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S U M M A R Y
We apply two different algorithms to measure surface wave phase velocity, as a function of
frequency, from seismic ambient noise recorded at pairs of stations from a large European
network. The two methods are based on consistent theoretical formulations, but differ in the
implementation: one method involves the time-domain cross-correlation of signal recorded
at different stations; the other is based on frequency-domain cross-correlation, and requires
finding the zero-crossings of the real part of the cross-correlation spectrum. Furthermore,
the time-domain method, as implemented here and in the literature, practically involves the
important approximation that interstation distance be large compared to seismic wavelength.
In both cases, cross-correlations are ensemble-averaged over a relatively long period of time
(1 yr). We verify that the two algorithms give consistent results, and infer that phase velocity
can be successfully measured through ensemble-averaging of seismic ambient noise, further
validating earlier studies that had followed either approach. The description of our experiment
and its results is accompanied by a detailed though simplifed derivation of ambient-noise
theory, writing out explicitly the relationships between the surface wave Green’s function,
ambient-noise cross-correlation and phase and group velocities.

Key words: Time-series analysis; Interferometry; Seismic tomography; Theoretical
seismology; Crustal structure.

1 I N T RO D U C T I O N

The ability to observe coherent surface wave signal from the stacked
cross-correlation of background noise recorded at different stations
is essential to improve our resolution of Earth structure via seismic
imaging. Surface waves generated by earthquakes are best observed
at teleseismic distances, where the body- and surface wave packets
are well separated, and owing to different geometrical spreading,
surface waves are much more energetic than body waves; teleseis-
mic surface waves, however, are dominated by intermediate to long
periods (�30 s), and their speed of propagation is therefore related
to mantle, rather than crustal structure (e.g. Boschi & Ekström
2002). The averaged cross-correlated ambient-noise signal is in-
stead observed at periods roughly between 5 and 30 s (e.g. Stehly
et al. 2006, 2009), complementary to the period range of teleseismic
surface waves, and allowing to extend imaging resolution upwards
into the lithosphere–asthenosphere boundary region and the crust.

As first noted by Shapiro & Campillo (2004), the cross-
correlation of seismic ambient signal recorded at two different sta-

tions approximates the Green’s function associated with a point
source acting at one of the stations’ location, and a receiver de-
ployed at the other’s. Such empirical Green’s function can then
be analysed in different ways, with the ultimate goal of obtaining
information about Earth’s structure at various depths between the
two stations. Most authors either extract group velocity vg from its
envelope (e.g. Shapiro et al. 2005; Stehly et al. 2006, 2009), or iso-
late the phase velocity v (e.g. Lin et al. 2008; Nishida et al. 2008;
Ekström et al. 2009; Yao & van der Hilst 2009). Fewer authors (e.g.
Tromp et al. 2010; Basini et al. 2012) attempt to explain (invert)
the entire ambient-noise waveform.

Both v and vg are useful expressions of shallow Earth properties
between seismic source and receiver, or, in this case, between two
receivers. To measure vg one must be able to identify the peak of
the surface wave envelope. This, as a general rule, is easier than
isolating the carrying sinusoidal wave (i.e. measuring v) at a given
frequency. There are, however, several properties of vg that make
phase-velocity observations useful and possibly preferable: (i) the
envelope peak is less precisely defined than the phase of the carrying
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sinusoidal wave; (ii) at least so far as the surface wave fundamental
mode is concerned, vg depends on, and is in turn used to image,
structure over a narrower and shallower depth range than v (e.g.
Ritzwoller et al. 2001), so that v is particularly helpful to resolve
larger depths and (iii) a vg measurement needs to be made over a
wider time window than a v measurement, and contamination by
interfering phases is accordingly more likely.

While the validity of group-velocity estimates based on seismic
ambient noise is widely recognized, phase velocity is more elusive.
For instance, Yao et al. (2006) have noted an important discrepancy
between two-station observations of phase velocity obtained from
teleseismic versus ambient signal. The systematic application of a
far-field approximation, in the theoretical expression used to extract
the phase from cross-correlation observations (see eqs 41 and 35),
results in a π/4 shift with respect to the cross-correlation of ballistic
signal (e.g. Harmon et al. 2008), which has caused some confusion
as noted, for example, by Tsai (2009). We apply here two different
approaches to measure interstation surface wave phase velocity
from 1 yr of continuous recording at a dense, large array of European
stations, first compiled by Verbeke et al. (2012). Both methods
can be derived from the same basic theoretical formulation (Tsai
& Moschetti 2010). One of them is based on time-domain cross-
correlation, and is implemented, here and elsewhere, using a far-
field approximation of the wavefield equation. The other is based
on frequency domain cross-correlation, and on finding the roots
of the real part of the cross-correlation spectrum; it involves no
far-field approximation. The consistency between the two methods’
results further validates earlier phase-velocity tomography studies
conducted with either approach (e.g. Lin et al. 2008; Ekström et al.
2009; Yao & van der Hilst 2009; Fry et al. 2010; Verbeke et al.
2012).

2 T H E O RY

We study the properties of the cross-correlation Cxy(t, ω), function of
time t and frequency ω, of ambient surface wave signal u recorded at
two seismic instruments, located at positions x and y. By definition

Cxy(t, ω) = 1

2T

∫ T

−T
u(x, τ, ω)u(y, t + τ, ω) dτ, (1)

with the parameter T defining the size of the window over which the
cross-correlation is computed in practice. We limit our analysis to
sources sufficiently far from both receivers for the source–receiver
azimuth θ to be approximately the same. If we denote �x the dis-
tance separating the two receivers, it then follows, as illustrated in
Fig. 1, that the surface wave of frequency ω and phase velocity v(ω)
generated by a plane-wave source at azimuth θ hits the receiver at y
with an approximate delay

td = �x cos(θ )/v(ω) (2)

with respect to the one at x.
Our treatment follows that of Tsai (2009) and Tsai (2011); we

review the formulation carried out in those works, confirming the
theoretical consistency, and pointing out the practical differences
between the data-analysis methods that we compare. The mathemat-
ical treatment leads to complete expressions for cross-correlation
(Section 2.4), and group, as well as phase-velocity of the ambient
signal (Section 2.5). Like Tsai (2009), we assume, as mentioned,
that sources of ambient noise are far enough from our station pair
for the source–receiver azimuth to be approximately the same at the
two stations.

