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6.1. INTRODUCTION

A fundamental problem in Earth sciences is how to 
combine available information about the Earth (geo‐
information) into one consistent model of the subsurface. 
One difficulty is that the available information is of very 
different nature. Examples of geo‐information are geo­
physical measurements, well logs, remote sensing, knowl­
edge about geological processes, and so on. One commonly 
used approach to solve this problem is to make use of 
inverse problem theory. An inverse problem is typically 
defined as a problem where information about unknown 
parameters of a physical system are inferred from indi­
rect physical measurements (see, e.g., Tarantola [2005]; 
Mosegaard and Hansen [2015]). The term “inverse problem” 

implies that one seeks to invert a process. For example, in 
a forward process some physical response from the Earth 
is measured in the form of some data. In the inverse pro­
cess, an Earth model (or a collection of Earth models) 
explaining the data is sought. Alternatively, inferring 
information about the Earth can be considered as a prob­
lem of integration of information, where information 
from indirect information may, or may not, be available.

Let I1, I2, …, IN represent N different types of sources of 
information available about the Earth. Let the Earth be 
described by a set of M model parameters m = [m1, m2, …, 
mM]. In a probabilistic formulation, the information about 
m, from a specific type of information Ii, can be quanti­
fied by a probability distribution f Ii( | )m , and hence N 
probability distributions f I f I f IN( | ), ( | ), , ( | )m m m1 2  
describe all the information available about m.

If  the information is independent—that is, if  f (I) = 
f (I1, I2, …, IN) = f (I1) f (I2), …, f (IN)—then f (m|I1), 
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The problem of inferring information about the Earth can be described as a data integration problem, where the solu­
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data integration problem into a manageable one.
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f (m,|I2,), …, f (m|IN) can be considered statistically inde­
pendent, and then the combined information from all 
sources of information is given by the probability 
distribution
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The probabilistic formulation in Eq. (6.1) is similar to 
the concept of “conjunction of states of information” 
proposed as an approach to solve inverse problems 
[Tarantola and Valette, 1982; Tarantola, 2005]. f  (m|Ii) 
represents one state of information. Tarantola, [2005] 
considers the conjunction of two states of information: 
the a priori probability and the theoretical probability 
density (given by a likelihood function). The conjunction 
of these two states of information is referred to as the a 
posteriori probability distribution. Here we intentionally 
avoid using the terms a priori and likelihood for several 
reasons. First, we argue that the two states of informa­
tion (the prior and likelihood) simply represent different 
types of information about the model parameters, as 
described by, in this case, two probability distributions 
f (m|I1) and f (m|I2), respectively. Second, traditionally 
most focus in inverse problems has been on the informa­
tion available from indirect information, related to geo­
physical data, while the use of a priori information has 
historically been debated. Some support the argument 
that the a priori probability distribution should be cho­
sen as noninformative as possible [Scales and Sneider, 
1997; Buland and Omre, 2003]. Others have argued that 
direct information about the model parameters may be 
of more value than geophysical data [Journel, 1994]. 
Here, in line with Jaynes [1984], we suggest to make use 
of whatever information, f (m|Ii), that is available (be it 
more or less informative) about the model parameters. 
The importance of each type of information is independ­
ent of the source of the information and is solely quanti­
fied by f (m|Ii).

Probabilistic data integration using Eq. (6.1) is 
conceptually very simple, namely an application of  sta­
tistical independence. In practice, however, inferring 
information about f (m|I) may not be trivial. First, the 
information available has to be quantified probabilisti­
cally. This can be either in the form of  an analytical 
description of  f (m|Ii) (e.g., a normal distribution) or in 
the form of  an algorithm that samples f (m|Ii) (e.g., a 
pruned partially ordered Markov mixture model as 
sampled by the SNESIM algorithm [Strebelle, 2002; 
Cordua et al., 2015]). Next, it may be a challenge to 
computationally efficiently infer information from 

f (m|I), even in cases where a mathematical expression 
for f (m|I) exist. The computational complexity is highly 
linked to the method that is applied for inferring such 
information.

In the following, we will discuss methods and algorithms 
that allow probabilistic integration of geo‐information, 
as given in Eq. (6.1), such that inference from f (m|I) is 
possible.

First, methods for quantifying different types of geo‐
information (information about the Earth) through prob­
ability distributions will be reviewed. Geo‐information 
differs in the form in which it is available and we argue 
that it can, crudely, be divided into two categories: 
“direct” and “indirect” information about m. Direct 
information allows characterizing the model parameters 
directly, which can be done using a variety of methods 
based on, for example, geostatistics, Markov models, and 
parsimonious model assumptions. We show examples on 
how to infer direct information from a sample model, 
related to a variety of types of statistical models 
(Section  6.2). We also recall how indirect information 
(e.g., where geophysical data provides information about 
some property related to the model parameters) can be 
quantified by data, measuring uncertainty and modeling 
errors (Section 6.3).

Then we discuss and compare a number of widely used 
sampling methods for inference of information from the 
probability distribution representing the combined infor­
mation f (m|I). Specifically, we discuss how the numerical 
efficiency of such methods is strongly related to the type 
and amount of information available (Sections 6.4 and 6.5), 
and demonstrate this in a case study (Section 6.6). Finally, 
we discuss how the entropy related to different types of 
information affect the complexity of the data integration 
problem (Section 6.7).

Any knowledge, direct or indirect, about the model 
parameters m is conditional to a specific type of informa­
tion Ii. Hence, the use of the notation f (m|Ii). However, 
for brevity, we will occasionally make use of the shorter 
notation f f II ii

( ) ( | )m m , and fI (m) = f (m|I) in parts of 
the remainder of the text.

