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Abstract—Recent reports have suggested that chaos control interictal spikes—those seen on an EEG between seizure

techniques may be useful for electrically manipulating epilep- episodes—and are thus a hallmark of epile]ﬁsu. has

tiform bursting behavior in neuronal ensembles. Because the . . . .
dynamics of spontaneos vitro bursting had not been well been postulated that this bursting is chaotic and hence

determined previously, analysis of this behavior in the rat hip- could be controlled using chaos control techniqtfesl-
pocampus was performed. Epileptiform bursting was induced though simple periodic pacing has been shown to be

in transverse rat hippocampal slices using three experimental capable of preventing ictal seizure activity vitro,**

metth(.)d.s' _ii)cels Wterg bet'theq in "irtififif(') ;ereMbro(sé[)Jinal fluid sing such a protocdh vivo might kindle new epileptic
containing;(1) elevated potassiuniK “Jo=10.5mM), (2) zero foci resulting in more seizures rather than fewer. The

magnesium, ot3) the GABA,-receptor antagonists bicuculline ) i . .
(20 uM) and picrotoxin(250 xM). The existence of chaos and advantage of using chaos control is that the stimuli
determinism was assessed using two different analytical tech- would be applied relatively infrequently thereby reducing
niques: unstable periodic orbiyPO) analysis and a new tech-  the likelihood of inducing new seizures.

nique for estimating Lyapunov exponents. Significa_nce of these  There are, in general, three essential ingredients to a
results was assessed by comparing the calculations for eachChaotic svstem: determinism. aperiodicity. and sensitive
experiment with corresponding randomized surrogate data. y : » ap Y:

UPOs of multiple periods were highly prevalent in experiments dependence on initial conditiof$.In contrast to a sto-
from all three epilepsy models: 73% of all experiments con- chastic system, a deterministic system follows some

tained at least one Statistically Signiﬁcant period-l or period-2 mathematical relationship and in this sense is predictable.

orbit. However, the expansion rate analysis did not provide any ; : : B i
evidence of determinism in the data. This suggests that the In a chaotic system, however, this predictability is lim

system may be globally stochastic but contains local pockets of It€d by sensitive dependence_ on initigl anditions. The
determinism. Thus, manipulation of bursting behavior using evolution of a system’s behavior over time is represented

chaos control algorithms may yet hold promise for reverting or by a trajectory, or orbit, in state space. In a chaotic
preventing epileptic seizures. @001 Biomedical Engineering  gystem, two trajectories that start close to each other will
Society. [DOI: 10.1114/1.1380419 diverge exponentially over time. This divergence can be
qguantified by calculating the Lyapunov exponents of the
Keywords—Chaos, Hippocampus, Epilepsy, Nonlinear, Un- system. A chaotic trajectory can also be described as
stable periodic orbit, Lyapunov exponent, Determinism, Potas- wandering along a path of an infinite amount of unstable
sium, GABA, Magnesium, Chaos, Electrophysiology, Brain. periodic orbits(UPO9.8 Detection of UPOs in a system
is an indication that the system contains determinism and
may be chaotic.
Significant efforts have been made to try to character-
ize neuronal behavior using nonlinear dynamical systems
theory?!” UPOs have been detected in multiple neuronal

INTRODUCTION

Epilepsy afflicts between 1% and 2% of the world’s
population. While many antiepileptic drugs currently ex-
ist, at least 20% of all epileptic patients are still not kept i . .
seizure-free by pharmacological treatment. For many of SYStéms, the first being the crayfish photoreceﬁtor.
these patients, the only remaining option is surgical re- Much of the rese.arch on dynarmcs n epllgpsy has fo-
section of the seizure focus. Schiéf al24 have demon-  cused on calculating the correlation dimen$i&twhich

strated that it may be possible to apply techniques from ¢an be misleading in practice because of the need for
nonlinear dynamics to manipulaie vitro epileptiform many assumptions and the prevalence of false positive

19 :
bursting. These bursts are thought to be analogous toresults.” Some have searched for chaos by calculating

Lyapunov exponents of electroencephalogrdBEG)
21,31 ;
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addition to determinism Studies with these techniques
have provided evidence both supportifigt and
contradicting® the existence of nonlinear determinism in
EEG seizure activity. One group has found evidence of a
few period-1 orbits in epileptic EEG recordings from
three human subjects. Another has found several
period-1 orbits in both the highk *], in vitro model and

in human epileptic EEG recordings as well as a few
orbits of periods 2 and 3 in intracellular recordings from
CA1 neurons in normal ACSE.

Little prior evidence exists as to whether spontaneous
in vitro bursting contains determinism or is purely sto-
chastic in naturé’ To the best of our knowledge, only
two reports have investigated nonlinear characteristics of
the highfK ], in vitro model of epilepsy. In oné& three
types of nonlinear prediction were used to analyze data
from six hippocampal slices; only one slice showed evi-
dence of determinism. The other regbfiound evidence
of unstable period-1 orbits in about half of the experi-
ments in extracellular potassium concentrations of 7.5—
9.5 mM and in 91% of the experiments at 10.5 mM
[K*],. This was the first evidence for determinism in
epileptiform bursting in the highk ], model; however,
these findings alone were not sufficient to prove chaos
and were more restricted by the cellular mechanisms
underlying the bursting activity since only one burst-
induction protocol was used.

