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Abstract—Recent reports have suggested that chaos con
techniques may be useful for electrically manipulating epile
tiform bursting behavior in neuronal ensembles. Because
dynamics of spontaneousin vitro bursting had not been wel
determined previously, analysis of this behavior in the rat h
pocampus was performed. Epileptiform bursting was indu
in transverse rat hippocampal slices using three experime
methods. Slices were bathed in artificial cerebrospinal fl
containing:~1! elevated potassium (@K1#o510.5 mM), ~2! zero
magnesium, or~3! the GABAA-receptor antagonists bicucullin
~20 mM! and picrotoxin~250 mM!. The existence of chaos an
determinism was assessed using two different analytical te
niques: unstable periodic orbit~UPO! analysis and a new tech
nique for estimating Lyapunov exponents. Significance of th
results was assessed by comparing the calculations for
experiment with corresponding randomized surrogate d
UPOs of multiple periods were highly prevalent in experime
from all three epilepsy models: 73% of all experiments co
tained at least one statistically significant period-1 or perio
orbit. However, the expansion rate analysis did not provide
evidence of determinism in the data. This suggests that
system may be globally stochastic but contains local pocket
determinism. Thus, manipulation of bursting behavior us
chaos control algorithms may yet hold promise for reverting
preventing epileptic seizures. ©2001 Biomedical Engineering
Society. @DOI: 10.1114/1.1380419#

Keywords—Chaos, Hippocampus, Epilepsy, Nonlinear, U
stable periodic orbit, Lyapunov exponent, Determinism, Pot
sium, GABA, Magnesium, Chaos, Electrophysiology, Brain.

INTRODUCTION

Epilepsy afflicts between 1% and 2% of the world
population. While many antiepileptic drugs currently e
ist, at least 20% of all epileptic patients are still not ke
seizure-free by pharmacological treatment. For many
these patients, the only remaining option is surgical
section of the seizure focus. Schiffet al.24 have demon-
strated that it may be possible to apply techniques fr
nonlinear dynamics to manipulatein vitro epileptiform
bursting. These bursts are thought to be analogou
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interictal spikes—those seen on an EEG between sei
episodes—and are thus a hallmark of epilepsy.16 It has
been postulated that this bursting is chaotic and he
could be controlled using chaos control techniques.24 Al-
though simple periodic pacing has been shown to
capable of preventing ictal seizure activityin vitro,11

using such a protocolin vivo might kindle new epileptic
foci resulting in more seizures rather than fewer. T
advantage of using chaos control is that the stim
would be applied relatively infrequently thereby reduci
the likelihood of inducing new seizures.

There are, in general, three essential ingredients t
chaotic system: determinism, aperiodicity, and sensit
dependence on initial conditions.29 In contrast to a sto-
chastic system, a deterministic system follows so
mathematical relationship and in this sense is predicta
In a chaotic system, however, this predictability is lim
ited by sensitive dependence on initial conditions. T
evolution of a system’s behavior over time is represen
by a trajectory, or orbit, in state space. In a chao
system, two trajectories that start close to each other
diverge exponentially over time. This divergence can
quantified by calculating the Lyapunov exponents of t
system. A chaotic trajectory can also be described
wandering along a path of an infinite amount of unsta
periodic orbits~UPOs!.8 Detection of UPOs in a system
is an indication that the system contains determinism
may be chaotic.

Significant efforts have been made to try to charact
ize neuronal behavior using nonlinear dynamical syste
theory.2,17 UPOs have been detected in multiple neuro
systems, the first being the crayfish photorecepto17

Much of the research on dynamics in epilepsy has
cused on calculating the correlation dimension6,35 which
can be misleading in practice because of the need
many assumptions and the prevalence of false posi
results.19 Some have searched for chaos by calculat
Lyapunov exponents of electroencephalogram~EEG!
data,21,31 but the algorithms used have sever
drawbacks,31 notably poor performance in noisy system
~i.e., ones that have a substantial stochastic compone
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608 SLUTZKY, CVITANOVIC , and MOGUL
addition to determinism!. Studies with these technique
have provided evidence both supporting18,21 and
contradicting31 the existence of nonlinear determinism
EEG seizure activity. One group has found evidence o
few period-1 orbits in epileptic EEG recordings fro
three human subjects.13 Another has found severa
period-1 orbits in both the high-@K1#o in vitro model and
in human epileptic EEG recordings as well as a f
orbits of periods 2 and 3 in intracellular recordings fro
CA1 neurons in normal ACSF.27

Little prior evidence exists as to whether spontane
in vitro bursting contains determinism or is purely st
chastic in nature.27 To the best of our knowledge, onl
two reports have investigated nonlinear characteristic
the high-@K1#o in vitro model of epilepsy. In one,23 three
types of nonlinear prediction were used to analyze d
from six hippocampal slices; only one slice showed e
dence of determinism. The other report27 found evidence
of unstable period-1 orbits in about half of the expe
ments in extracellular potassium concentrations of 7
9.5 mM and in 91% of the experiments at 10.5 m
@K1#o . This was the first evidence for determinism
epileptiform bursting in the high-@K1#o model; however,
these findings alone were not sufficient to prove ch
and were more restricted by the cellular mechanis
underlying the bursting activity since only one burs
induction protocol was used.