6.2. QUANTIFYING DIRECT GEO‐INFORMATION 
USING PROBABILITY DISTRIBUTIONS

Working with geo‐data, model parameters m typically 
describe an earth model, where each model parameter mi 
refers to a physical property, or geological unit, of a point 
or volume located somewhere in a three‐dimensional 
space. When information about the model parameters m 
is available, it will be referred to as “direct” information 
about the model parameters (as opposed to indirect 
information that provide information related to the 
model parameters through some function g(m)). This 
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type of information must be quantified through the prob­
ability distribution f(m|Idirect).

Direct information can, for example, refer to knowl­
edge about the value a model parameter can take. Physical 
laws may impose restrictions on the values that specific 
types of model parameters can attain. For example, a 
velocity cannot be negative and cannot exceed the speed 
of light. Other types of direct information are rooted in 
geological knowledge. For example, knowledge about 
how the Earth has evolved in time can lead to some infor­
mation about what type of structures that can and can­
not be expected in the Earth. It can also give rise to 
information about what kind of geology that can be 
expected and, hence, information about m. Such infor­
mation can be rooted in both observations, theoretical 
studies, and numerical simulation. Sometimes, a “sample 
model” may be available. A sample model is an example 
of (perhaps a part of) a  realization from the unknown 
probability distribution f (m|Idirect). This is the case when, 
for example, outcrops available at one location can be 
considered representative at another location; that is, the 
same probability distribution is expected to represent 
the  same subsurface variability at the location of the 
sample model and at the unknown location. See, for 
example, Holliger and Levander [1994] for an example of 
using a sample model.

In the following a wide variety of types of probability 
distributions will be considered that allow characterizing 
f (m|Idirect). They differ in the type of assumptions that is 
made regarding the statistical properties of f (m|Idirect). 
Each choice of type of probability distribution requires a 
specific set of statistical properties in order to define the 
probability distribution (such as, for example, the mean 
and covariance for a Gaussian probability distribution). 
Also, different methods exist for generating realizations 
for each type of probability distribution.

Whether one makes use of a simple, high‐entropy prob­
ability distribution, or a more complex, low‐entropy type 
of probability distribution, the workflow of quantifying 
the available information is the same: (1) Select a type of 
probability distribution and (2) infer the properties, for 
example, from a sample model that defines this probabil­
ity distribution. In that sense the only difference between 
probability distributions based on one‐point, two‐point, 
and multiple‐point statistics is related to what type of sta­
tistics is taken into account.

6.2.1. Quantifying f (m|Idirect)

In the following, a number of methods for characteri­
zation of direct information, f (m|Idirect), will be given, 
both in case an analytical expression of f (m|Idirect) is 
assumed and in case it is unknown, but numerical algo­
rithms exist that allow sampling from f( m|Idirect).

6.2.1.1. Probability Distributions Based on  
One‐Point Statistics

If  we assume that the information for each individual 
model parameters mi is independent on other model 
parameters, then
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When m describes an Earth model, where each model 
parameter is related to a location in space, we say that the 
model parameters are spatially uncorrelated.

Uniform Distribution.  The most simple model for 
direct characterization of m is the uncorrelated uniform 
model. Assuming that all model parameters are inde­
pendent and are uniformly distributed between mmin and 
mmax, then fI(m) can be described using Eq. (6.2), where 
each 1D marginal distribution is given by
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The spatially uncorrelated uniform distribution is the 
distribution that provides least information and maxi­
mum entropy (i.e., maximum disorder) given only an 
upper and lower limit (which in the limit may tend to 

to ) [Shannon, 1948]. If  one wants to assume as little 
as possible about m, then the spatially uncorrelated uni­
form distribution f mI i, ( )  is often suggested [Scales and 
Sneider, 1997; Sambridge and Mosegaard, 2002].

Univariate Normal Distribution.  Another type of 
maximum entropy model (given a mean and a variance) is 
the uncorrelated Gaussian model. fI(m)is then described by 
Eq. (6.2), where each 1D marginal distribution is given by

	
f m
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where μ and σ represent the mean and the standard devia­
tion of the univariate normal distribution.

The assumption of spatial independence may be con­
venient in that using any of f mI i, ( )  or f mI i, ( )  leads to 
a probability distribution for which the probability distri­
bution value can be easily evaluated. However, such sim­
ple, spatially uncorrelated model parameters may not 
allow realistic characterization of actual available infor­
mation. The assumption of spatial independence implies 
that two model parameters located infinitely close 
together is assumed to be independent—an assumption 
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that in general may not be consistent with most natural 
phenomena, as these may display highly correlated fea­
tures. Fortunately, a number of probability distributions 
and methods exist that allow describing spatially depend­
ent model parameters, along with characterization of 
more geologically realistic structures.

6.2.1.2. Probability Distributions Based on  
Two‐Point (Gaussian) Statistics

In the special case where f (m|Idirect) can be described 
fully by the mean and covariance between pairs of model 
parameters mi and mj and where mi is normally distrib­
uted, then fI(m) is a Gaussian probability distribution 
with mean m0 and covariance C Cm mm ,( ( )) 0 , which is 
given analytically by

fI
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m m C m m
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The Gaussian description of fI(m) given in Eq. (6.5) is 
mathematically convenient. However, the Gaussian prob­
ability distribution is also the probability distribution 
with maximum entropy of all probability distributions 
with a given mean m0 and covariance Cm. The multivari­
ate Gaussian distribution maximizes spatial disorder such 
that the Gaussian choice of probability distribution is not 
able to describe more structured features such as, for 
example, channel structures [Journel and Deutsch, 1993].