We used three different experimental protocols to
elicit epileptiform bursting, in order to investigate
whether different mechanisms underlying spontaneous
bursting created significant differences in system dynam-
ics: (1) high{K*1,;%° (2) zerofMg?*],;® and (3) the
y-amino-butyric acidGABA,, an inhibitory neurotrans-
mitter) receptor antagonists picrotoxin and bicuculline.
We analyzed this bursting using two different measures

of chaos: UPO detection and a novel technique, designed
for data from noisy systems, that assesses deterministic

expansion.

METHODS

Experimental Protocols

Hippocampal slices were obtained from 20- to 25-
day-old male Sprague—Dawley ratglarlan. Animals
were anesthetized with isoflurane by inhalation and then
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bubbled ACSF at room temperature 22 °C) for at least
1 h and then transferred as needed to a submersion
chamber.

Field potential(extracellulafy measurements were re-
corded in stratum pyramidale of the CA3 region. Record-
ings were made using glass microelectro@2s4 M()
pulled from borosilicate glass capillaries and filled with
2 M NaCl. Signals from the electrodes were bandpass
filtered (0.3H&f<3 kHz) using an ac differential am-
plifier (DAM 80, World Precision InstrumentsThe sig-
nals were then digitizedat 10 kH2 with a Digidata
1200 A/D converter board and acquired USK¥}PBASIC
software (Axon Instruments The viability of the slice
was assessed by stimulating the Schaffer collaterals and
recording excitatory postsynaptic potentialEPSP$
from stratum radiatum of CA1. Only slices with EPSP
amplitudes greater than 0.4 mV were used.

Epilepsy Models

Slices were placed in the recording chamb&=@34
+1°C) for at least 30 min prior to initiation of the
experimental protocol. Slices were then exposed to the
experimental solution for 30 min prior to initiation of
recording. Bursts were generated using three different
vitro models of epilepsy(1) ACSF containing elevated
[K™], (10.5 mM); (2) Mg®*-free ACSF; or(3) 20 uM
bicuculline methochloridgSigma and 250 uM picro-
toxin (Sigma added to ACSF containing 1.2 mMC& ]
and 5 mM[K*]. The changes in calcium and potassium
concentrations in the third model were necessary in order
to attain a burst rate sufficiently fast to achieve an ac-
ceptable level of accuracy in the data analysis. Data were
recorded and analyzed off-line. Bursts were detected us-
ing a combination voltage- and time-threshold software
algorithm. Criteria used to identify a burst were as fol-
lows: (1) the waveform must exceed the voltage thresh-
old (0.03-0.05 mYV for more than 16 ms but less than
1000 ms,(2) bursts must be at least 250 ms apart, and
(3) the wave form cannot dip below the threshold for
more than 20 ms at a timé&his allowed for multiple
spikes riding on top of a burstThe time between bursts,
called interburst intervallBl, see Fig. 1, was the system
parameter used to characterize behavior.

Mathematical Methods

The dynamics of the bursting activity was character-

decapitated. The brain was rapidly excised, hemisected atized using a measure similar to Lyapunov exponents

the central fissure, and placed in cold°C) artificial
cerebrospinal fluid(ACSP containing (in mM): NaCl
130, NaHCQ 24, D-Glucose 10, MgS£1.3, NaBPG,
1.25, KCI 3.5, CaGl 24 and gassed with
95% O,/5% CO,. Both hippocampi were dissected free
and 400um transverse slices were cut using a vertical
tissue chopper(Stoelting. Slices were stored in the

and unstable periodic orbité.These two measures pro-
vide both global and local information about a system’s
behavior in state space. A chaotic system possesses the
seemingly paradoxical property of being locally unstable
but yet globally recurrent, i.e., the system returns repeat-
edly to certain states. The existence of a positive
Lyapunov exponent in a system defines that system’s
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FIGURE 1. Spontaneous bursting elicited by three different
experimental techniques recorded extracellularly in CA3 py-
ramidal layer of the rat transverse hippocampal slice.
The typical extracellular recording of a spontaneous burst,
generated by the high- [K*], model. (B)—(D) Time series data
of spontaneous bursts generated by (B) high-[K*], (10.5
mM), (C) zero-[Mg?*],, and (D) GABA , receptor blockade
using bicuculline (20 uM) and picrotoxin (250 uM). Each pair
of traces is contiguous in time.

A)

behavior as chaoti®’ Furthermore, the existence of un-
stable periodic orbits in a system implies that the system
is deterministic and likely chaotit.