Figure 1. Modified from Tsai (2009). Stations at x and y are separated by
a distance �x > 0. Noise sources are far enough that the azimuth θ of any
given source is about the same with respect to either station.

Another important assumption of our and most other formula-
tions of ambient-noise theory is that the ambient signal be approxi-
mately ‘diffuse’. In practice, this is not true at any moment in time,
but can be at least partially achieved if the ambient signal recorded
over a very long time (e.g. 1 yr) is subdivided into shorter (e.g.
1-d long) intervals, which are then whitened and (after station–
station cross-correlation) stacked (Yang & Ritzwoller 2008; Mula-
rgia 2012). This procedure is described in detail by Bensen et al.
(2007); we refer to it as ‘ensemble-average’, rather than time aver-
age, since shorter time intervals can be chosen to overlap (e.g. Seats
et al. 2012; Weemstra et al. 2012). Over time, an array of seismic
stations will record ambient signal generated over a wide range of
azimuths and distances, and the process of stacking simulates the
superposition of simultaneously acting sources. Stehly et al. (2006)
show that, at least in the period range ∼5–15 s, most ambient-noise
signal is likely to be generated by the interaction between oceans
and the solid Earth (i.e. ocean storms), and the source distribu-
tion of even the stacked ambient signal is accordingly non-uniform.
Yet, there are both empirical (Derode et al. 2003) and theoreti-
cal (Snieder 2004) indications that as long as a significant fraction
of ambient signal hits a receiver pair along the receiver–receiver
azimuth, ensemble-averaging will result in successful applications
of ambient-noise methods. In our formulation, we treat sources as
uniformly distributed in azimuth with respect to the receiver pair.

2.1 Monochromatic signal from a single source

In the absence of strong lateral heterogeneity in elastic structure,
the momentum equation for a Love or Rayleigh wave can be de-
coupled into a differential equation in the vertical, and another in
the horizontal Cartesian coordinates. The latter coincides with the
Helmholtz equation and is solved by sinusoidal functions (e.g. Peter
et al. 2007).

Seismic ambient noise can be thought of as the effect of a com-
bination of sources more-or-less randomly distributed in space and
time. It is however convenient to start our treatment, following
Tsai (2009), from the simple case of a single source generating
a monochromatic signal of frequency ω. The first receiver then
records a signal

u(x, t) = S(x, ω) cos(ωt + φ), (3)

where the constant phase delay φ is proportional to source–receiver
distance, and the amplitude term S(x, ω) is inversely proportional,
in the first approximation, to the square-root of source–receiver
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distance (geometrical spreading). The signal (3) is observed at y
with a delay td, that is,

u(y, t) = S(y, ω) cos [ω(t + td) + φ] . (4)

(By virtue of eq. (2), td is negative when energy propagates from
y to x (0 < θ < π/2) and positive when energy propagates from
x to y.)

Let us substitute (3) and (4) into (1), so that

Cxy = S(x)S(y)

2T

∫ T

−T
cos(ωτ + φ) cos [ω(τ + t + td) + φ] dτ. (5)

It is convenient to substitute z = ωτ , to find

Cxy = S(x)S(y)

2ωT

∫ ωT

−ωT
cos(z + φ) cos [z + φ + ω(t + td)] dz. (6)

We next make use of the general trigonometric identity cos (A +
B) = cos Acos B − sin Asin B, valid for any A, B and

Cxy = S(x)S(y)

2ωT

∫ ωT

−ωT

{
cos2(z) cos [φ + ω(t + td)] cos(φ)

+ sin2(z) sin [φ + ω(t + td)] sin(φ)

− sin(z) cos(z) cos(φ) sin [φ + ω(t + td)]

− sin(z) cos(z) sin(φ) cos [φ + ω(t + td)]
}

dz, (7)

which can be simplified if one notices that∫ ωT

−ωT
cos2(z)dz =

∫ ωT

−ωT

1 + cos(2z)

2
dz = ωT + 1

2
sin(2ωT ), (8)

∫ ωT

−ωT
sin2(z)dz =

∫ ωT

−ωT

1 − cos(2z)

2
dz = ωT − 1

2
sin(2ωT ), (9)

and finally∫ ωT

−ωT
sin(z) cos(z)dz =

[
sin2(z)

2

]ωT

−ωT

= 0, (10)

where the notation [ f (z)]B
A = f (B) − f (A).

After substituting the expressions (8), (9) and (10) into eq. (7),

Cxy = S(x)S(y)

2

{[
1 + sin(2ωT )

2ωT

]
cos(φ) cos [φ + ω(t + td)]

+
[

1
sin(2ωT )

2ωT

]
sin(φ) sin [φ + ω(t + td)]

}
. (11)

It then follows from simple trigonometric identities (cosine of the
sum, sine of the sum) that

Cxy = S(x)S(y)

2

×
{

cos [ω(t + td)] + sin(2ωT )

2ωT
cos [2φ + ω(t + td)]

}
. (12)

This expression can be simplified if one considers that the size 2T
of the cross-correlation window should be large compared to the
period of the surface waves in question, that is, T � 2π/ω, so that
2ωT � 1. Eq. (12) then reduces to

Cxy ≈ S(x)S(y)

2
cos [ω(t + td)] (13)

(compare with eq. (1) of Tsai (2009)). From eq. (13) we infer that
the station-station cross-correlation of a ‘ballistic’ signal, that is,

generated by a single source localized in space, and not scattered,
is only useful if the location of the source is known. It coincides
(once amplitude is normalized) with the response, at one station,
to a sinusoidal source located at the other, if and only if the two
stations are aligned with the source, that is, azimuth θ = 0 or θ =
π , so that td = ±�x/v.