A rather rich family of probability distributions, reflect­
ing quite different spatial structures, can be obtained 
from simple operations on realizations of a Gaussian 
probability distribution [Emery, 2007; Armstrong et al., 
2011]. In addition, numerical algorithms exist that, based 
on Gaussian statistics, can generate realizations that 
expose non‐Gaussian spatial features, such as indicator 
simulation [Journel and Isaaks, 1984] and direct sequen­
tial simulation [Soares, 2001]. Note that in these cases no 
analytical description of the underlying probability dis­
tribution f(m|Idirect) may exist, but numerical methods 
exist that allow sampling from f(m|Idirect).

6.2.1.3. Probability Distributions Based on  
Multiple‐Point Statistics

An alternative to using the Gaussian framework is to 
consider a probability distribution over m based on sta­
tistics that describes the (co)relation between more than 
two model parameters at a time. This is known as proba­
bility distributions based on multiple‐point statistics. In 
this case, f(m|Idirect) cannot simply be described by the sta­
tistical variation between pairs of model parameters (as 
given in covariance‐based probability distributions 
described above). Instead, the variation between multiple 

model parameters needs to be quantified. Usually, no 
parametric description exists to quantify such distribu­
tions. Instead, nonparametric distributions based on 
multiple‐point statistics are obtained from sample mod­
els. For examples of methods that utilize multiple‐point 
statistics see Guardiano and Srivastava [1993], Tjelmeland 
and Besag [1998], Strebelle [2002], Mariethoz et al. [2010], 
Dimitrakopoulos et al. [2010], Lange et al. [2012], 
Mariethoz and Caers [2014], and Cordua et al. [2015]

When fI(m) is based on multiple‐point statistics, it is 
often a type of partially ordered Markov model (POMM) 
[Cressie and Davidson, 1998; Cordua et al., 2015]:
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p(mi|pa(mi)) is the conditional probability of mi given the 
so‐called parents pa(mi) of the model parameter mi, which 
are the model parameters that mi is conditional depend­
ent on.

In practice, a realization of fI,POMM(m), Eq. (6.6), can be 
generated by sequentially visiting all model parameters 
(optionally in random order), while at each step generat­
ing a realization of p(mi|pa(mi)). Note, however, that in 
practice, fI,POMM(m) will change for different choices of 
simulation path [Cordua et al., 2015]. Moreover, the dis­
tribution is also dependent on the individual outcome 
realizations because the algorithm that samples from this 
distribution will prune the number of parents [Strebelle, 
2002]. If  the random path used for simulation from a 
POMM Is chosen from a uniform distribution, the prob­
ability distribution being sampled is a so‐called pruned 
mixture model (PMM) of partially ordered Markov 
models [Cordua et al., 2015; Daly, 2005]:

	
f w fI PMM

path

path
I POMM
path

, , ,m 	 (6.7)

where the weights are given as w
Mpath

1
!
 for all paths and 

the sum is taken over all possible simulation paths (M!). 
fI,PMM(m) in Eq. (6.7) is, however, computationally intrac­
table to obtain because the individual partial ordered 
Markov models depend on the pruning of the algorithm. 
This demands that the pruning related to all possible out­
comes for all possible simulation paths have to be known 
in order to obtain an actual explicit mathematical expres­
sion of this probability distribution [Cordua et al., 2015].

6.2.1.4. Parsimonious/Trans‐Dimensional Models
For the probability distributions considered previously, 

it  has been assumed that the parameterization of m 
(i.e., the location and density of model parameters) has 
been chosen densely enough, as part of parameterization, 
to allow a realistic representation of spatial features 
[Mosegaard and Hansen, 2015].
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However, one can choose to treat the number of model 
parameters as an unknown model parameter itself, which 
is referred to as using a trans‐dimensional or parsimoni­
ous parameterization [Constable et al., 1987; Malinverno, 
2002; Bodin et al., 2009].

Malinverno [2002] suggested a type of  Monte Carlo‐
based inversion that allows, in their presented 1D case, 
the number of  subsurface layers to vary. Bodin et al. 
[2009] explored this further and suggested a “self-
parameterizing partition model” (trans‐dimensional) 
approach that allows defining the subsurface using a 
number of  basis functions, in this case exemplified 
using a number of  Voronoi cells. In both studies, the 
number of  layers/cells control the complexity of  the 
subsurface. And, in both cases, algorithms are pre­
sented that allow randomly perturbing a subsurface 
model to update the number, location, and value of  lay­
ers/cells.

A general formulation of a transdimensional descrip­
tion of the model parameters space, in form of Nb basis 
functions can be given by (Bodin et al. [2009])

	
m

i

N

i i

b

a B
1

x ,	 (6.8)

where Bi is a specific choice of kernel function, x is a loca­
tion in space, and ai is its associated amplitude.

In the case where the basis function defines 2D 
Voronoi cells, then m can be completely characterized by 
the 3Nb parameters, Nb values of  each Voronoi cell,vc , as 
well as Nb values for the x‐ and y‐location for the center 
of  each Voronoi cell, xc and yc. A statistical model over 
these parameters can be given by fI,V(Nb, vc, xc, yc). For 
each realization of  fI,V, the value of  any corresponding 
model parameter, mi, regardless of  the sampling density 
of  the model parameters, can then be computed using 
Eq. (6.8).

Here we will simply consider the trans‐dimensional 
model as a specific type of information about m, for 
which no explicit description of f(m|I) may be given, but 
where algorithms exist to allow sampling f(m|I).