Analysis Concepts

State Space and Embeddimgriodic orbits can be stable

or unstable. Stable periodic orbits attract other nearby
trajectories, while UPOs repel trajectories in at least one
direction and may attract or repel them in other direc-
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FIGURE 2. Rapid expansion of a small cluster of points for
data from a high- [K*], experiment. The whole attractor ~ (-) is
shown in delay coordinates. The initial cloud of points (@)
expands rapidly after one iteration  (A) and covers almost the
whole attractor width after two iterations O).

next IBIs (e.g., see Fig. 2 Such IBI embeddings have
also been shown to be sufficient to characterize most of
the original system’s dynamical behavig?

Surrogate DataMost natural systems have some amount
of noise in them, and it has been hypothesized that neu-
rons fire in a purely stochastic manner. To provide evi-
dence that the data indeed contained a deterministic com-
ponent and not merely stochastic noise, the method of
surrogate data was us&Surrogate data sets were cre-
ated by randomizing the order of a data set. The same
measures were then computed for the surrogates and the
results compared with the data. This permitted testing the
null hypothesis that any apparent structure in the data
can be accounted for by a purely stochastic process.

Lyapunov Exponent Estimatdsxponential divergence of
two nearly identical points in state space can be quanti-
fied by the Lyapunov exponents of a system. A positive
exponent signifies exponential expansion and thus chaos.
An mdimensional system will in general have
m Lyapunov exponents associated with it. However, for
our purposes it was sufficient to calculate the largest
Lyapunov exponent, for if the largest exponent is posi-
tive, the system is chaotic.

For small and noisy data sets, the computation of

tions. Chaotic trajectories can be characterized by alLyapunov exponents can be very difficult. Most algo-

“skeleton” of UPOs that they approach and recede from
as time evolves. Using time-delay embedding, scalar
data can be converted into vectors which form a more

rithms for measuring the largest Lyapunov exponent look
at a small group of points that are close neighbors in
state space and examine how they spread out as time

complete representation of the system in state space. Thisevolves. If there are not a sufficiently large number of
embedding has been shown to preserve the geometricpoints in the data, however, one must increase the initial

and dynamical properties of the systéfor all of the

neighborhood size in order to include a sufficient number

data analyses in this study, IBIs were first embedded into of points in the calculation. This can create erroneous

two-dimensional vectors consisting of the current and

expansion rates since points that are not truly neighbors
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in state space are being treated as such. Also, noise may Other types of surrogates have been suggested as be-
cause points that appear close together to diverge rapidlying more appropriate for use in detecting UP®3hese
as well. include the Gaussian-shuffle@r simple-shuffled, SS

To overcome these obstacles, a new method of detect-surrogates, which were used in the Lyapunov exponent
ing determinism based on short-time expansion rates wascalculations. To further confirm the significance of the
developed and used. While the resulting measure of ex-UPOs, the SS surrogates were also used for analyzing
pansion is not a Lyapunov exponent, it would converge several data sets. The issue of the appropriate surrogate
to the largest Lyapunov exponent in a noiseless system.type for validating UPOs in IS| series is controversial, as
Therefore, for the sake of convenience, our “expansion each type of surrogate has its own advantages and
rate” will be referred to as a Lyapunov exponent esti- flawsZ® However, the use of two different types of sur-
mate. This method is described more fully in the “Tech- rogates should help reduce the chance of error due to the
nical Details” section below. type of surrogate.

Unstable Periodic OrbitsLyapunov exponents are ex- Lyapunov Exponentddany algorithms exist for calculat-
tracted from full data sets and are thus global measuresing the Lyapunov exponents from time series datawe

of chaotic dynamics. To characterize the system’s dy- first used the method derived by Kartzwhich is simi-
namics on a local scale, we also searched the data for thdar to the method of Wolket al3* but is more robust to
presence of unstable periodic orbits. The existence of anoise. The algorithm measures the rate at which two
few UPOs in experimental data is not sufficient to prove points in state space separate over varying amounts of
that a system is chaotic; however, it does imply deter- time (7). Averaging over all points in the state space, and
minism and strongly suggests the presence of chaos inthe use of all nearest neighbors helps make this algo-
the system. Moreover, it has been shdwthat good rithm particularly robust to some noise. Averaging over
estimates of the dynamics of a system can be made usinghe entire data set means that the Lyapunov expokent
only the low-period UPOs, which are the easiest to de- is a global measure of chaos.

tect. Furthermore, the presence of low-period UPOs is a The Lyapunov calculations were tested for signifi-
prerequisite for the successful application of most forms cance using SS surrogates. Five surrogates were created
of chaos controf® for each experiment, and*+s (the standard errprwas