2.2 Monochromatic signal from a discrete set of sources

Recorded seismic ambient noise is believed to be the cumulative
effect of numerous localized sources, distributed almost randomly
all around our pair of recording instruments. The signal generated
by a discrete set of monochromatic sources can be written as a
superposition of single-source signals, eqs (3) and (4), resulting in

u(x, t) =
∑

i

Si (x, ω) cos(ωt + φi ) (14)

and

u(y, t) =
∑

i

Si (y, ω) cos
[
ω(t + t i

d) + φi

]
, (15)

where the summation is over the sources, φi is the phase delay
associated with source i, and the time delay t i

d between stations x
and y also changes with source azimuth, hence the superscript i. In
analogy with Section 2.1, we next substitute (14) and (15) into (1),
and

Cxy = 1

2T

∑
i,k

{
Si (x)Sk(y)

∫ T

−T
cos(ωτ + φi ) cos

[
ω(τ + t + t k

d ) + φk

]
dτ

}
.

(16)

Let us consider the ‘cross-terms’ (cross-correlations between
cos (ωτ + φi) and cos

[
ω(τ + t + t k

d ) + φk

]
with i �= k) in eq. (16):

they are sinusoidal with the same frequency ω but randomly out of
phase, and therefore do not interfere constructively. The remaining
(i = k) terms, on the other hand, interfere constructively, as we il-
lustrate below, so that, after the contribution of a sufficient number
of sources has been taken into account, the cross-term contribution
becomes negligible relative to them. Following other derivations of
noise-correlation properties, we thus neglect cross-terms from this
point on (e.g. Snieder 2004; Tsai 2009). We are left with a sum of
integrals of the form (5), which we have proved in Section 2.1 to be
approximated by (13), so that

Cxy ≈
∑

i

Si (x)Si (y)

2
cos

[
ω(t + t i

d)
]
. (17)

2.3 Continuous distribution of sources

Eq. (17) can be further generalized to the case of a continuous
distribution of sources,

Cxy ≈
∫ �x

v

− �x
v

ρ(td, ω) cos [ω(t + td)] dtd, (18)

where we have introduced the function ρ(td, ω), describing the
density of sources as a function of interstation delay td, or, which is
the same (recall eq. 2), azimuth θ . Integration is accordingly over
td, and the integration limits correspond, through eq. (2), to the
interval of possible azimuths, from 0 to π . ρ is also a function of
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ω, as signal generated by differently located sources generally has a
different frequency content. To keep the notation compact, we have
incorporated the continuous version of the source term Si(x, ω)Si(y,
ω)/2 from eq. (17) in the source density function ρ(td, ω).

In analogy with earlier formulations of ambient-noise theory, we
require the source distribution to be uniform with respect to azimuth
θ . To find the corresponding (not constant) expression of ρ as a
function of td, we note that, for azimuthally constant source density,
ρ(td) multiplied by a positive increment |dtd| must coincide with the
corresponding increment |dθ | times a constant factor. Formally,

1

2π
g(ω)|dθ | = ρ(td, ω)|dtd|, (19)

where g(ω)/2π is the normalized value of uniform azimuthal source
density, selected so that its integral between 0 and 2π is exactly g(ω).
The factor g(ω) serves to remind us that source amplitude generally
changes with frequency. After replacing |dtd| = �xsin (θ )|dθ |/v,

g(ω)

2π
|dθ | = ρ(td, ω)

�x sin[θ (td)]

v
|dθ |, (20)

or

ρ(td, ω) = v(ω)g(ω)

2π�x sin[θ (td)]
, (21)

which is the expression of ρ =ρ(td, ω) corresponding to azimuthally
uniform source density.

2.4 Cross-correlation and Green’s function

It is convenient to separate the integral in eq. (18) into two integrals,
one over positive, and the other over negative td,

Cxy ≈
∫ 0

− �x
v

ρ(td, ω) cos [ω(t + td)] dtd

+
∫ �x

v

0
ρ(td, ω) cos [ω(t + td)] dtd. (22)

The negative- and positive-time contributions to Cxy are usually
referred to as anticausal and causal, respectively.

2.4.1 Positive-time (causal) contribution to the cross-correlation

Let us first consider the second term (td ≥ 0) at the right-hand side
of (22), which, since ρ(td, ω) is real (see eq. 21), can be rewritten

Ctd>0
xy ≈ �

[
eiωt

∫ �x
v

0
ρ(td, ω)eiωtd dtd

]
, (23)

where �(. . .) equals the real part of its argument. It is convenient to
replace ρ(td, ω) with its expression (21), and the integration variable
td with θ . By differentiating eq. (2), dtd = −�xsin (θ )dθ/v, while
the limits of integration 0, �x/v correspond to azimuth θ = π/2,
0, respectively, hence, using the symmetry of the cosine,

Ctd>0
xy ≈ �

[
g(ω)eiωt

2π

∫ π
2

0
eiω�x cos(θ)/vdθ

]
. (24)

(Recall that positive td corresponds to azimuth 0 < θ < π/2, while
the opposite holds for the td ≤ 0 term corresponding to π/2 < θ <

π .)