We used three different experimental protocols
elicit epileptiform bursting, in order to investigat
whether different mechanisms underlying spontane
bursting created significant differences in system dyna
ics: ~1! high-@K1#o ;20 ~2! zero-@Mg21#o ;33 and ~3! the
g-amino-butyric acid~GABAA , an inhibitory neurotrans-
mitter! receptor antagonists picrotoxin and bicuculline5

We analyzed this bursting using two different measu
of chaos: UPO detection and a novel technique, desig
for data from noisy systems, that assesses determin
expansion.

METHODS

Experimental Protocols

Hippocampal slices were obtained from 20- to 2
day-old male Sprague–Dawley rats~Harlan!. Animals
were anesthetized with isoflurane by inhalation and th
decapitated. The brain was rapidly excised, hemisecte
the central fissure, and placed in cold~4 °C! artificial
cerebrospinal fluid~ACSF! containing ~in mM!: NaCl
130, NaHCO3 24, D-Glucose 10, MgSO4 1.3, NaH2PO4

1.25, KCl 3.5, CaCl2 2.4 and gassed with
95% O2/5% CO2. Both hippocampi were dissected fre
and 400mm transverse slices were cut using a verti
tissue chopper~Stoelting!. Slices were stored in the
f

c

t

bubbled ACSF at room temperature~;22 °C! for at least
1 h and then transferred as needed to a submer
chamber.

Field potential~extracellular! measurements were re
corded in stratum pyramidale of the CA3 region. Reco
ings were made using glass microelectrodes~2–4 MV!
pulled from borosilicate glass capillaries and filled wi
2 M NaCl. Signals from the electrodes were bandp
filtered (0.3 Hz, f ,3 kHz) using an ac differential am
plifier ~DAM 80, World Precision Instruments!. The sig-
nals were then digitized~at 10 kHz! with a Digidata
1200 A/D converter board and acquired usingAXOBASIC

software ~Axon Instruments!. The viability of the slice
was assessed by stimulating the Schaffer collaterals
recording excitatory postsynaptic potentials~EPSPs!
from stratum radiatum of CA1. Only slices with EPS
amplitudes greater than 0.4 mV were used.

Epilepsy Models

Slices were placed in the recording chamber (T534
61 °C) for at least 30 min prior to initiation of the
experimental protocol. Slices were then exposed to
experimental solution for 30 min prior to initiation o
recording. Bursts were generated using three differenin
vitro models of epilepsy:~1! ACSF containing elevated
@K1#o ~10.5 mM!; ~2! Mg21-free ACSF; or~3! 20 mM
bicuculline methochloride~Sigma! and 250mM picro-
toxin ~Sigma! added to ACSF containing 1.2 mM@Ca21#
and 5 mM@K1#. The changes in calcium and potassiu
concentrations in the third model were necessary in or
to attain a burst rate sufficiently fast to achieve an
ceptable level of accuracy in the data analysis. Data w
recorded and analyzed off-line. Bursts were detected
ing a combination voltage- and time-threshold softwa
algorithm. Criteria used to identify a burst were as fo
lows: ~1! the waveform must exceed the voltage thres
old ~0.03–0.05 mV! for more than 16 ms but less tha
1000 ms,~2! bursts must be at least 250 ms apart, a
~3! the wave form cannot dip below the threshold f
more than 20 ms at a time~this allowed for multiple
spikes riding on top of a burst!. The time between bursts
called interburst interval~IBI, see Fig. 1!, was the system
parameter used to characterize behavior.

Mathematical Methods

The dynamics of the bursting activity was charact
ized using a measure similar to Lyapunov exponen1

and unstable periodic orbits.27 These two measures pro
vide both global and local information about a system
behavior in state space. A chaotic system possesses
seemingly paradoxical property of being locally unstab
but yet globally recurrent, i.e., the system returns repe
edly to certain states. The existence of a posit
Lyapunov exponent in a system defines that syste
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609Chaos and Noise in Three Hippocampal Models of Epilepsy
behavior as chaotic.29 Furthermore, the existence of un
stable periodic orbits in a system implies that the syst
is deterministic and likely chaotic.3

Analysis Concepts

State Space and Embedding.Periodic orbits can be stabl
or unstable. Stable periodic orbits attract other nea
trajectories, while UPOs repel trajectories in at least o
direction and may attract or repel them in other dire
tions. Chaotic trajectories can be characterized by
‘‘skeleton’’ of UPOs that they approach and recede fro
as time evolves.3 Using time-delay embedding, scala
data can be converted into vectors which form a m
complete representation of the system in state space.
embedding has been shown to preserve the geom
and dynamical properties of the system.30 For all of the
data analyses in this study, IBIs were first embedded
two-dimensional vectors consisting of the current a

FIGURE 1. Spontaneous bursting elicited by three different
experimental techniques recorded extracellularly in CA3 py-
ramidal layer of the rat transverse hippocampal slice. „A…

The typical extracellular recording of a spontaneous burst,
generated by the high- †K¿

‡o model. „B…–„D… Time series data
of spontaneous bursts generated by „B… high- †K¿