The recently introduced method of Set al?® was calculated for each surrogate. A weighted ratio was then
used to search for low-period orbits. This technique uses calculated for each group of surrogates. This ratio was
a transformation to concentrate data around UPOs thuscompared to the ratia/s for each data set, thus provid-
creating peaks in the histogram of the transformed dataing a measure of statistical significance for the null hy-
that correspond to the locations of the UPOs. This allows pothesis that the experimental data were no different
the simple detection of UPOs by locating the peaks in from Gaussian noise.
the distribution of the transformed data. The significance  The algorithm was successfully tested on thenéte
of these peaks was assessed using surrogate data. map, a chaotic system conventionally used to benchmark

such algorithms. The algorithm calculated an exponent of

0.415 for 2000 points of the H@n map with 1% Gauss-

Technical Details of the Analysis ian noise added, which was in close agreement with the

accepted value of 0.4168.n all of the calculations with
Surrogate DataTwo types of surrogate data were used. this method, initial neighborhood size was 0.1 s and
For the Lyapunov exponent computations, surrogate datavaried from 2 to 21. However, when the IBI data were
sets were created by shuffling the order of the IBIs using examined more closely, it was noted that points in the
a Gaussian distributioft. These surrogates maintained initial neighborhood expanded very quickly, in fact, they
the amplitude distribution of the original data while re- typically spread out to separations exceeding half the
moving any correlation. size of the entire attractor within one or two iteratés.

For the UPO analysis, amplitude-adjusted Fourier this article, we use the term attractor in a loose sense to
transform (AAFT) surrogates were uséd. First, a refer to the region that no point in the data set exits.
Gaussian-distributed random setvas created and rank  Once the points had spread this far apart, there was not
ordered according to the original data, and its Fourier much room left for them to spread, so using 2 would
transform was computed. Then the phases of this setbe misleading. In other words, there was no conceivable
were randomized, and the inverse Fourier transform wasway in which the expansion rate of IBl data could be
performed, giving sek,. Finally, the original data set measured over a long time span, which is required to
was rank-ordered according 1@, producing the surro-  properly evaluate Lyapunov exponents. Therefore, a dif-
gate. These surrogates thus maintained the amplitudederent approach to estimating expansion rates was devel-
and approximate power spectrum of the original data. oped.
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Short-Time Expansion Measule. one-dimensional sys- examined. Small values of nn were insufficient for de-
tems the Lyapunov exponent can be computed by inte- termining the local expansion rateas. For a stochastic
grating over the instantaneous expansion rate weightedsystem,L . should decline to zero as nn increased to the
by the local trajectory visitation ratéi.e., probability total number of points in the data set, since the neigh-
density functiof. The new method mimics this for borhood would have less and less room to expand. For a
higher-dimensional systems, and surmounts the obstacledeterministic system, however, there should be some re-
of extremely rapid expansion by examining the ratio of gion wherel,, was relatively constant, which would
distances between nearby points after only one iterate.imply a constant expansion ratéyapunov exponent
The method estimated the maximal Lyapunov exponent was present. There is usually some noise present in most
by using a spatial average of the many local expansion experimental systems, so in practice there will be three
rates on an attractor. A fixed number of nearest neighborsranges of behavior: for very small nn, the noise is greater
was found for every point in the data set. The resulting than the neighborhood size, ahg,. decreases logarith-
cloud of points were then fit to an ellipse using principal mically; for large nn, there is no room left to expand so
components analysi€PCA). The largest principal com- L, again decreases logarithmically; and there should be
ponent was the variance along the major axis of the some intermediate region whete,, is constant. This
best-fit ellipse and thus its square rgstandard devia-  technique provides a way of gauging the relative propor-
tion) served as a measure of the initial “spread” between tions of noise and determinism in the system’s global
the points. The points in the neighborhood were then behavior.
evolved one time step into the future. These points were
again fit to an ellipse using PCA, and the variance along Unstable Periodic OrbitsUPOs were detected with a
the major axis was obtained. The ratio of the final to the transform technique that concentrated the data around
initial principal components then provided an estimate of UPOs?® For period-1 orbits, the transformation was de-
the one-step expanding eigenvalue. The natural logarithmfined as
of the square root of this ratio was the estimated local
Lyapunov exponent. The global Lyapunov exponent was £=[1-S(x,R)] - [F(x)— S(x,R)-x], (2
then obtained by averaging the local estimates. That is,

where x was the d-dimensional time-delay vector of

1 N D IBls, | was the identity matrixF(x) was a vector of the
Lave:_z Nis )\i:|n< _1), (1) next iterate ofx, andS(x,R) was ad X d matrix function
Ni=1 Po of x and adxdXd random tensoR given by
where p, and p; were the largest principal components S(x,R)=VF(X)+R:[F(X)—x]. 3