We next rewrite the integral in terms of Bessel and Struve func-
tions. Let us first consider the 0-order Bessel function of the first
kind in its integral form

J0(z) = 1

π

∫ π

0
cos[z sin(θ )]dθ (25)

[eq. (9.1.18) of Abramowitz & Stegun (1964)]. The integral from 0
to π in (25) can be transformed into an integral from 0 to π/2

J0(z) = 1

π

∫ π

0
cos[z sin(θ )]dθ

= 1

π

[∫ π
2

0
cos[z sin(θ )]dθ +

∫ π

π
2

cos[z sin(θ )]dθ

]

= 1

π

[∫ π
2

0
cos[z sin(θ )]dθ −

∫ 0

π
2

cos[z sin(π − θ ′)]dθ ′
]

= 1

π

[∫ π
2

0
cos[z sin(θ )]dθ +

∫ π
2

0
cos[z sin(θ ′)]dθ ′

]

= 2

π

∫ π
2

0
cos[z sin(θ )]dθ. (26)

We then replace sin (θ ) = cos (θ − π/2) and change the integration
variable θ = θ ′ + π/2,

J0(z) = 2

π

∫ π
2

0
cos[z cos(θ − π

2
)]dθ

= 2

π

∫ 0

− π
2

cos[z cos(θ ′)]dθ ′

= 2

π

∫ π
2

0
cos[z cos(θ ′)]dθ ′, (27)

and after substituting z with ω�x/v,

J0

(
ω�x

v

)
= 2

π

∫ π
2

0
cos

[
ω�x

v
cos (θ )

]
dθ

= 2

π
�

[∫ π
2

0
eiω�x cos(θ)/vdθ

]
. (28)

The 0-order Struve function also has an integral form

H0(z) = 2

π

∫ π
2

0
sin[z cos(θ )]dθ, (29)

which coincides with eq. (12.1.7) of Abramowitz & Stegun (1964) at
order 0 and substituting 	(1/2) = √

π , with 	 denoting the Gamma
function. We replace, again, z with ω�x/v, and

H0

(
ω�x

v

)
= 2

π
�

[∫ π
2

0
eiω�x cos(θ)/vdθ

]
, (30)

with the operator � mapping complex numbers to their imaginary
part. It follows from (28) and (30) that∫ π

2

0
eiω�x cos(θ)/vdθ = π

2

[
J0

(
ω�x

v

)
+ iH0

(
ω�x

v

)]
, (31)

and substituting into (24)

Ctd>0
xy ≈ �

{
g(ω)eiωt

4

[
J0

(
ω�x

v

)
+ iH0

(
ω�x

v

)]}
. (32)
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Following Tsai (2009), or all other authors conducting ambient-
noise analysis in the time domain, we next assume that interstation
distance be much larger than the wavelength of the signal under
consideration, that is, ω�x/v � 1. It then follows from eq. (9.2.1)
of Abramowitz & Stegun (1964) that

J0

(
ω�x

v

)
≈

√
2 v

ωπ�x
cos

(
ω�x

v
− π

4

)
, (33)

and from eqs (12.1.34) and (9.2.2) of Abramowitz & Stegun (1964),

H0

(
ω�x

v

)
≈ Y0

(
ω�x

v

)
≈

√
2 v

ωπ�x
sin

(
ω�x

v
− π

4

)
, (34)

with Y0 denoting the 0-order Bessel function of the second kind.
Substituting eqs (33) and (34) into (32),

Ctd>0
xy ≈ �

{
g(ω)eiωt

√
v

8πω�x

[
ei(ω�x/v−π/4)

]}

= g(ω)

√
v

8πω�x
cos [ω (�x/v + t) − π/4] . (35)

Comparing eq. (35) to (13), we note a phase-shift π/4 between the
cross-correlated signal generated by a teleseismic event aligned with
the two stations, and that obtained from the ensemble-averaging of
seismic ambient noise. π/4 is nWothing but the phase-shift between
a cosine and a Bessel function, for large values of the argument (i.e.
in the far field). In our experimental set-up, a cosine describes the
two-station cross-correlation of a plane wave hitting the receivers
from a single azimuth; the Bessel function (and hence the π/4 shift)
emerges from the combined effect of plane waves coming from all
azimuths (i.e. focusing over the receiver array).

2.4.2 Negative-time (anticausal) contribution to the
cross-correlation

An analogous treatment applies to the negative-time cross-
correlation Ctd<0

xy , that is, the first term at the right-hand side of
eq. (22), which after the variable change from td to θ becomes

Ctd<0
xy ≈ �

[
g(ω)eiωt

2π

∫ π

π
2

eiω�x cos(θ)/vdθ

]
. (36)

To express also this integral in terms of Bessel and Struve functions,
we first notice that∫ π

π
2

f [cos(θ )]dθ =
∫ π

2

0
f
[
cos

(
θ ′ + π

2

)]
dθ ′

=
∫ π

2

0
f
[
cos(θ ′) cos

(π

2

)
− sin(θ ′) sin

(π

2

)]
dθ ′

=
∫ π

2

0
f [− sin(θ ′)]dθ ′, (37)

for an arbitrary function f. From eq. (36) it then follows that

Ctd<0
xy ≈ �

[
g(ω)eiωt

2π

∫ π
2

0
e−iω�x sin(θ)/vdθ

]
. (38)

Similar to eq. (27) in Section 2.4.1, we next replace cos (θ ) =
sin (θ + π/2) in expression (29) for the Struve function, and change
the integration variable θ ′ = θ + π

2 ,

H0(z) = 2

π

∫ π
2

0
sin[z cos(θ )]dθ

= 2

π

∫ π
2

0
sin

[
z sin

(
θ + π

2

)]
dθ

= 2

π

∫ π

π
2

sin[z sin(θ ′)]dθ ′

= 2

π

∫ π
2

0
sin[z sin(−θ ′)]dθ ′

= − 2

π

∫ π
2

0
sin[z sin(θ ′)]dθ ′. (39)

Making use of eq. (39), and of expression (26) for the Bessel
function J0, with z = ω�x/v, in (38),

Ctd<0
xy ≈ �

{
g(ω)e−iωt

4

[
J0

(
ω�x

v

)
− iH0

(
ω�x

v

)]}
, (40)

where only the sign of H0 at the right-hand side has changed with
respect to eq. (32). We conclude that

Ctd<0
xy ≈ g(ω)

√
v

8πω�x
cos [ω (−�x/v + t) + π/4] , (41)

that is, the negative-time phase-shift is symmetric to the positive-
time one, in agreement with Tsai (2009).

