev. Lett., vol. 101, p. 183004, 2008 ⁷ J.J. McFerran et al., "Sub-Doppler cooling of Hg fermionic isotopes in a magneto-optical trap", submitted to Op-

⁸ S. Mejri et al., "Towards an optical lattice clock based on mercury: loading of a dipole trap", Proceedings of the 2010 European Frequency and Time Forum (under publishing) Noordwijk, Netherlands, 2010

⁹ S. Dawkins et al., "An ultra-stable referenced interrogation system in the deep ultraviolet for a mercury optical lattice clock", Appl. Phys.B vol. 99, p. 41, 2009

¹ T. Rosenband et al., "Frequency Ratio of Al⁺ and Hg⁺ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place", Science, vol. 319, p. 1808, 2008.

tics Letters