‡o „10.5
mM…, „C… zero- †Mg2¿

‡o , and „D… GABA A receptor blockade
using bicuculline „20 mM… and picrotoxin „250 mM…. Each pair
of traces is contiguous in time.
s
c

next IBIs ~e.g., see Fig. 2!. Such IBI embeddings have
also been shown to be sufficient to characterize mos
the original system’s dynamical behavior.9,22

Surrogate Data.Most natural systems have some amou
of noise in them, and it has been hypothesized that n
rons fire in a purely stochastic manner. To provide e
dence that the data indeed contained a deterministic c
ponent and not merely stochastic noise, the method
surrogate data was used.32 Surrogate data sets were cr
ated by randomizing the order of a data set. The sa
measures were then computed for the surrogates and
results compared with the data. This permitted testing
null hypothesis that any apparent structure in the d
can be accounted for by a purely stochastic process

Lyapunov Exponent Estimates.Exponential divergence o
two nearly identical points in state space can be qua
fied by the Lyapunov exponents of a system. A posit
exponent signifies exponential expansion and thus ch
An m-dimensional system will in general hav
m Lyapunov exponents associated with it. However,
our purposes it was sufficient to calculate the larg
Lyapunov exponent, for if the largest exponent is po
tive, the system is chaotic.

For small and noisy data sets, the computation
Lyapunov exponents can be very difficult. Most alg
rithms for measuring the largest Lyapunov exponent lo
at a small group of points that are close neighbors
state space and examine how they spread out as
evolves. If there are not a sufficiently large number
points in the data, however, one must increase the in
neighborhood size in order to include a sufficient numb
of points in the calculation. This can create erroneo
expansion rates since points that are not truly neighb

FIGURE 2. Rapid expansion of a small cluster of points for
data from a high- †K¿

‡o experiment. The whole attractor „"… is
shown in delay coordinates. The initial cloud of points „d…

expands rapidly after one iteration „n… and covers almost the
whole attractor width after two iterations „s….
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610 SLUTZKY, CVITANOVIC , and MOGUL
in state space are being treated as such. Also, noise
cause points that appear close together to diverge rap
as well.

To overcome these obstacles, a new method of det
ing determinism based on short-time expansion rates
developed and used. While the resulting measure of
pansion is not a Lyapunov exponent, it would conve
to the largest Lyapunov exponent in a noiseless syst
Therefore, for the sake of convenience, our ‘‘expans
rate’’ will be referred to as a Lyapunov exponent es
mate. This method is described more fully in the ‘‘Tec
nical Details’’ section below.

Unstable Periodic Orbits.Lyapunov exponents are ex
tracted from full data sets and are thus global measu
of chaotic dynamics. To characterize the system’s
namics on a local scale, we also searched the data fo
presence of unstable periodic orbits. The existence o
few UPOs in experimental data is not sufficient to pro
that a system is chaotic; however, it does imply det
minism and strongly suggests the presence of chao
the system. Moreover, it has been shown3 that good
estimates of the dynamics of a system can be made u
only the low-period UPOs, which are the easiest to
tect. Furthermore, the presence of low-period UPOs
prerequisite for the successful application of most for
of chaos control.26

The recently introduced method of Soet al.28 was
used to search for low-period orbits. This technique u
a transformation to concentrate data around UPOs
creating peaks in the histogram of the transformed d
that correspond to the locations of the UPOs. This allo
the simple detection of UPOs by locating the peaks
the distribution of the transformed data. The significan
of these peaks was assessed using surrogate data.

Technical Details of the Analysis

Surrogate Data.Two types of surrogate data were use
For the Lyapunov exponent computations, surrogate d
sets were created by shuffling the order of the IBIs us
a Gaussian distribution.23 These surrogates maintaine
the amplitude distribution of the original data while r
moving any correlation.

For the UPO analysis, amplitude-adjusted Four
transform ~AAFT! surrogates were used.32 First, a
Gaussian-distributed random setx was created and ran
ordered according to the original data, and its Four
transform was computed. Then the phases of this
were randomized, and the inverse Fourier transform w
performed, giving setxr . Finally, the original data se
was rank-ordered according toxr , producing the surro-
gate. These surrogates thus maintained the amplitu
and approximate power spectrum of the original data
y
y

-
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-

.

s

e

g

s
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s

Other types of surrogates have been suggested as
ing more appropriate for use in detecting UPOs.10 These
include the Gaussian-shuffled~or simple-shuffled, SS!
surrogates, which were used in the Lyapunov expon
calculations. To further confirm the significance of th
UPOs, the SS surrogates were also used for analy
several data sets. The issue of the appropriate surro
type for validating UPOs in ISI series is controversial,
each type of surrogate has its own advantages
flaws.25 However, the use of two different types of su
rogates should help reduce the chance of error due to
type of surrogate.

Lyapunov Exponents.Many algorithms exist for calculat
ing the Lyapunov exponents from time series data.1,34 We
first used the method derived by Kantz,12 which is simi-
lar to the method of Wolfet al.34 but is more robust to
noise. The algorithm measures the rate at which t
points in state space separate over varying amount
time ~t!. Averaging over all points in the state space, a
the use of all nearest neighbors helps make this a
rithm particularly robust to some noise. Averaging ov
the entire data set means that the Lyapunov exponel
is a global measure of chaos.