Note that in practice one will almost always implicitly 
make use of basis functions as part of parameterizing the 
model parameters. For example, when illustrating a set of 
model parameters, parameterized over a 2D grid, one 
tends to show this as an image of pixels, where each pixel 
reflect the value of one model parameter. This implies 
that each model parameter is assumed to reflect an aver­
age value within an area (as spanned by the pixel size) 
and not the value of a point. For a more detailed discus­
sion on the implicit use of basis functions as part of 
parameterizing inverse problem, see Mosegaard and 
Hansen [2015].

6.2.2. Sampling from f(m|Idirect)

Many different methods exist that allow sampling (i.e., 
generating a sample of Earth models) from f (m|Idirect). 
Here we pay special attention to sampling methods based 
on sequential simulation, as we shall later exploit some fea­
tures of the sequential simulation approach that allow 
efficient sampling from f I I f I f I( | , ) ( | ) ( | )m m m1 2 1 2  
when either f (m|I1) or f (m|I2) can be sampled using sequen­
tial simulation.

6.2.2.1. Sequential Simulation
Sequential simulation is a method that can be used to 

generate a realization of a joint probability distribution 
f (m) = f( m1, m2, …, mM) in the case where the conditional 
distribution

	 f m f m m m mi c i i| | , , ,m 1 2 1 	 (6.9)

can be evaluated for all sets of conditional model param­
eters mc. It is based on the product rule

	
f f m f m m f m m m m

k

M
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3
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(6.10)

A realization of f(m) can be generated as m* using the 
sequential simulation algorithm as follows:

SEQUENTIAL SIMULATION
Visit model parameter 1, m1. Generate a realization m1

* 
of f (m1).
Visit model parameter 2, m2. Generate a realization m2

* 

of  f m m2 1| * ,
Visit model parameter 3, m3. Generate a realization m3

* 

of  f m m m3 1 2| *, * .
⋮

Visit model parameter M, mM. Generate a realization 

mM*  of f m m m mM M| *, *, , *
1 2 1 .

Then m* * * *m m mM1 2, , ,  will be a realization of 
f (m). The model parameters can be visited in any order, as 
long as all model parameters are eventually visited 
[Gomez‐Hernandez and Journel, 1993].

At each step in the sequential simulation algorithm, 
one will typically compute the conditional distribution, 
f(mi|mc) = f(mi|m1,m2, …, mi−1), and then draw a realiza­
tion of this distribution. Note, though, that in order to 
use sequential simulation, f(mi|mc) does not need to be 
explicitly computed. It is sufficient that a realization from 
f(mi|mc) can be generated.

In most practical applications of sequential simulation, 
it can be computationally difficult or impossible to 
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describe the full conditional distribution, Eq. (6.9). 
Instead, one can retain only a limited number of condi­
tional model parameters—for example, based on proxim­
ity to the model parameter being simulated. This is 
referred to as using a “neighborhood” where the size of 
the neighborhood reflects the number of conditional 
model parameters. Such an application of sequential sim­
ulation will not sample the joint distribution exactly, but 
instead an approximation of it that can be described by a 
partially ordered Markov model (see Cressie and Davidson 
[1998]; Cordua et al. [2015]).

An early example of what can be seen as an application 
of sequential simulation using a neighborhood, is pre­
sented by Shannon [1948]. Here, sequential simulation is 
applied in order to simulate a sequence of English text 
character by character (based on a nonparametric prob­
ability distribution describing the occurrence of sets of 
characters inferred form on an English textbook used as 
a sample model). For each new character location a new 
character is simulated by generating a realization from a 
conditional distribution, conditional to a fixed number 
of preceding characters. The full conditional distribution 
is not computed. Instead, the first match, from a random 
starting point in the book (sample model) to the condi­
tioning data, is chosen as a realization of the conditional 
distribution. This is equivalent to inferring the full condi­
tional distribution from the sample model, followed by 
drawing a realization from the conditional distribution. 
More detailed descriptions of the theory and application 
of sequential simulation developed in geostatistical com­
munity can be found in, for example, Gomez‐Hernandez 
and Journel [1993] and Deutsch and Journel [1998].

6.2.2.2. Sequential Simulation of Probability  
Distributions Based on Two‐Point (Gaussian) Statistics

If f(m) is distributed according to a multivariate 
Gaussian model [see Eq. (6.5)], f ( ) ( )m m C 0 , m , then 
the conditional distribution, f(mi|mc), will be a 1D 
Gaussian distribution

	 f m m m mi i| , , , * .*1 2 1 0
2 m , 	 (6.11)

The mean and the variance can be found by solving a 
simlpe kriging system, Journel and Huijbregts [1978], or 
equivalently by solving linear least squares system, 
Hansen and Mosegaard [2008]. Sequential simulation, 
based on Eq. (6.11) is also known as sequential Gaussian 
simulation, a widely used two‐point statistical simulation 
algorithm, Deutsch and Journel [1998]; Remy et al. [2008].

Other variants of  sequential Gaussian simulation are 
direct sequential simulation [Soares, 2001; Oz et al., 
2003; Hansen and Mosegaard, 2008], sequential indicator 
simulation [Caers, 2000] and plurigaussian simulation 
[Armstrong et al., 2011].

6.2.2.3. Sequential Simulation of Probability  
Distributions Based on Multiple‐Point Statistics

Sequential simulation from a probability distribution 
based on multiple‐point statistics such as the pruned mix­
ture model based on partially ordered Markov models, 
Eq.  (6.7) can be obtained through sequential simulation. 
The conditional distribution f(mi|mc) needed for sequential 
simulation is the term p(mi|pa(mi)) in Eq. (6.6). As noted 
previously, when f(m) is based on multiple‐point statistics, a 
parametric analytical description of both f(m) and the con­
ditional distribution f(mi|mc) are typically not provided and 
a nonparametric description of the joint distribution is 
computationally intractable to obtain [Cordua et al., 2015].