Summing Ctd<0
xy (eq. 41) and Ctd>0

xy (eq. 35) one finds, according
to eq. (22), an expression for Cxy valid at all, positive and negative
times. To verify its validity, we implement it numerically and com-
pare it in Fig. 2 to the result of eq. (17) applied to a very large set of
sources, for the same frequency and interstation distance. Confirm-
ing earlier findings, the two differently computed cross-correlations
are practically coincident.

2.5 Group and phase velocity

We next consider the more general case of a seismogram formed
by the superposition of surface waves with different frequencies.
Let us start with our expression (35) for the cross-correlated signal,
grouping the amplitude terms in a generic positive factor S(ω). We
then find the mathematical expression of a surface wave packet by
(i) discretizing the frequency band of interest into a set of closely-
spaced frequencies ωi identified by the subscript i and (ii) combin-
ing different-frequency contributions by integration around each
frequency ωi and summation over i, so that

u(x, t) =
∞∑

i=1

∫ ωi +ε

ωi −ε

S(x, ω) cos

[
ω

(
�x

v(ω)
+ t

)
− π

4

]
dω, (42)

where ε � ωi. It is convenient to introduce the notation ψ =
ω(�x/v + t) − π/4, and, since ε is small, replace it with its Taylor
expansion around ωi, that is,

ψ(ω) ≈ ψ(ωi ) + (ω − ωi )

[
dψ

dω

]
ωi

, (43)

where [ f (ω)]ωi denotes the value of any function f evaluated at ω =
ωi. We rewrite eq. (42) accordingly, and find after some algebra that
the integral at its right-hand side∫ ωi +ε

ωi −ε

S(ω) cos

[
ω

(
�x

v(ω)
+ t

)
− π

4

]
dω

≈ S(ωi ) cos [ψ(ωi )]
2 sin

{
ε
[ dψ

dω

]
ωi

}
[ dψ

dω

]
ωi

(44)

 at D
T

U
 L

ibrary on July 3, 2013
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Measuring surface wave phase velocity 351

Figure 2. Numerical test of expression (41) + (35), with interstation distance of 500 km and wave speed of 3 km s−1. Cxy resulting from the direct
implementation of (41) + (35) is denoted by a solid line. We compare it with the result of applying eq. (17) to model Cxy from the combined effect of 1000,
far, sinusoidal (with 4-s period) out-of-phase sources located at 200 different, uniformly distributed azimuths from the station couple. Finally, we also compute
Cxy from eq. (16) (crosses), neglecting the cross-terms i �= k; a slight decay, with increasing lag, in the latter estimate of Cxy is caused by the finite length of
the time-integral in the implementation of (16). Amplitudes have been normalized. All modeled cross-correlations are perfectly in phase.

(valid in the assumption that S be a smooth function of ω). If one
introduces a function

vg(ω) = v(ω)

1 − ω

v(ω)
dv

dω

, (45)

it follows that dψ

dω
takes the compact form

[
dψ

dω

]
ωi

= �x

vg(ωi )
+ t ; (46)

we finally substitute it into (44) and substitute the resulting expres-
sion into (42), to find

u(x, t) =
∞∑

i=1

S(ωi )

× cos

[
ωi

(
�x

v(ωi )
+ t

)
− π

4

] 2 sin
[
ε
(

�x
vg(ωi ) + t

)]
[

�x
vg(ωi ) + t

] .

(47)

Each term at the right-hand side of eq. (47) is the product of a
wave of frequency ω and speed v(ω) with one of frequency ε �
ω and speed vg(ωi). The latter factor, with much lower frequency,
modulates the signal, and we call ‘group velocity’ its speed vg,
which coincides with the speed of the envelope of the signal. Eq.
(45) shows that, in the absence of dispersion (i.e. dv

dω
= 0) phase

and group velocities coincide. In practice, the values of v and vg are
always comparable, and the large difference in frequency results in
a large difference in the wavelength of the phase and group terms.

Comparing eq. (47) to (42), it is important to notice that
when phase velocity is measured from the station–station cross-
correlation of ambient signal, a phase correction of π/4 must first
be applied; the same is not true for group-velocity measurements.
We have shown in Sections 2.4.1 and 2.4.2 that ambient-noise cross-
correlation coincides with a combination of Bessel functions, and
that, for large values of their argument (corresponding to relatively
large interstation distance), Bessel functions can be replaced by si-
nusoidal functions, whose argument coincides with the argument
of the Bessel functions minus π/4. The π/4-shift in (42) and (47)
arises precisely from this far-field approximation.

3 H OW T O M E A S U R E P H A S E V E L O C I T Y

To evaluate whether phase velocity can be accurately observed in
the ensemble-averaged cross-correlation of ambient noise, we use
two independent approaches to measure it from the same data.
Consistency of the results is then an indication of their validity.
The first approach (Section 3.1) consists of cross-correlating and
stacking the surface wave signal (�t-long records of ambient signal
in our case) to find the empirical Green’s function (Section 2.4),
from which phase velocity can be measured (e.g. section 12.6.2 of
Udı́as 1999). If, as is most often the case, one works in the far-field
approximation, this requires that a π/4 correction be applied to
the data as explained in Section 2.5, eq. (47). The other approach
we consider is based on the result of Aki (1957), confirmed by
Ekström et al. (2009) for the frequency range of interest, that the
spectrum of the two-station cross-correlation of seismic ambient
noise should approximately coincide with a 0-order Bessel function
of the first kind (Section 3.2); in this case, no π/4 correction needs
to be applied.

3.1 Time-domain cross-correlation

The procedure of ensemble-averaging ambient signal is described
in detail, for example, by Bensen et al. (2007); a long (e.g. 1 yr) con-
tinuous seismic record is subdivided into shorter �t intervals. The
records are whitened, and they are normalized in the time-domain
so that the effects of possible ballistic signal (i.e. large earthquakes)
present in the data are minimized. The cross-correlation between
simultaneous �t-long records from different stations is then com-
puted for all available �t intervals, and the results for each station
pair are stacked over the entire year.