of the initial and iterated clouds of points, respectively;
N was the total number of pointsy; was the local Here VF(x) was thedXxd Jacobian matrix ofF(x),
expansion rate; andl ., was the estimated Lyapunov which was calculated using a least-squares fit of three
exponent for the whole set. The expectation was that for spatial nearest neighbotse., the nearest three points in
deterministic systems, small neighborhoods of points state spade This transform was applied to every poit
would not spread out as quickly as in stochastic systemsin the set and summarized in a one-dimensioftaio-
after only one time step. If the system contained a strong dimensional for higher-period orbjtspatial distribution
stochastic component, the points would likely spread out function of the experimental data approximated by a
over most if not all of the attractor after only one time histogram with a bin size of 0.02 s. The transformation
step. For a cloud of neighboring points, the noise should shifted all points in the linear region of a fixed poixit
partially average out in this calculation, leaving primarily even closer to*, thus creating a peak in the distribution
the deterministic component. Therefore, the expectation function p(X). At any one value oR, the transformation
was that the local expansion rate,,., should be smaller  produced spurious peaks; these were filtered out by av-
for a deterministic system than for a stochastic system. eraging p(X) over several(300) different values ofR.
In this approach the determinism was discriminated from The higher the magnitude &, the more the peaks were
noise by comparind.,,. for a data set againdt,,, for smoothed out and the lower their amplitude.
corresponding surrogate data. For this analysis, amplitude-adjusted Fourier trans-
The estimate of the Lyapunov exponent produced by form (AAFT) surrogates were uséd.Fifty surrogate
this method was dependent upon the number of neigh- data sets were generated and transformed, and their cor-
bors (nn) included in each local estimate. Therefore, for responding probability distributions were calculated and
each data set,,, was calculated for nn ranging from 4 averaged together. A cumulative histogram of the maxi-
to the total number of points in the data set. Then the mum deviation of each surrogate from the surrogate
relationship betweenh ., and number of neighbors was mean at each point was used to estimate the probability
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that a peak in the transformed data was due to the pres-and 60 ms. Once initiated, spontaneous bursting usually
ence of a true UPO at that point. To account for nonsta- continued for at least 1 h. Typical burst trains for each of
tionarity of the datdi.e., drifting of the mean IBI length the three experimental techniques are shown in Figs.
due to factors such as fatigue of the neurons, network 1(B)—1(D). Both morphology and burst duration were
plasticity, or fluctuations in temperature and pressure, consistent for all three induction protocols. The system
each set of data was divided into windows of 256 IBIs state information was encoded as interburst intervals
and then analyzed. The selection of window size was (IBlIs) as seen in Fig. (B). The IBIs for the three burst-
based on optimizing the probability of finding a UPO ing protocols had means and standard errors of 3.59
(more point$ while minimizing the amount of nonsta- =*=0.54s fi=16742), 6.36:0.44s f=3566), and 6.37
tionarity (fewer points. +1.00s (=5741) for experiments using hidtk™],,
It has been suggested that this detection algorithm zerofMg?*],, and GABA, blockade, respectively.
might produce spurious UPO detections where there are
actually none(T. Schreibey. To further ensure that the
UPOs detected were truly significant, another surrogate
test was devised. Data surrogates were produced and The issue of whether the spontaneous bursting was
then analyzed as if they were experimental data, i.e., thechaotic was first examined by calculating Lyapunov ex-
UPO transform was applied to the surrogate and 50 sur-ponents for experiments using all three epilepsy models.
rogates of that surrogate and the significance of peaks inThe initial method uséd evaluated the relationship be-
the histograms was calculated. This was done for five tween S (the average distance that two neighboring
surrogategboth SS and AAFT of each data set on 14 of  points will diverge after timer) and 7 for each experi-
29 experiments. An estimate of the probability of finding ment. The Lyapunov exponeiik) was obtained by de-
a significant(i.e., p<<0.05 peak in each window was termining the slope of the least-squares fit line. However,
calculated for the data and the surrogates by dividing the upon closer inspection, it was noted that in all experi-
number of windows with significant peaks by the total ments, the neighborhoods expanded to well over half the
number of windows in each set. Then these probabilities size of the attractor withirr=2 time steps. An example
were compareddata versus average of surrogates for of this rapid expansion is shown in Fig. 2. The least-
that data setusing a paired test to determine whether squares fit could only include three points, making this
there was a significantly higher probability of finding a method unreliable and necessitating the development of
UPO in the data than in the surrogates. Naturally, 5% of the short-time expansion technique. The presence of de-
surrogate windows were expected to have significant terminism was assessed by searching for plateaus in the
peaks in them since we us@d<0.05 as our significance  curves ofL,, vs nn. These flat regions would indicate
criterion. Therefore, an experiment was considered sig- some measure of invariance in the expansion rate, which
nificant if more than 5% of its windows contained a is expected for a chaotic system.
significant peak. The short-time expansion technique was first tested on
The selection of certain parameters such as embed-1000 iterates of the H®n map(delay embedded in two
ding dimension(2) and number of nearest neighbors dimensiony with and without added noise and on five
used for calculating the Jacobi#b) was not optimized, SS surrogates of these data. As seen in Fi@\),3L e
but corresponded to the conventional values detlis for the curve of the average of the surrogates decreases
possible that the dynamics of the system are actually uniformly to zero(open circlg, while the curve of the
higher dimensional, and that UPO detection statistics Henon map without noisédark circle is roughly hori-
might improve if a higher embedding dimension were zontal. The Heon map with noise(dark squark
used. However, there was a practical lirdue to finite 0=0.02 has a large plateau area in the range
data length, nonstationarity, and computation jinoa nn=3%—-10% (of the points in the attractprand the
how many dimensions one could use. The number of curve for =0.2 (dark triangl¢ has a smaller “shoul-
nearest neighbors used could ideally also be optimized:der” in the range ne10%-—20%. L. is reasonably
the use of too few or too many may cause the fit to be close (0.50 to the accepted value of the maximal
poor. Lyapunov exponent for the Hen map (0.41, dashed
line). Note that as the noise amplitude increases, the
RESULTS curve becomes more and more like the curve of the
surrogategopen circleé and (open triangle
This method was then used to analyze 12 sets of IBI
An example of a typical spontaneous burst recorded data from highftK*], and zerd-Mg?*], experiments
extracellularly in the CA3tratum pyramidalef a trans- and 5 SS surrogates of each data set. No plateau region
verse hippocampal slice bathed in higk? ], is shown was observed in any of the bursting data sets tested. The
in Fig. 1(A). Burst duration was typically between 30 curve in Fig. 3B) shows the experiment with the biggest