However a nonparametric formulation of the individual 
conditional distributions, f(mi|mc), needed for sequential 
simulation can be obtained directly from a sample model, 
most often in the form of a training image. A training 
image is a specific type of sample model (which in 2D is 
given by an image of pixels and in 3D by a cube of voxels) 
that represents realistic spatial variability. Such an image 
can, for example, be provided by a geological expert or 
from outcrops.

In the case where f(m) represents a discrete probability 
distribution, Guardiano and Srivastava [1993] propose to 
scan the training image for a specific data event, as 
defined by the conditioning data, from which f(mi|mc) can 
be constructed. This is done at each step in the sequential 
simulation approach and, therefore, is computationally 
expensive.

Strebelle [2002] proposes to scan the training image 
only once for a large collection of data events and then 
store the result in a search tree. The conditional distribu­
tion f(mi|mc) can then be relatively efficiently obtained 
from the search tree during sequential simulation.

The direct sampling method [Mariethoz et al., 2010] 
essentially makes use of the approach proposed by 
Shannon [1948] described above. Here, the conditional 
distribution f(mi|mc) is never explicitly computed. Instead, 
a realization of f(mi|mc) is found by scanning the training 
image, from a random starting location, until the first 
matching data event is found (or within some tolerance).

These three methods represent different ways to gener­
ate a realization from f(mi|mc), and differ mostly in com­
putational CPU and memory requirements. For an 
overview of related mulitple‐point based sequential simu­
lation sampling algorithms, see, for example, Mariethoz 
and Caers [2014].

6.2.2.4. Sampling Methods not Based on  
Sequential Simulation

Many other types of  methods, not based on sequential 
simulation, exist to generate realizations from probabil­
ity distributions based on two‐point or multiple‐point 
statistics.
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The fast Fourier transform moving average (FFT‐MA) 
method is especially efficient for generating independent 
unconditional realizations of a stationary Gaussian dis­
tribution [Le Ravalec et al., 2000]. Realizations can also 
be generated using LU decomposition of the covariance 
matrix. While this allows for a nonstationary covariance 
model, it is also computational inefficient for anything 
but very small models (see, e.g, Deutsch and Journel 
[1998]).

Realizations from probability distributions based on 
two‐point or multiple‐point statistics can also be obtained 
by locating models whose frequency distribution of pat­
terns match the frequency distribution obtained from a 
sample model [Peredo and Ortiz, 2011; Lange et al., 2012; 
Cordua et al., 2015].

6.2.3. Quantifying f(m|Idirect) from a Sample Model

A probability distribution describing direct informa­
tion f(m|Idirect) is almost never available directly. Instead 
the information may be available in form of a sample 
model, from which information about f(m|Idirect) can be 
inferred.

Figure 6.1 shows an image of meandering sand chan­
nels (from Strebelle [2000]) that we will consider as an 
example of a sample model msm. msm represents a 2D reg­
ular grid of electromagnetic wave velocity values, consist­
ing of 125 × 125 cells with a cell distance of 0.15 m (the 
physical model is 18.75 m wide and deep). The sample 
model in Figure 6.1 only takes two values (0.11 m/ns and 

0.13 m/ns). By assuming stationarity, the mean and 
standard deviation of all pixel values can be determined 
as m0 = 0.1155 m/ns and σ = 0.0089 m/ns, respectively.

In the following, we will demonstrate how information 
from the sample model can be inferred and also used to 
characterize f(m|Idirect) using the different type of proba­
bility distributions defined in the previous sections. For 
all considered cases, f(m|Idirect) will describe a distribution 
over the model model parameters m which are spatially 
ordered in a 2D grid defined over 40 × 84 model param­
eters organized in a 2D grid, with a cell distance 0.15 m 
(5.85 m wide and 12.45 m deep). We shall later combine 
these different types of information with indirect 
information.

f(m|Id1), Uncorrelated Gaussian.  A stationary probabil­
ity distribution that describes uncorrelated Gaussian dis­
tributed model parameters is completely described by a 
mean and a variance, as given above. Figure 6.2a shows 
five realizations from such a Gaussian model where 
f m I mi d( )| ( )1 0

2 , .

f Id( )2m | , Uncorrelated Binary Distribution.  The para 
meters of an uncorrelated probability distribution with 
a binary 1D marginal distribution can be inferred assum­
ing stationarity, and considering the 1D marginal distri­
bution of the training image as representative for all 
model parameters. This leads to f mi sm( | ) .0 0 72m  
and f mi sm( | ) .1 0 28m . Figure 6.2b shows five realiza­
tions from such a skewed binary distribution, f Id( )|m 2 .
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Figure 6.1  Example of a sample model, msm. From Strebelle [2000].
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f Id( | )3m , Correlated Gaussian Distribution.  A 
Gaussian probability distribution is completely 
described by a mean vector and a covariance matrix. 
Both the mean and the covariance (equivalent to a 
semi‐variogram model) can be inferred from a sample 
model msm. Figure  6.3 shows the experimental semi‐
variogram found from the sample model along the x‐ and 