Bensen et al. (2007) measure group velocity from noise cross-
correlations, and suggest that phase dispersion can be obtained
by integration of group dispersion curves. This approach however
is not sufficient to identify phase velocity uniquely. Meier et al.
(2004) provide an algorithm to derive phase velocity from the cross-
correlation of teleseismic signals recorded by stations aligned with
the earthquake azimuth. Fry et al. (2010) and Verbeke et al. (in
preparation) show that the algorithm of Meier et al. (2004) can be
successfully applied to the ambient signal recorded at a regional-
scale array of broadband stations. In reference to the study of Fry
et al. (2010) where it was first introduced, we shall dub this ap-
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proach FRY. In the following we shall analyse a subset of the phase-
dispersion database compiled by Verbeke et al. (in preparation) via
their own automated implementation of FRY.

The phase-velocity measurements of Verbeke et al. (in prepara-
tion) are limited to the 0.02–0.1 Hz frequency range, where seismic
ambient noise is known to be strong (Stehly et al. 2009), most likely
as an effect of ocean storms and the coupling between oceans and the
solid Earth (Stehly et al. 2006). Frequency is discretized with incre-
ments whose length increases with increasing frequency (from 0.02
to 0.05 Hz). For each discrete frequency value, ensemble-averaged
cross-correlations are (i) bandpass filtered around the frequency in
question and (ii) windowed in the time-domain via a Gaussian win-
dow centred around the time of maximum amplitude of (filtered)
cross-correlation. Causal and anticausal parts are folded together
(i.e. stacked after reversing the time-dependence of the anticausal
one). The resulting time series is Fourier-transformed, and its phase
is identified as the arctangent of the ratio of the imaginary to real
part of the Fourier spectrum, as explained by (Udı́as 1999, section
12.6.1). Based on eq. (35), one must sum π/4 to the resulting folded
ensemble-averaged cross-correlation phase before applying eq. (3)
of Meier et al. (2004) (equivalent to eq. 12.56 of Udı́as 1999). Impor-
tantly, this π/4 shift is specific to ambient-noise cross-correlation,
and must not be applied in two-station analysis of ballistic surface
wave signal, as shown by eq. (13). Phase velocity is only known
up to a 2πn ‘multiple cycle ambiguity’, with n = 0, ±1, ±2, . . . .
After iterating over the entire frequency band, an array of disper-
sion curves is found, each corresponding to a value of n. Verbeke
et al. (in preparation) compare each curve (for all integer values of
n between −5 and 5) with phase velocity as predicted by PREM
(Dziewonski & Anderson 1981), and pick the one closest to PREM,
considering only the frequency range where the measurement is
reliable (no large jumps for small variations in frequency). [More
sophisticated procedures exist to resolve the ambiguity (e.g. Lin &
Ritzwoller 2011; Gouedard et al. 2012), but here we stick to the
simpler algorithm of Verbeke et al. (in preparation).]

Ensemble-averaged cross-correlations for two Swiss stations
(Fig. 3a) are shown in Fig. 3(b). At long period (compared to inter-
station distance divided by wave speed) the causal and anticausal
parts of the cross-correlation overlap, complicating the time-domain
analysis of cross-correlation, whose results are shown in Fig. 3(c).

3.2 Frequency-domain cross-correlation and
Bessel-function fitting

A different method, hereafter referred to as ‘AKI’, to extrapolate
phase velocity from the ambient signal recorded at two stations is
proposed by Ekström et al. (2009), based on much earlier work by
Aki (1957). The theoretical basis of this method has been recently
rederived by Nakahara (2006), Yokoi & Margaryan (2008) and Tsai
& Moschetti (2010). As pointed out by Ekström et al. (2009), this
approach does not require that ω�x/v � 1, that is, it will work for
wavelengths comparable to interstation distance.

According to AKI, ambient signal recorded over a long time (e.g.
1 yr) is, again, subdivided into shorter �t intervals. Let us call
pi(ω) the frequency spectrum associated with a �t-long record at
station i (Fig. 4a, with �t = 2 hr). After whitening, this is multiplied
with the simultaneous �t-long recording made at another station j
(Fig. 4b), resulting in the cross-spectrum, or spectrum of the cross-
correlation between the two �t-long records (Fig. 4c). This pro-
cedure is repeated for all available �t-intervals in the year, which
are then stacked together, that is, ensemble-averaged (Fig. 4d). The
resulting quantity is usually referred to as ‘coherency’. Based on

Figure 3. Illustration of the FRY method. (a) Locations (triangles) of sta-
tions TORNY and VDL, from the Swiss broadband network. (b) Ensemble-
averaged cross-correlation of continuous signal recorded at TORNY and
VDL, filtered over different frequency bands as indicated; the bottom trace
is the ‘full’ waveform. (c) Array of possible phase-velocity dispersion curves
from cross-correlation of the continuous recordings made at TORNY and
VDL; each curve corresponds to a different value of n, identified by the
curve colour as indicated. The black curve, closest to our selected reference
model (PREM), is our preferred one, but observations are only considered
valid in the frequency range marked by black squares.

Aki (1957),

〈
�

(
pi p∗

j

|pi | |p j |
)〉

∝ J0

[
ω�x

v(ω)

]
, (48)
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Figure 4. Illustration of the AKI approach. (a) Real part of the spectrum (ms) obtained Fourier-transforming two hours of ambient recording at station TORNY.
(b) same as (a), from the very same two hours of signal recorded at station VDL. (c) Product of (a) and (b) (coinciding with the real part of the spectrum of
the cross-correlation of the two time-domain signals) obtained after whitening both. (d) Results of ensemble-averaging an entire year of spectra like the one
at (c), for the same two stations: the blue and red lines identify values of real and imaginary parts found at various frequencies; the black solid line is the
linear combination of cubic splines that best-fits the observed real part of the spectrum. The locations of stations TORNY and VDL are shown in Fig. 3(a).
Cross-spectra in both (c) and (d) are implicitly normalized and hence unitless.