Expansion Rate Analysis: No Evidence of Determinism

Generation of Spontaneous Bursting
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FIGURE 3. Dependence of L,, on the number of nearest
neighbors used (nn) for the He non map and data from a
high- [K*], experiment. (A) Curves of L, for the 2000-point
Henon map (@), the Hénon map with added Gaussian noise
[(m), 0=0.02; (A), 6=0.2], and Gaussian-shuffled (SS)
surrogates for noiseless (O) and noisy (A), o=0.2 Hénon
map. L, for the surrogates decreases logarithmically with

nn, but the noiseless and low-noise He “non data curves are
almost flat, and are close to the accepted largest Lyapunov
exponent (0.415, dotted line ). This shows an invariant ex-
pansion rate. With larger amounts of noise (0=0.2), the
curve mirrors the surrogates at small and large nn, but has a
plateau in the nn =5%-20% range. (Number of nearest
neighbors are shown as a percentage of the total points in

the whole attractor. ) (B) Curves of L, for one set (points ) of
high- [K*], experimental data and corresponding SS surro-
gates. Curves for both data (@) and surrogates (O) decline
logarithmically to zero with increasing nn. Also, the slopes

of the two curves are almost identical, with no plateaus evi-
dent. This indicates that the data are stochastic, although
perhaps slightly less random than the surrogates. This ex-
periment had the largest difference between data and surro-
gate L, curves; the rest had less distance between the
curves.

difference between data and corresponding surrogate av-
erage. Even in this case, there is no noticeable flattening
of the data curve; it is almost parallel with the surrogate
mean curve. Other data curves displayed even greater
similarity to their surrogates’ curves. However, the curve
in this case is displaced from the surrogates, which sug-
gests that perhaps it is not quite as disordered as the
surrogates. Thus, the results of this analysis suggest that
globally the bursting data contain a great deal of noise
with no determinism detectable by our measure of the
global expansion rate.

Evidence of Unstable Periodic Orbits

To search for determinism on a local scale, the pres-
ence of unstable periodic orbits in the interburst interval
data was assessed. Data from the same experiments em-
ployed in the Lyapunov exponent analysis were used.
Additional data sets that were deemed too short to be
used in the Lyapunov analysige., less than 900 IB)s
were also included. Data from each experiment were
divided into windows of 256 consecutive IBlsvith a
128 IBI overlap between window4o minimize any ef-
fects of nonstationarity on the analysis. The transform
was performed on the data and 50 AAFT surrogates for
each window. To reduce any possible bias related to
surrogate choice, the same analysis was also performed
using SS surrogates on several experiments.

Period-1 Orbits.A histogram of one window of the
original (untransformeg IBIs from a highfK*], experi-
ment is shown in Fig. @). Note that no discernible
peak is shown at the location of the period-1 orbit. After
the transform is performed on the ddtiig. 4(B)], a
sharp peak in the datesolid line) is seen at the corre-
sponding location of the period-1 orbit.98 9. The
dashed line shows the histogram of the mean of the
transformed surrogates. Note that the peak for the surro-
gates is much lower than that for the transformed IBI
data. A UPO was declared statistically significant if the
peak in the distribution function of the dafeinus the
surrogate megnwas greater than 95% of the maximal
peaks of the transformed surrogatesnus the surrogate
mearn. Since the peak in Fig.(€) is above the 95%
significance line, it marks the location of a true period-1
orbit at 1.98 s.

The results of period-1 orbit detection for all experi-
ments are summarized in the first three rows of Table 1.
The first and second columns show the total number of
experiments and percentage of significant experiments,
respectively, for each preparation. A window containing
a significant peak was considered a significant window.
Period-1 orbits were found in 71% of the 17 higk- ],
experiments, 25% of the eight zefbg®*], prepara-
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FIGURE 4. Detection of a period-1 orbit using the unstable
periodic orbit (UPO) transform. (A) Histogram of the raw IBI
data (from a high- [K*], experiment ). Note that no large
peaks are present. (B) Histogram of transformed data  (solid )
and mean of transformed surrogates  (dotted ). The peak in
the data denotes possible fixed point. (C) Significance plot
of the data seen in B with the surrogate mean subtracted.
The 95% significance line is shown  (dashed). The signifi-
cance of the data at each IBI length is calculated by compar-

ing the transformed data (minus the surrogate mean ) to the
cumulative histogram of the maximum peaks of the 50 trans-
formed surrogates (minus the surrogate mean ). If the peak in
the data at any one point is greater than that of 48 surro-
gates at that point, then it is said to be more than 95%
significant. Thus this figure shows a fixed point at the loca-

tion of that peak (1.98 s) with p<0.05.

tions, and 75% of the eight GABAblockade experi-

higher percentages of significant experiments and win-
dows (not shown.