y‐axis, compared to the parametric semi‐variogram 
model used to describe the experimental sem‐variogram. 
From this model, a covariance matrix is constructed 
as  Cm, such that f Id( | )m 3  can be described by the 
Gaussian distribution  ( )m0 , mC . Figure  6.2c shows 
five realizations from such a correlated Gaussian 
distribution.
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Figure 6.2  Five realizations from (a) f Id( )1m | , (b) f Id( | )m 2 , and (c) f Id( )3m | . See text for details.
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f Id( )4m | , Correlated Transformed Gaussian Distri­
bution.  A simple way to simulate spatially correlated 
model parameters with an arbitrary non‐Gaussian 1D 
marginal distribution is to apply an inverse normal score 
transformation to a realization from a Gaussian proba­
bility distribution. In the extreme case, a binary distribu­
tion, such as that of the distribution of the values in the 
sample model, can be assumed. This can also be obtained 
by truncating realizations from a Gaussian model. 
Figure 6.4a shows five realizations of such a probability 
distribution, f Id( | )m 4 , reflecting the mean, covariance, 
and 1D marginal distribution obtained from msm. The 2D 
covariance models used to describe the Gaussian distri­
bution in the normal score space is chosen such that the 
experimental semi‐variogram of the back‐transformed 
realizations, along the x‐ and y‐axis, reflects that of the 
sample model, as shown in Figure 6.5.

f ( )m | Id 5 , Probability Distribution Based on Multiple‐
Point Statistics.  Fig.  6.4b shows five realizations gener­
ated using the SNESIM algorithm with msm as a training 
image [Remy et al., 2008]. In this case, part of the multiple‐
point statistics of msm is consistent with the shown reali­
zations. Strictly speaking, the SNESIM algorithm only 
samples from the same probability distribution if  the 
same path is used and in the case where the neighborhood 
is kept constant [Cordua et al., 2015]. But we will refer to 
these realizations as realizations from f Id( | )m 5 .

f Id( | )m 6 , Voronoi Cells. One could choose to describe 
information about m using the parsimonious approach 
and 2D Voronoi cells. Figure  6.4c shows a realization 
from, f Id( | )m 6 , where the number of  2D Voronois cells 
Nb is assumed uniformly distributed between 3 and 200. 
The x‐ and y‐locations of  the center of  each cell is 

assumed to be located at a random location on the model 
parameter grid. The value of  each Voronoi cell is assumed 
to be either 0.11 m/ns or 0.13 m/ns, with the same 1D mar­
ginal distribution as found in the sample model. Note 
that each realization in Figure 6.4c represents one set 
of  parameters describing the Voronoi cells mapped into 
the exact same 2D 40 × 84 model parameter grid as for the 
other considered models of  direct information. While 
the number of  parameters that describe f Id( | )m 6  varies, 
the actual number of  model parameters in m is fixed.

The probability distributions f I f Id d( | ), , ( | )m m1 5  
are all consistent with the statistics from the sample 
model, in that f Ism( )|m 0. In other words, part of 
the sample model the same size as m is possible as a 
realization of  f I f Id d( | ) ( | )m m1 5, ..., . This may not be 
the case for f Id( | )m 6 . Further, f I f Id d( | ) ( | )m m1 4  
represent models with maximum disorder (maximum 
entropy) for the statistical correlations not specifically 
accounted for.

The main goal, when quantifying f Idirect( | )m , should 
be to define a probability distribution that has outcome 
realizations with the spatial (one‐, two‐, or multiple‐
point) statistics as obtained from the known sample 
model. Further, such a statistical model should repre­
sents the spatial structures as observed from an outcrop, 
or as known from geological expert knowledge. A simple 
way to validate the choice of  probability distribution 
describing msm is to generate a set of  independent realiza­
tions of  f I( | )m , as shown in Figures 6.2 and 6.4, and 
visually compare the realization to the sample model, 
Figure 6.1.

If  the connectivity of the channel structures of the 
sample model, Figure  6.1, is an essential feature when 
characterizing the subsurface, then it may not be very 
useful to make use of the spatially uncorrelated models 
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Figure 6.3  Experimental semivariogram model inferred from the sample model in Figure 6.1 (black asterisks) 
compared to the semivariogram model chosen to represent the covariance model (solid line) of f Id( )3m |  along the 
(a) horizontal axis and (b) vertical axis.
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f Id( | )m 1  and f Id( | )m 2  even if  they may be consistent 
with some statistical properties of the sample model, as 
discussed by Journel and Deutsch [1993]. While the model 
based on Voronoi cells, f Id( | )m 6 , may possess some fea­
tures that can be mathematically useful, it is also evident 

from Figure 6.4c that such a model does not seem par­
ticularly useful to describe natural geological variability. 
Note that when the number of Voronoi cells becomes 
very high, f Id( | )m 6  may reflect the same kind of infor­
mation as f Id( | )m 2 .

2

4

6

8

10

0 2 4

12

2

4

6

8

10

0 2 4

12

2

4

6

8

10

0 2 4

X (m)

Y
(m

)

X (m)

Y
(m

)
Y

(m
)

12

2

4

6

8

10

0 2 4

12

2

4

6

8

10

0 2 4

0 2 4 0 2 4 0 2 4

0.135

0.13

0.125

V
el

oc
ity

 (
m

/n
s)

0.12

0.115

0.11

0.105

0.135

0.13

0.125

V
el

oc
ity

 (
m

/n
s)

0.12

0.115

0.11

0.105

0.135

0.13

0.125

V
el

oc
ity

 (
m

/n
s)

0.12

0.115

0.11

0.105

12

2

4

6

8

10

12

2

4

6

8

10

12

2

4

6

8

10

12

2

4

6

8

10

12

2

4

6

8

10

12

0 2 4

2

4

6

8

10

0 2 4

X (m)