The Lyapunov calculations were tested for signi
cance using SS surrogates. Five surrogates were cre
for each experiment, andl6s ~the standard error! was
calculated for each surrogate. A weighted ratio was th
calculated for each group of surrogates. This ratio w
compared to the ratiol/s for each data set, thus provid
ing a measure of statistical significance for the null h
pothesis that the experimental data were no differ
from Gaussian noise.

The algorithm was successfully tested on the He´non
map, a chaotic system conventionally used to benchm
such algorithms. The algorithm calculated an exponen
0.415 for 2000 points of the He´non map with 1% Gauss
ian noise added, which was in close agreement with
accepted value of 0.4169.12 In all of the calculations with
this method, initial neighborhood size was 0.1 s andt
varied from 2 to 21. However, when the IBI data we
examined more closely, it was noted that points in t
initial neighborhood expanded very quickly, in fact, the
typically spread out to separations exceeding half
size of the entire attractor within one or two iterates.~In
this article, we use the term attractor in a loose sens
refer to the region that no point in the data set exit!
Once the points had spread this far apart, there was
much room left for them to spread, so usingt.2 would
be misleading. In other words, there was no conceiva
way in which the expansion rate of IBI data could b
measured over a long time span, which is required
properly evaluate Lyapunov exponents. Therefore, a
ferent approach to estimating expansion rates was de
oped.
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611Chaos and Noise in Three Hippocampal Models of Epilepsy
Short-Time Expansion Measure.In one-dimensional sys
tems the Lyapunov exponent can be computed by in
grating over the instantaneous expansion rate weigh
by the local trajectory visitation rate~i.e., probability
density function!. The new method mimics this fo
higher-dimensional systems, and surmounts the obst
of extremely rapid expansion by examining the ratio
distances between nearby points after only one iter
The method estimated the maximal Lyapunov expon
by using a spatial average of the many local expans
rates on an attractor. A fixed number of nearest neighb
was found for every point in the data set. The result
cloud of points were then fit to an ellipse using princip
components analysis~PCA!. The largest principal com
ponent was the variance along the major axis of
best-fit ellipse and thus its square root~standard devia-
tion! served as a measure of the initial ‘‘spread’’ betwe
the points. The points in the neighborhood were th
evolved one time step into the future. These points w
again fit to an ellipse using PCA, and the variance alo
the major axis was obtained. The ratio of the final to t
initial principal components then provided an estimate
the one-step expanding eigenvalue. The natural logari
of the square root of this ratio was the estimated lo
Lyapunov exponent. The global Lyapunov exponent w
then obtained by averaging the local estimates. That

Lave5
1

N (
i 51

N

l i , l i5 lnSAp1

p0
D , ~1!

where p0 and p1 were the largest principal componen
of the initial and iterated clouds of points, respective
N was the total number of points;l i was the local
expansion rate; andLave was the estimated Lyapuno
exponent for the whole set. The expectation was that
deterministic systems, small neighborhoods of poi
would not spread out as quickly as in stochastic syste
after only one time step. If the system contained a stro
stochastic component, the points would likely spread
over most if not all of the attractor after only one tim
step. For a cloud of neighboring points, the noise sho
partially average out in this calculation, leaving primar
the deterministic component. Therefore, the expecta
was that the local expansion rate,Lave, should be smaller
for a deterministic system than for a stochastic syste
In this approach the determinism was discriminated fr
noise by comparingLave for a data set againstLave for
corresponding surrogate data.

The estimate of the Lyapunov exponent produced
this method was dependent upon the number of ne
bors ~nn! included in each local estimate. Therefore, f
each data set,Lave was calculated for nn ranging from
to the total number of points in the data set. Then
relationship betweenLave and number of neighbors wa
e

.

-

examined. Small values of nn were insufficient for d
termining the local expansion ratesl i . For a stochastic
system,Lave should decline to zero as nn increased to
total number of points in the data set, since the nei
borhood would have less and less room to expand. F
deterministic system, however, there should be some
gion whereLave was relatively constant, which would
imply a constant expansion rate~Lyapunov exponent!
was present. There is usually some noise present in m
experimental systems, so in practice there will be th
ranges of behavior: for very small nn, the noise is grea
than the neighborhood size, andLave decreases logarith
mically; for large nn, there is no room left to expand
Lave again decreases logarithmically; and there should
some intermediate region whereLave is constant. This
technique provides a way of gauging the relative prop
tions of noise and determinism in the system’s glob
behavior.

Unstable Periodic Orbits.UPOs were detected with
transform technique that concentrated the data aro
UPOs.28 For period-1 orbits, the transformation was d
fined as

x̂[@ I2S~x,R!#21
•@F~x!2S„x,R…•x#, ~2!

where x was the d-dimensional time-delay vector o
IBIs, I was the identity matrix,F„x… was a vector of the
next iterate ofx, andS„x,R… was ad3d matrix function
of x and ad3d3d random tensorR given by

S~x,R!5¹F„x…1R•@F„x…2x#. ~3!