To further ensure that the detected UPOs were not
spurious, the transform technique then was applied to
five surrogategboth SS and AAFT of each data set on
14 of 29 experiments from all three preparations. The
probability of finding a significanti.e., p<<0.05 peak in
each overlapping window for the data and the mean of
five surrogates was calculated and compared using a
pairedt test. The probability was significantly higher in
the actual data than in surrogates both for SS surrogates
(mean data probability 0.28, mean surrogate probability
0.06, p<0.009 and for AAFT surrogategmean data
probability 0.22, mean surrogate probability 0.0,
<0.004. As expected, the probability of finding a sig-
nificant peak in a surrogate was approximately 0.05. This
implies that the UPOs detected in the data were true
UPOs, not “false positives.”

Higher-Period Orbits.The case for chaos is made even
stronger when orbits of higher periods are considered.
Therefore, the same sets of experimental data were ana-
lyzed for period-2 orbits. A typical period-2 orbit is re-
vealed in Fig. BA) by peaks at the two points of the
orbit, both of which are higher than the 95% significance
line. The results for period-2 detection are summarized in
the last three rows of Table 1. Period-2 orbits were found
in 35% of the hightK "], experiments, 50% of the zero-
[Mg?"], experiments, and 50% of the GABAantago-
nist experiments. Overall, 73% of all experiments con-
tained at least one period-1 or period-2 orbit. Significant
period-3 orbits were also found in these experiments.
Period-3 orbits[Fig. 5B)] were found in data from all
three epilepsy models. The location of the points along a
higher-period orbit can be depicted using a return map
(Fig. 6), which plots the current IBI vs the previous IBI.
The significance in this three-dimensional representation
of a two-dimensional histogram is coded by color and
height. The deep red peaks indicate points with transform
densities of greater than 95% significance. Note the sym-
metry of the period-2 points about the identity line
[white, Fig. 8A)]. Figure B) shows a window of data
containing two period-3 orbitdeach circled and con-
nected in blue and gregras well as a period-1 orbit
(circled in orange and lying on the diagonal

DISCUSSION

Our results provide evidence of both determinism and
randomness in epileptiform bursting using two different

ments. Due to nonstationarity, period-1 orbits emerged, measures of nonlinear behavior to analyze three different
drifted, and disappeared over the course of an experi- epilepsy models. Unstable periodic orbits of periods one,
ment. Analysis using SS surrogates produced similar re-two, and three were found to be highly prevalent in all

sults (not shown. Further

analysis using phase-
randomized surrogatés produced results with even

three models. However, Lyapunov estimation did not
show large differences between data and surrogates.
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TABLE 1. Summary of UPO detection results for period-1 and period-2 orbits in experiments

using the high- [K*],, zero-[Mg?*],, and GABA ,, antagonist models. Because data for UPO

transforms were divided into windows of 256 IBIs, the percentage of these windows containing
significant UPOs is also included.

UPO Total No. of % significant Total No. of % significant
period experiments experiments windows windows
High-[K*] 1 17 70.6 62 29.0
Low-[Mg?*] 1 8 25.0 16 125
Bicuculline 1 8 75.0 19 42.1
+
Picrotoxin
High-[K*] 2 17 35.3 62 11.3
Low-[Mg?'] 2 8 50.0 16 31.3
Bicuculline 2 8 50.0 19 20.1
+
Picrotoxin

Thus, the global averages do not offer evidence of de- may be lost. It might be interesting to examine what a
terminism, but the local measur@PO analysis does distribution of the local expansion rates might look like
offer evidence of determinism. While these results seem in a data set and in surrogates.

to present conflicting evidence, they might suggest that Previously published studies have searched for evi-
in vitro epileptiform bursting may contain local islands dence of chaos and determinism in epilepsy, as discussed
of determinism(UPO detectioh within a globally sto- in the introduction. The results presented here are the
chastic sealLyapunov analysis It is possible that the  first to demonstrate the prevalence of higher-period
noise level of the system was so high that it drowned out UPOs in three differenin vitro epilepsy models. These
the determinism even using global averages. This wasmodels are thought to correspond to three different pos-
seen in the Heon system as well: when very high noise sible pathophysiologies of epilepsy. HigK-"], raises
levels were added, Lyapunov estimation could not dis- the neuronal resting potential closer to threshold and has
tinguish the determinism in the systdihata not shown been measured in conjunction with seizur@s vivo.

It is conceivable that when the expansion rates are aver-Zero{ Mg?*], unblocks NMDA-receptor channels, thus
aged over many neighborhoods, the effects of noise pre-modeling increased excitatory activity that is also be-
dominate over chaos and some structure on a local scaldieved to contribute to some forms of seizure activity.