0 2 4 0 2 4 0 2 40 2 40 2 4

12

2

4

6

8

10

12

2

4

6

8

10

12

2

4

6

8

10

12

2

4

6

8

10

12

(a)
Sample from f (m ∣ Id4)

(b)
Sample from f (m ∣ Id5)

(c)
Sample from f (m ∣ Id6)

Figure 6.4  Five realizations from (a) f ( )4m | Id , (b) f Id( | )m 5 , and (c) f Id( | )m 6 . See text for details.
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6.3. QUANTIFYING INDIRECT GEO‐INFORMATION 
USING PROBABILITY DISTRIBUTIONS

As opposed to direct information, indirect information, 
Iindirect, is available in the form of data, d, that is related to 
the model parameters m through a function g as

	 d mg .	 (6.12)

Evaluating Eq. (6.12) is often referred to as solving the 
forward problem. Examples of such indirect information 
are geophysical or remote sensing data.

A general probabilistic description of the relative prob­
ability of a certain model m given such indirectly observed 
data is the likelihood function [Tarantola, 2005]:

f I L
g

indirect
D

D

m m
m d m

d
|

|
.



	 (6.13)

ρD(d) describes measurement uncertainties, typically related 
to the instrument recording the data. ( | )d m  is a proba­
bilistic formulation of the forward modeling that 
describes the probability of a set of calculated data given 
a model m. μD(d) is the homogeneous probability distri­
bution (see Tarantola [2005] for more details).

The uncertainty related to the forward modeling may 
be significant and higher than the measurement uncer­
tainty [Hansen et al., 2014]. However, in many cases the 
modeling error is ignored (i.e., described by a delta func­
tion) in which case Eq. (6.13) reduces to

	 L gDm m 	 (6.14)

In this case, evaluation of f I( | )m  can be achieved as 
long as a probability distribution describing the measure­
ment uncertainty can be evaluated. Very often the meas­
urement errors are considered zero mean Gaussian 
distributed  ( )0, dC , in which case

D g

g g

m C

d m C d m

2

1
2

2 5

1

d

obs d obs

.

exp


. 	  
�

(6.15)

If  the modeling error is Gaussian, it can be described 
simply as an addition to the Gaussian measurement 
uncertainty and can then be accounted for through 
Eq.  (6.15). More details on this topic can be found in 
Hansen et al. [2014].

Thus, in the latter simple case, the conditional proba­
bility f Iindirect( | )m  can be evaluated through Eq. (6.15) by 
solving the forward problem, Eq. (6.12), and evaluating 
the resulting data residual, d mobs g( ).

The forward relation, Eq. (6.12), may be quite complex 
and involve mapping of the model parameters m into sec­
ondary parameters from which data can be computed. 
For example, seismic inversion can be formulated such 
that the primary model parameters reflect rock physical 
parameters. These must be transformed, for example, to 
elastic parameters in order to solve the forward problem 
in order to compute a seismic response. For a detailed 
discussion on complex forward models see Bosch [2015].

Note that the likelihood function, Eq. (6.13), is not 
strictly a probability distribution, as L d( )m m  in general 
will not be 1. However, if  the goal is to sample from 
f I I f I f I( | , ) ( | ) ( | )m m m1 2 1 2 , then a relative measure 
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Figure 6.5  Experimental semivariogram model inferred from the sample model in Figure 6.1 (black asterisks) 
compared to the experimental semivariogram of 10 realizations of f Id( | )m 4  (red lines) along the (a) horizontal axis 
and (b) vertical axis. Black line indicates the mean of the 10 semivariograms.
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proportional to f Iindirect( | )m , such as the likelihood, will 
suffice, and hence the normalization of the likelihood is 
not needed.

6.4. SAMPLING FROM A PROBABILITY 
DISTRIBUTION, f( )m I|

In the ideal case, f ( | )m I —which describes all available 
information about m—can be described analytically. In 
practice, however, this may not be possible, unless restric­
tions, such as Gaussian assumptions, are imposed on 
f Ii( | )m .

A general approach for characterizing f ( | )m I  is by 
sampling it, which is done by generating a (representative) 
sample from f ( | )m I  that consists of a number of realiza­
tions that are distributed according to f ( | )m I . If  this 
sample is large enough, any statistical measure or ques­
tion related to f ( | )m I  can be probabilistically evaluated 
and answered.

In this section, a number of widely used methods for 
sampling from f ( | )m I  when a measure proportional to 
f ( | )m I  can be evaluated will be described. This implies 
that a measure proportional to the probability distribu­
tion value related to any of the independent types of 
information f Ii( | )m  can be computed. This means that 
the previous defined models f Id( | )m 1 , f Id( | )m 2 , and 
f Id( | )m 3  can all readily be used. On the other hand, 
information available and quantified through numerical 
simulation algorithms, such as f Id( )|m 4 , f Id( | )m 5 , and 
f Id( | )m 6  where f Ii( | )m  cannot readily be computed, 
cannot be considered by the algorithms discussed in this 
section.