Here ¹F„x… was the d3d Jacobian matrix ofF„x…,
which was calculated using a least-squares fit of th
spatial nearest neighbors~i.e., the nearest three points i
state space!. This transform was applied to every pointx
in the set and summarized in a one-dimensional~two-
dimensional for higher-period orbits! spatial distribution
function of the experimental data approximated by
histogram with a bin size of 0.02 s. The transformati
shifted all points in the linear region of a fixed pointx*
even closer tox* , thus creating a peak in the distributio
function r̂( x̂). At any one value ofR, the transformation
produced spurious peaks; these were filtered out by
eraging r̂( x̂) over several~300! different values ofR.
The higher the magnitude ofR, the more the peaks wer
smoothed out and the lower their amplitude.

For this analysis, amplitude-adjusted Fourier tran
form ~AAFT! surrogates were used.32 Fifty surrogate
data sets were generated and transformed, and their
responding probability distributions were calculated a
averaged together. A cumulative histogram of the ma
mum deviation of each surrogate from the surrog
mean at each point was used to estimate the probab
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612 SLUTZKY, CVITANOVIC , and MOGUL
that a peak in the transformed data was due to the p
ence of a true UPO at that point. To account for nons
tionarity of the data~i.e., drifting of the mean IBI length!
due to factors such as fatigue of the neurons, netw
plasticity, or fluctuations in temperature and pressu
each set of data was divided into windows of 256 IB
and then analyzed. The selection of window size w
based on optimizing the probability of finding a UP
~more points! while minimizing the amount of nonsta
tionarity ~fewer points!.

It has been suggested that this detection algorit
might produce spurious UPO detections where there
actually none~T. Schreiber!. To further ensure that the
UPOs detected were truly significant, another surrog
test was devised. Data surrogates were produced
then analyzed as if they were experimental data, i.e.,
UPO transform was applied to the surrogate and 50
rogates of that surrogate and the significance of peak
the histograms was calculated. This was done for fi
surrogates~both SS and AAFT! of each data set on 14 o
29 experiments. An estimate of the probability of findin
a significant ~i.e., p,0.05! peak in each window was
calculated for the data and the surrogates by dividing
number of windows with significant peaks by the to
number of windows in each set. Then these probabili
were compared~data versus average of surrogates
that data set! using a pairedt test to determine whethe
there was a significantly higher probability of finding
UPO in the data than in the surrogates. Naturally, 5%
surrogate windows were expected to have signific
peaks in them since we usedp,0.05 as our significance
criterion. Therefore, an experiment was considered
nificant if more than 5% of its windows contained
significant peak.

The selection of certain parameters such as emb
ding dimension~2! and number of nearest neighbo
used for calculating the Jacobian~5! was not optimized,
but corresponded to the conventional values used.27 It is
possible that the dynamics of the system are actu
higher dimensional, and that UPO detection statis
might improve if a higher embedding dimension we
used. However, there was a practical limit~due to finite
data length, nonstationarity, and computation time! on
how many dimensions one could use. The number
nearest neighbors used could ideally also be optimiz
the use of too few or too many may cause the fit to
poor.

RESULTS

Generation of Spontaneous Bursting

An example of a typical spontaneous burst record
extracellularly in the CA3stratum pyramidaleof a trans-
verse hippocampal slice bathed in high-@K1#o is shown
in Fig. 1~A!. Burst duration was typically between 3
-

d

-

-

:

and 60 ms. Once initiated, spontaneous bursting usu
continued for at least 1 h. Typical burst trains for each
the three experimental techniques are shown in F
1~B!–1~D!. Both morphology and burst duration wer
consistent for all three induction protocols. The syste
state information was encoded as interburst interv
~IBIs! as seen in Fig. 1~B!. The IBIs for the three burst-
ing protocols had means and standard errors of 3
60.54 s (n516 742), 6.3060.44 s (n53566), and 6.37
61.00 s (n55741) for experiments using high-@K1#o ,
zero-@Mg21#o , and GABAA blockade, respectively.

Expansion Rate Analysis: No Evidence of Determinis

The issue of whether the spontaneous bursting w
chaotic was first examined by calculating Lyapunov e
ponents for experiments using all three epilepsy mod
The initial method used12 evaluated the relationship be
tween S ~the average distance that two neighbori
points will diverge after timet! and t for each experi-
ment. The Lyapunov exponent~l! was obtained by de-
termining the slope of the least-squares fit line. Howev
upon closer inspection, it was noted that in all expe
ments, the neighborhoods expanded to well over half
size of the attractor withint52 time steps. An example
of this rapid expansion is shown in Fig. 2. The lea
squares fit could only include three points, making th
method unreliable and necessitating the developmen
the short-time expansion technique. The presence of
terminism was assessed by searching for plateaus in
curves ofLave vs nn. These flat regions would indica
some measure of invariance in the expansion rate, wh
is expected for a chaotic system.

The short-time expansion technique was first tested
1000 iterates of the He´non map~delay embedded in two
dimensions! with and without added noise and on fiv
SS surrogates of these data. As seen in Fig. 3~A!, Lave

for the curve of the average of the surrogates decrea
uniformly to zero ~open circle!, while the curve of the
Hénon map without noise~dark circle! is roughly hori-
zontal. The He´non map with noise ~dark square!
s50.02 has a large plateau area in the ran
nn53% – 10% ~of the points in the attractor!, and the
curve for s50.2 ~dark triangle! has a smaller ‘‘shoul-
der’’ in the range nn510% – 20%. Lave is reasonably
close ~0.50! to the accepted value of the maxim
Lyapunov exponent for the He´non map ~0.41, dashed
line!. Note that as the noise amplitude increases,
curve becomes more and more like the curve of
surrogates~open circle! and ~open triangle!.