A B

100, 100,

90 90
80 80
70
60
50
40

% Significance
3
% Significance

30
20

o L “l! l

0 7 % 3 4 5 6 7
Interval Length (s)

0 1 2 3 4 5 6 8 9
Interval Length (s)

FIGURE 5. Detection of period-2 and period-3 orbits using the UPO transform. (A) One-dimensional significance plot of the
period-2 transformed data from one window (256 consecutive IBls ) of a high- [K*], experiment. The two peaks rising above the
95% line denote the locations of the two points in a period-2 orbit. (B) One-dimensional significance plot of the period-3
transformed data from one window of a zero- [Mg?*], experiment. The three peaks rising above the 95% line denote the
locations of the three points in a period-3 UPO. Note the existence of numerous secondary peaks below the 95% significance

line, reflecting the greater difficulty of detecting UPOs as the period number increases.
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FIGURE 6. Period-2 and period-3 orbits in three-dimensional representations of two-dimensional state space. (A) Three-
dimensional significance plot of a period-2 orbit from one window (256 consecutive IBIs ) recorded during a high- [K*], experi-
ment. The probability of the transformed data being outside the distribution of maximum peaks of 50 transformed surrogates is

indicated by the color, as shown by the color bar on the right, and by the height, according to the scale on the z axis. The red
peaks denote a period-2 orbit of greater than 95% significance. Note the symmetry across the identity line (in white ). (B)
Three-dimensional significance plot of two period-3 orbits from one window of a zero- [Mg?*], model. The two sets of three red
peaks (circled in green and blue ) manifest the three points along two period-3 orbits. The set of peaks circled in orange is a

period-1 orbit.
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Picrotoxin and bicuculline block GABAmediated inhi- The presence of unstable periodic orbits strengthens
bition, yet another hypothesized cause of epileptic the rationale for using chaos control techniques to ma-
seizures. Furthermore, this is the first calculation of glo- Nipulate bursting, since UPOs are the points around
bal Lyapunov exponents fén vitro epileptiform bursting ~ Which control can be appliedd. However, the relatively
using surrogate data controls. The problem of inaccurate@/g& component of randomness detected suggests that
and false positive exponents when using older cha_os control may be dl_fflcult to achieve in practice.
method&34was noted as a possible shortcoming of pre- While chaos control techniques have been shown to have

vious studies! Those methods do not yield reliable es- Some  SUCCESS 1N contro_lllng StOCh.aSt'C systénﬂs_ey .
timates in short and noisv data sets. The algorithm de- would likely have trouble if the amplitude of the noise is
veloped by Kant? is robus),/t 0 a small. amoun?of noise larger than the region of state space to which control is

but is not ful in th f extremely rapid expansion desired. The presence of periodic orbits in a system in-
Ut 1S Not usety € case of extremely rapid expansion ;- ates that the system contains determinism. When these
or smaller data set@s in the present stuglyThe expan-

. : L ; periodic orbits are unstable, this provides necessary
sion technique used in this study was designed to coun-hqqh not sufficientevidence of chaos as well. Thus,

teract the effect of noise by averaging over all the points | hile we did notirrefutably detect chaos in these epi-

in each data set. It also compensates for the problem Oflepsy models, we did find evidenseiggestiveof chaotic
nonstationarity by examining,. for multiple values of  pepavior.

the number of nearest neighbors. Because it measures the
expansion rate after only one iteration, the result is not,
strictly speaking, the largest Lyapunov exponent. How-
ever, with such rapid expansion this method was the only ~ The authors are grateful to Paul So, Bruce Gluckman,
way to assess whether the system was expanding deterTroy Shinbrot, and Sara Solla for their invaluable advice
ministically or stochastically. The fact that the curves for and assistance. We also wish to thank David Ferster for
the data were almost identical to those of the surrogate his comments and criticisms in preparing this manu-
means suggests that the bursting contains a large stochasscript. This work was supported by NIH Grant No.
tic component, though effects of higher-dimensional NS31764 and the Whitaker Foundation.

chaos or nonstationarity cannot be excluded. This is not
surprising, since most biological systems have some
amount of noise in them. The hippocampal slice prepa-
ration itself may have introduced a great deal of noise
into the system. It is possible that in an intact brain, the
many external inputs into the hippocampus may act to
reduce the stochastic component, thus making the deter-
minism easier to detect.

The most common form of epileptic seizures, com-
plex partial seizures, are also the most likely to be re-
fractory to medical treatment. Complex partial seizures
often originate in the hippocampus, and hence the hip-
pocampus is the region of the brain most often used to
study epilepsyin vitro. The fact that deterministic behav-
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NOMENCLATURE

AAFT: amplitude-adjusted Fourier transform
ACSF: artificial cerebrospinal fluid

CA: cornu ammonis

GABA: y-amino-butyric acid

IBI: interburst interval

NMDA: N-methyl-D-aspartate

UPO: unstable periodic orbit

IPSP: inhibitory postsynaptic potential
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