where 〈...〉 denotes ensemble averaging, the left-hand side is pre-
cisely what we call coherency, and the superscript ∗ marks the
complex conjugate of a complex number. The quantities at the
right-hand side of (48) are defined as in Section 2.4 above, with �x
distance between stations i and j. [The alert reader might notice at
this point that the right-hand side of eq. (48) is proportional to Cxy:
simply sum, according to eq. (22), its positive- and negative-time
contributions (32) and (40), respectively (Tsai & Moschetti 2010).]
Again based on Aki (1957), the ensemble-averaged imaginary
part〈
�

(
pi p∗

j

|pi | |p j |
)〉

= 0. (49)

Importantly, both eqs (48) and (49) are shown by Aki (1957) to be
valid provided that the energy of ambient signal is approximately
uniform with respect to azimuth. As anticipated at the beginning of
Section 2, this is typically not true at any moment in time, but can
be achieved, at least to some extent, by ensemble-averaging (Yang
& Ritzwoller 2008).

Eq. (48) can be used to determine phase dispersion. In practice,
observed coherency is first of all plotted as a function of frequency
(i.e. the ensemble-averaged, whitened cross-spectrum is plotted).
Values ωi (i = 1, 2, 3, . . . ) of frequency for which coherency is

zero are identified. If ω = ωi for some i, the argument of (48) must
coincide with one of the known zeros zn (n = 1, 2, ...) of the Bessel
function J0,

ωi�x

v(ωi )
= zn . (50)

Eq. (50) can be solved for v,

v(ωi ) = ωi�x

zn
, (51)

and we now have an array of possible measurements of phase ve-
locity at the frequency ωi, each corresponding to a different value
of n. Implementing (51) at all observed values of ωi, an array of
dispersion curves is found. Much like in the case of FRY (Sec-
tion 3.1), a criterion must then be established to select a unique
curve.

Importantly, the observation of ωi on ensemble-averaged cross-
spectra like the one of Fig. 4(d) is complicated by small oscillations
that can be attributed to instrumental noise or inaccuracies related to
non-uniformity in the source distribution. Before identifying ωi, we
determine the linear combination of cubic splines that best fits (in
least-squares sense, via the LSQR algorithm of Paige & Saunders
(1982)) observed coherency. Splines are equally spaced, and spacing
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must be selected so that ‘splined’ coherency is sufficiently smooth
(Fig. 4d).

Eqs (48) and (49) are rarely satisfied by seismic ambient noise
as observed in the real world. At a given time, the wavefield associ-
ated with ambient noise is not diffuse. The procedure of ensemble-
averaging over a long time serves precisely to mimic a diffuse
wavefield by combining non-diffuse ones. Yet, there are important
systematic effects that ensemble-averaging does not remove: in Eu-
rope, for example, most of the recorded seismic noise is generated in
the Atlantic Ocean (Stehly et al. 2006, 2009; Verbeke et al. 2012b),
and the requirement of an azimuthally uniform source distribution
is accordingly not met. Presumably, scattering partly compensates
for that, but the non-zero observed imaginary part of the coherency
shown, for example, in Fig. 4(d) indicates that the problem remains
(e.g. Cox 1973). The imaginary part should converge to zero if one
ensemble-averages not only over time, but also over station-pair az-
imuth (e.g. Weemstra et al. 2012), but then information on lateral
Earth structure would be lost.

It is practical to focus the analysis on zero crossings, rather than
measuring the overall fit between J0 and measured coherency. The
latter depends on the power spectrum of the noise sources, of which
we know very little, and can be affected importantly by data pro-
cessing (Ekström et al. 2009).

4 A P P L I C AT I O N T O C E N T R A L
E U RO P E A N DATA A N D
C RO S S - VA L I DAT I O N O F T H E T W O
M E T H O D S

Fig. 5 shows the set of ∼1000 randomly selected station pairs from
Verbeke et al. (in preparation) that we shall analyse here. The corre-
sponding phase-velocity dispersion curves were measured by Ver-
beke et al. (in preparation) following the procedure of Section 3.1,
after subdividing the entire year 2006 into day-long intervals and
ensemble-averaging the resulting day-long cross-correlations.

We apply the AKI method of Section 3.2 to continuous records
associated with the station pairs of Fig. 5. Our implementation was
originally designed for reservoir-scale application (Weemstra et al.
2012), but could be applied to our continent-scale array of data after
only minor modifications. For each station, continuous recording
for the entire year 2006 is subdivided into intervals of �t = 2 hr,
with a very conservative 75 per cent overlap between neighbouring
intervals to make sure that no coherent signal traveling from station
to station is neglected (Seats et al. 2012; Weemstra et al. 2012).
This results in as many as 45 spectra per d.

In Fig. 6, we compare our new phase-velocity measurements with
those of Verbeke et al. (in preparation) for three example station

Figure 5. (a) Subset of European stations (circles) from Verbeke et al. (in preparation) that are also included in our analysis. We only compare phase-velocity
measurements associated with ∼1000 station pairs connected by solid lines. (b) Distribution of epicentral-distance values sampled by the data set at (a).
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Figure 6. Selected FRY phase-velocity dispersion measurements (black circles, connected by a black line) compared with analogous frequency-domain (AKI)
measurements (grey triangles), for three station pairs: (a) AQU and GIUL, in central Italy, only ∼90 km away from each other, with a north–south azimuth;
(b) TORNY and VDL (see Fig. 3a), with interstation distance of ∼190 km; (c) WTTA in western Austria and ZCCA in northern Italy, ∼330 km to the south.
Triangles in panel (d) mark the locations of all six stations considered here. We have not yet implemented an algorithm for automatic selection of a preferred
AKI dispersion curve, but the FRY curves clearly fit a single branch of AKI data points. At low frequencies, and particularly at shorter epicentral distances, the
match is less accurate. At longer epicentral distances and high frequencies, occasional one-cycle jumps as in (c) occur.