This method was then used to analyze 12 sets of
data from high-@K1#o and zero-@Mg21#o experiments
and 5 SS surrogates of each data set. No plateau re
was observed in any of the bursting data sets tested.
curve in Fig. 3~B! shows the experiment with the bigge
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613Chaos and Noise in Three Hippocampal Models of Epilepsy
FIGURE 3. Dependence of L ave on the number of nearest
neighbors used „nn … for the Hé non map and data from a
high- †K¿

‡o experiment. „A… Curves of L ave for the 2000-point
Hénon map „d…, the Hénon map with added Gaussian noise
†„j…, sÄ0.02; „m…, sÄ0.2‡, and Gaussian-shuffled „SS…
surrogates for noiseless „s… and noisy „n…, sÄ0.2 Hénon
map. L ave for the surrogates decreases logarithmically with
nn, but the noiseless and low-noise He ´non data curves are
almost flat, and are close to the accepted largest Lyapunov
exponent „0.415, dotted line …. This shows an invariant ex-
pansion rate. With larger amounts of noise „sÄ0.2…, the
curve mirrors the surrogates at small and large nn, but has a
plateau in the nn Ä5% – 20% range. „Number of nearest
neighbors are shown as a percentage of the total points in
the whole attractor. … „B… Curves of L ave for one set „points … of
high- †K¿

‡o experimental data and corresponding SS surro-
gates. Curves for both data „d… and surrogates „s… decline
logarithmically to zero with increasing nn. Also, the slopes
of the two curves are almost identical, with no plateaus evi-
dent. This indicates that the data are stochastic, although
perhaps slightly less random than the surrogates. This ex-
periment had the largest difference between data and surro-
gate L ave curves; the rest had less distance between the
curves.
difference between data and corresponding surrogate
erage. Even in this case, there is no noticeable flatten
of the data curve; it is almost parallel with the surroga
mean curve. Other data curves displayed even gre
similarity to their surrogates’ curves. However, the cur
in this case is displaced from the surrogates, which s
gests that perhaps it is not quite as disordered as
surrogates. Thus, the results of this analysis suggest
globally the bursting data contain a great deal of no
with no determinism detectable by our measure of
global expansion rate.

Evidence of Unstable Periodic Orbits

To search for determinism on a local scale, the pr
ence of unstable periodic orbits in the interburst inter
data was assessed. Data from the same experiments
ployed in the Lyapunov exponent analysis were us
Additional data sets that were deemed too short to
used in the Lyapunov analysis~i.e., less than 900 IBIs!
were also included. Data from each experiment w
divided into windows of 256 consecutive IBIs~with a
128 IBI overlap between windows! to minimize any ef-
fects of nonstationarity on the analysis. The transfo
was performed on the data and 50 AAFT surrogates
each window. To reduce any possible bias related
surrogate choice, the same analysis was also perfor
using SS surrogates on several experiments.

Period-1 Orbits.A histogram of one window of the
original ~untransformed! IBIs from a high-@K1#o experi-
ment is shown in Fig. 4~A!. Note that no discernible
peak is shown at the location of the period-1 orbit. Aft
the transform is performed on the data@Fig. 4~B!#, a
sharp peak in the data~solid line! is seen at the corre
sponding location of the period-1 orbit~1.98 s!. The
dashed line shows the histogram of the mean of
transformed surrogates. Note that the peak for the su
gates is much lower than that for the transformed I
data. A UPO was declared statistically significant if t
peak in the distribution function of the data~minus the
surrogate mean! was greater than 95% of the maxim
peaks of the transformed surrogates~minus the surrogate
mean!. Since the peak in Fig. 4~C! is above the 95%
significance line, it marks the location of a true period
orbit at 1.98 s.

The results of period-1 orbit detection for all expe
ments are summarized in the first three rows of Table
The first and second columns show the total number
experiments and percentage of significant experime
respectively, for each preparation. A window containi
a significant peak was considered a significant windo
Period-1 orbits were found in 71% of the 17 high-@K1#o

experiments, 25% of the eight zero-@Mg21#o prepara-
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614 SLUTZKY, CVITANOVIC , and MOGUL
tions, and 75% of the eight GABAA blockade experi-
ments. Due to nonstationarity, period-1 orbits emerg
drifted, and disappeared over the course of an exp
ment. Analysis using SS surrogates produced similar
sults ~not shown!. Further analysis using phase
randomized surrogates32 produced results with even

FIGURE 4. Detection of a period-1 orbit using the unstable
periodic orbit „UPO… transform. „A… Histogram of the raw IBI
data „from a high- †K¿

‡o experiment …. Note that no large
peaks are present. „B… Histogram of transformed data „solid …

and mean of transformed surrogates „dotted …. The peak in
the data denotes possible fixed point. „C… Significance plot
of the data seen in B with the surrogate mean subtracted.
The 95% significance line is shown „dashed …. The signifi-
cance of the data at each IBI length is calculated by compar-
ing the transformed data „minus the surrogate mean … to the
cumulative histogram of the maximum peaks of the 50 trans-
formed surrogates „minus the surrogate mean …. If the peak in
the data at any one point is greater than that of 48 surro-
gates at that point, then it is said to be more than 95%
significant. Thus this figure shows a fixed point at the loca-
tion of that peak „1.98 s… with pË0.05.
higher percentages of significant experiments and w
dows ~not shown!.

To further ensure that the detected UPOs were
spurious, the transform technique then was applied
five surrogates~both SS and AAFT! of each data set on
14 of 29 experiments from all three preparations. T
probability of finding a significant~i.e., p,0.05! peak in
each overlapping window for the data and the mean
five surrogates was calculated and compared usin
paired t test. The probability was significantly higher i
the actual data than in surrogates both for SS surrog
~mean data probability 0.28, mean surrogate probab
0.06, p,0.004! and for AAFT surrogates~mean data
probability 0.22, mean surrogate probability 0.07,p
,0.004!. As expected, the probability of finding a sig
nificant peak in a surrogate was approximately 0.05. T
implies that the UPOs detected in the data were t
UPOs, not ‘‘false positives.’’

Higher-Period Orbits.The case for chaos is made eve
stronger when orbits of higher periods are consider
Therefore, the same sets of experimental data were
lyzed for period-2 orbits. A typical period-2 orbit is re
vealed in Fig. 5~A! by peaks at the two points of th
orbit, both of which are higher than the 95% significan
line. The results for period-2 detection are summarized
the last three rows of Table 1. Period-2 orbits were fou
in 35% of the high-@K1#o experiments, 50% of the zero
@Mg21#o experiments, and 50% of the GABAA antago-
nist experiments. Overall, 73% of all experiments co
tained at least one period-1 or period-2 orbit. Significa
period-3 orbits were also found in these experimen
Period-3 orbits@Fig. 5~B!# were found in data from all
three epilepsy models. The location of the points alon
higher-period orbit can be depicted using a return m
~Fig. 6!, which plots the current IBI vs the previous IB
The significance in this three-dimensional representa
of a two-dimensional histogram is coded by color a
height. The deep red peaks indicate points with transfo
densities of greater than 95% significance. Note the sy
metry of the period-2 points about the identity lin
@white, Fig. 6~A!#. Figure 6~B! shows a window of data
containing two period-3 orbits~each circled and con
nected in blue and green! as well as a period-1 orbi
~circled in orange and lying on the diagonal!.

DISCUSSION

Our results provide evidence of both determinism a
randomness in epileptiform bursting using two differe
measures of nonlinear behavior to analyze three differ
epilepsy models. Unstable periodic orbits of periods o
two, and three were found to be highly prevalent in
three models. However, Lyapunov estimation did n
show large differences between data and surroga
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TABLE 1. Summary of UPO detection results for period-1 and period-2 orbits in experiments
using the high- †K¿

‡o , zero- †Mg2¿
‡o , and GABA A, antagonist models. Because data for UPO

transforms were divided into windows of 256 IBIs, the percentage of these windows containing
significant UPOs is also included.

UPO
period

Total No. of
experiments

% significant
experiments

Total No. of
windows

% significant
windows

High-[K1] 1 17 70.6 62 29.0
Low-[Mg21] 1 8 25.0 16 12.5
Bicuculline

1

Picrotoxin

1 8 75.0 19 42.1

High-[K1] 2 17 35.3 62 11.3
Low-[Mg21] 2 8 50.0 16 31.3
Bicuculline

1

Picrotoxin

2 8 50.0 19 20.1
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Thus, the global averages do not offer evidence of
terminism, but the local measure~UPO analysis! does
offer evidence of determinism. While these results se
to present conflicting evidence, they might suggest t
in vitro epileptiform bursting may contain local island
of determinism~UPO detection! within a globally sto-
chastic sea~Lyapunov analysis!. It is possible that the
noise level of the system was so high that it drowned
the determinism even using global averages. This w
seen in the He´non system as well: when very high nois
levels were added, Lyapunov estimation could not d
tinguish the determinism in the system~data not shown!.
It is conceivable that when the expansion rates are a
aged over many neighborhoods, the effects of noise
dominate over chaos and some structure on a local s
-
-
e

may be lost. It might be interesting to examine what
distribution of the local expansion rates might look lik
in a data set and in surrogates.