Figure 7. Frequency of observed phase-velocity misfit (AKI values subtracted from FRY ones) for the total set of ∼1000 analysed station pairs. The mean is
13 m s−1 and the standard deviation is 151 m s−1.
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Figure 8. FRY-AKI phase-velocity misfit, for the total set of ∼1000 analysed station pairs, averaged within (a) ∼0.3◦ interstation-distance bins, and (b) 2-mHz
frequency bins.

pairs. A visual analysis (which we repeated on many more pairs)
suggests that the two methods provide very similar results.

To evaluate quantitatively their level of consistency, we first ex-
pand FRY dispersion curves over a set of cubic splines, and apply
spline interpolation to estimate FRY-based phase-velocity values at
the exact frequencies (associated with zero-crossings of the Bessel
function) where AKI measurements are available. We subtract the
AKI phase velocities from the FRY ones interpolated at the same
frequency, selecting at each frequency the AKI data point closest
to the FRY one (we thus avoid the well known issue of multiple-
cycle ambiguity, that equally affects both approaches). We count
the number of discrepancy observations, independent of frequency,
falling in each of a set of 50 m s−1 intervals, and plot the associ-
ated histogram in Fig. 7. Both mean and standard deviation of the
FRY-AKI discrepancy are small (13 and 151 m s−1, respectively),
and we conclude that, in our implementation, the two approaches
provide consistent results when applied to the data. Outliers exist
with misfit larger than ±1000 m s−1, but they would not be visible
in Fig. 7 even after extending the horizontal-axis range.

We next analyse the dependence of FRY-AKI discrepancy on
interstation distance, through a second histogram (Fig. 8a) where
the misfit is averaged within ∼0.3◦ interstation-distance bins. In

Fig. 8(b) the misfit is likewise averaged within 2-mHz increments
spanning the whole frequency range of interest. Fig. 8(a) shows that
FRY has a tendency to give slightly higher velocity estimates with
respect to AKI; this effect is reversed at very small and very large
interstation distances. The misfit remains low (∼30 m s−1 or less)
at most interstation distances.

Fig. 8(b) shows clearly that misfit is systematically smaller
(�20 m s−1) at relatively high frequencies (�0.04 Hz) than it is
at low frequencies of ∼0.02–0.03 Hz. This is expected, as low
frequency might result in relatively small ω�x/v, which would
deteriorate the performance of FRY (but not of AKI) for short inter-
station distance �x: in practice, the causal and anticausal parts tend
to overlap in the short-�x time-domain cross-correlations, making
it difficult to measure phase via the FRY method (e.g. Ekström et al.
2009).

The combined effect of short �x and low frequency is per-
haps better illustrated in Fig. 9(a), where both frequency- and �x-
dependence of misfit are shown in a single, 2-D plot. It emerges
that, even at low frequency, AKI and FRY are in good agreement
for sufficiently large interstation distance. Fig. 9(b) shows that, not
surprisingly, sampling is not uniform with respect to frequency
and �x; most seismic-ambient-noise energy in our station array is
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Figure 9. (a) FRY-AKI phase-velocity misfit, for the total set of ∼1000 analysed station pairs, averaged within (a) ∼0.2◦ × 0.04-Hz distance/frequency bins
and (b) number of pairs per distance/frequency bin.

found at frequencies around ∼0.05 Hz, and some of the discrepancy
found at both higher and lower frequency (see in particular the top
right-hand side of Fig. 8 a) presumably reflects the difficulty of find-
ing coherent signal in the absence of a sufficiently strong ambient
wavefield.

Overall, averaged discrepancies in Figs 8 and 9 remain
�50 m s−1, with the exception of the lowest frequencies/shortest
epicentral distances considered, where averaged values can exceed
∼100 m s−1. A velocity difference of 50 m s−1 can be considered
small if compared with the range of velocity heterogeneity in the
frequency range and geographic area of interest, that is, ∼1 km s−1

or more according to Verbeke et al. (2012b). We take this as an indi-
cation that the AKI and FRY methods provide essentially consistent
results, and we infer that such results can be considered reliable.

5 C O N C LU S I O N S

With this study we have conducted a detailed review of the theory
of ensemble-averaged cross-correlation of surface waves generated
by seismic ambient noise, as more tersely described by Tsai (2009,
2011) and Tsai & Moschetti (2010). With our rederivation we at-
tempt to focus the reader’s attention on the potential discrepancy be-
tween the time-domain and frequency-domain approaches in phase-
velocity measurements conducted on ambient-noise surface waves.
The possibly most important difference between the two methods
resides in the far-field approximation that is generally applied by
time-domain practitioners (e.g. Lin et al. 2008; Yao & van der Hilst
2009; Fry et al. 2010; Verbeke et al. 2012b), and we have empha-
sized how this approximation is inadequate for interstation distances
comparable to the seismic wavelengths. The frequency-domain ap-
proach of Aki (1957) and Ekström et al. (2009) does not suffer
from this limitation: it is thus particularly useful for closely-spaced
stations, provided that precursory noise caused by inhomogeneities
in the source distribution is negligible (e.g. Shapiro et al. 2006; Lin
et al. 2007; Villasenor et al. 2007; Zheng et al. 2011).

We have employed our own implementations of the non-
asymptotic frequency-domain (AKI) and far-field asymptotic time-
domain (FRY) approaches, to measure Rayleigh-wave phase dis-
persion from a year of seismic noise recorded at a dense array of
European stations (Verbeke et al. 2012b). The two approaches pro-
vide overall consistent results. As shown in Fig. 9, discrepancies are
limited to the lowest frequencies and shortest epicentral distances,
where the far-field approximation on which the FRY method re-

lies does not hold. We infer that Rayleigh-wave phase velocity
can be successfully observed, via ensemble averaging, from contin-
uous recordings of seismic ambient noise, at least within the fre-
quency (∼0.03–0.1 Hz) and interstation distance (∼0.5◦–5◦) ranges
analysed here. We further confirm the validity of published phase-
velocity observations (e.g. Verbeke et al. 2012b) obtained through
the time-domain approach.
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