Previously published studies have searched for e
dence of chaos and determinism in epilepsy, as discus
in the introduction. The results presented here are
first to demonstrate the prevalence of higher-per
UPOs in three differentin vitro epilepsy models. These
models are thought to correspond to three different p
sible pathophysiologies of epilepsy. High-@K1#o raises
the neuronal resting potential closer to threshold and
been measured in conjunction with seizuresin vivo.
Zero-@Mg21#o unblocks NMDA-receptor channels, thu
modeling increased excitatory activity that is also b
lieved to contribute to some forms of seizure activity33
FIGURE 5. Detection of period-2 and period-3 orbits using the UPO transform. „A… One-dimensional significance plot of the
period-2 transformed data from one window „256 consecutive IBIs … of a high- †K¿

‡o experiment. The two peaks rising above the
95% line denote the locations of the two points in a period-2 orbit. „B… One-dimensional significance plot of the period-3
transformed data from one window of a zero- †Mg2¿

‡o experiment. The three peaks rising above the 95% line denote the
locations of the three points in a period-3 UPO. Note the existence of numerous secondary peaks below the 95% significance
line, reflecting the greater difficulty of detecting UPOs as the period number increases.
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FIGURE 6. Period-2 and period-3 orbits in three-dimensional representations of two-dimensional state space. „A… Three-
dimensional significance plot of a period-2 orbit from one window „256 consecutive IBIs … recorded during a high- †K¿

‡o experi-
ment. The probability of the transformed data being outside the distribution of maximum peaks of 50 transformed surrogates is
indicated by the color, as shown by the color bar on the right, and by the height, according to the scale on the z axis. The red
peaks denote a period-2 orbit of greater than 95% significance. Note the symmetry across the identity line „in white …. „B…

Three-dimensional significance plot of two period-3 orbits from one window of a zero- †Mg2¿
‡o model. The two sets of three red

peaks „circled in green and blue … manifest the three points along two period-3 orbits. The set of peaks circled in orange is a
period-1 orbit.



tic
-

rate
er

re-
s-
de-
,

ion

un
nts

o

s th
ot,
w-
nly
ete
or
ate
ha
al
not
me
pa-
ise
the

to
ter

m-
re-
res
ip-
to

-

r is
vi-

l. If
to

ted
e-
l

ld
ac-

ens
a-
nd

that
e.
ave

is
l is
in-
ese
ary
s,
i-

an,
ce
for
u-
.

S.
cal

in

ne,
ic

l-

N.
n-
i-

617Chaos and Noise in Three Hippocampal Models of Epilepsy
Picrotoxin and bicuculline block GABAA-mediated inhi-
bition, yet another hypothesized cause of epilep
seizures.5 Furthermore, this is the first calculation of glo
bal Lyapunov exponents forin vitro epileptiform bursting
using surrogate data controls. The problem of inaccu
and false positive exponents when using old
methods21,34 was noted as a possible shortcoming of p
vious studies.31 Those methods do not yield reliable e
timates in short and noisy data sets. The algorithm
veloped by Kantz12 is robust to a small amount of noise
but is not useful in the case of extremely rapid expans
or smaller data sets~as in the present study!. The expan-
sion technique used in this study was designed to co
teract the effect of noise by averaging over all the poi
in each data set. It also compensates for the problem
nonstationarity by examiningLave for multiple values of
the number of nearest neighbors. Because it measure
expansion rate after only one iteration, the result is n
strictly speaking, the largest Lyapunov exponent. Ho
ever, with such rapid expansion this method was the o
way to assess whether the system was expanding d
ministically or stochastically. The fact that the curves f
the data were almost identical to those of the surrog
means suggests that the bursting contains a large stoc
tic component, though effects of higher-dimension
chaos or nonstationarity cannot be excluded. This is
surprising, since most biological systems have so
amount of noise in them. The hippocampal slice pre
ration itself may have introduced a great deal of no
into the system. It is possible that in an intact brain,
many external inputs into the hippocampus may act
reduce the stochastic component, thus making the de
minism easier to detect.

The most common form of epileptic seizures, co
plex partial seizures, are also the most likely to be
fractory to medical treatment. Complex partial seizu
often originate in the hippocampus, and hence the h
pocampus is the region of the brain most often used
study epilepsyin vitro. The fact that deterministic behav
ior was found in three differentin vitro epilepsy models
in this region of the brain suggests that this behavio
intrinsic to interictal bursting. There exists some e
dence based on UPO analysis13,27 that interictal spikes
generated in humans behave deterministically as wel
this is indeed true, then it might eventually be possible
apply chaos control to manipulate interictal spikesin
vivo. Furthermore, two recent studies have demonstra
the ability to predict seizure activity several minutes b
fore they occur.14,15 While the precise role of intericta
spikes in epileptogenesis is not yet certain,4 it is plau-
sible that developing a method to control them cou
provide a way to revert or perhaps prevent seizure
tivity as well.
-

f

e

r-

s-

-

The presence of unstable periodic orbits strength
the rationale for using chaos control techniques to m
nipulate bursting, since UPOs are the points arou
which control can be applied.24 However, the relatively
large component of randomness detected suggests
chaos control may be difficult to achieve in practic
While chaos control techniques have been shown to h
some success in controlling stochastic systems,7 they
would likely have trouble if the amplitude of the noise
larger than the region of state space to which contro
desired. The presence of periodic orbits in a system
dicates that the system contains determinism. When th
periodic orbits are unstable, this provides necess
~though not sufficient! evidence of chaos as well. Thu
while we did not irrefutably detect chaos in these ep
lepsy models, we did find evidencesuggestiveof chaotic
behavior.
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NOMENCLATURE

AAFT: amplitude-adjusted Fourier transform
ACSF: artificial cerebrospinal fluid
CA: cornu ammonis
GABA: g-amino-butyric acid
IBI: interburst interval
NMDA: N-methyl-D-aspartate
UPO: unstable periodic orbit
IPSP: inhibitory postsynaptic potential
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