6.4.1. Rejection Sampling

Any probability distribution for which f(m) can be eval­
uated can in principle be sampled using rejection sam­
pling. If  h(m) is a proposal distribution from which a 
realization can be generated (preferably in a computa­
tionally efficient manner) and for which h f( ) ( )m m m, 
then f(m) can be sampled using the rejection sampling 
algorithm as follows:

REJECTION SAMPLING ALGORITHM
1. �Propose a model mpropose, as a realization of h(m).
2. Accept this model with probability Pacc 

	
P

f

h f
acc

propose

propose

m

m mmax
,	 (6.16)

where max(f(m)) is the maximum value of f(m).
Each accepted model will be a realization from f(m), and 

the series of models accepted when the algorithm is run 
iteratively will be a representative sample from f(m).

h(m) is often chosen as the uniform distribution, in 
which case the acceptance probability becomes

	
P

f

facc
proposem

mmax
,	 (6.17)

In many cases it may not be possible to estimate 
max(f(m)). Further, even in cases where max(f(m)) can be 
evaluated, the acceptance probability of the rejection 
sampler may be extremely low. Consider, for example, the 
Gaussian model [as in Eq. (6.5)] where the value

	 2 0
1

0log * * * ,f m m m C m m
m

	 (6.18)

related to a realization m*, is distributed according to 
the χ2 distribution with M degrees of freedom (where M 
is the number of parameters of m) [Tarantola, 2005]. For 
high values of M the χ2 distribution will tend to be 
Gaussian distributed as  ( , )M M2 . This means that for 
high values of M, log(f(m*)) will tend to be normally dis­
tributed as  M M/ , /2 2 . In other words, the most 
frequent probability value of a realization m* of f(m) will 
be f M( *) exp( / )m 2 .

Considering M 10, model parameters will lead to 
f ( *) exp( / ) .m 10 2 0 0067. This means that in order to 
accept a typical realization m* of f(m) using the rejection 
sampler, it has to be proposed on average 1/0.0067 = 
148 times. Considering M 20 model parameters will lead 
to f ( *) exp( / ) .m 20 2 0 000045, which means that in 
order to accept a typical realization m* from f(m) using 
the  rejection sampler, it has to be proposed on average 
22,026 times.

Thus, the rejection sampler, with a uniform proposal 
distribution, is extremely inefficient except for very‐low 
(less than about five)-dimensional problems.

6.4.2. Metropolis–Hastings Algorithm

The Metropolis–Hastings algorithm is a Monte Carlo–
based method for sampling a probability distribution 
f(m) [Metropolis et al., 1953]. At each step in a random 
walk the algorithm goes through two phases. In the 
“exploration” phase a new model is proposed in the vicin­
ity of a current model. Then, in an “exploitation” phase 
the new model is either accepted or rejected as a realiza­
tion from f(m) as follows:

THE METROPOLIS–HASTINGS ALGORITHM
0. Generate a starting model, mcurrent.
1. Exploration.  Propose a new realization from mpropose, 

in the vicinity of mcurrent by generating a realization from a 
transition probability h proposed current( )|m m .
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2. Exploitation.  Accept the move to mpropose with the 
acceptance probability Pacc:

	
P

f h

f hacc
propose current propose

current prop

min
|

1,
m m m

m m oose current|
.

m
	 (6.19)

For simplicity it is often assumed that the proposal dis­
tribution is symmetrical such that h propose current( | )m m  
h current propose( | )m m . In this case, Eq. (6.19) reduces to

	
P

f

facc
propose

current

min .1,
m

m
	 (6.20)

If  the move is accepted, mpropose becomes mcurrent. 
Otherwise the random walk stays at the mcurrent location.

3. Goto 1.
It can be shown that f(m) will be asymptotically sam­

pled by running the Metropolis–Hasting algorithm.
Often a new model is proposed using a uniform or 

Gaussian transition distribution centered on mcurrent. 
In such a case the exploration step simply consists of 
adding a realization of  a uniform or Gaussian model, 
mδ, with mean zero, to the current model, such that 
m m mproposed current . The amplitude of  mδ is referred 
to as the step‐length.

One major advantage using the Metropolis–Hastings 
algorithm—as opposed to, for example, rejection 
sampling—is that this algorithm only relies on the rela­
tive change in probability value between the current and 
the proposed model for computing the acceptance prob­
ability, Eq. (6.19). Therefore the value of  max(f (m)) does 
not need to be known as is the case using the rejection 
sampler.

A disadvantage is that the series of realizations gener­
ated by the Metropolis–Hastings algorithm are not 
independent. Thus, in order to obtain a statistical inde­
pendent realization from f(m), a number of iterations of 
the algorithm must be run. It may not be trivial to esti­
mate how many iterations are needed in order to obtain 
an independent realization.

In addition, when the Metropolis–Hastings algorithm 
is started, it will, most often, not sample f(m) immedi­
ately. Initially the algorithm will be in what is referred as 
the “burn‐in” phase, in which state the algorithm search­
ing for models that are consistent with f(m). When the 
algorithm starts to sample f(m), it is said to have reached 
burn‐in.

The average distance between mpropose and mcurrent is called 
the exploration step‐length. A large exploration step 
results in a more exploratory algorithm spanning rela­
tively large volumes of probability at the expense of 
increasing computational demands. It is nontrivial to 
choose an exploration step‐length that leads to maximum 

efficiency of the Metropolis sampling algorithm. It has 
been suggested that an exploration step‐length leading to 
an accepted move in every third to fourth iteration pro­
vides a good compromise between exploration and com­
putational efficiency [Geman and Geman, 1984]. In practice 
an optimal choice of exploration step‐length is closely 
linked to the shape of the probability distribution being 
sampled.

The Metropolis–Hasting algorithm is guaranteed to 
asymptotically sample f(m) in finite time. In practice, 
however, the Metropolis–Hastings algorithm can have 
difficulties sampling multimodal problems in high dimen­
sions (i.e., problems where local areas of high probability 
exist, which are disconnected by areas of zero probabil­
ity). In such cases, it may end up sampling a local area of 
high probability. There are no trivial tests to ensure that 
the full probability distribution is being sampled. A sim­
ple approach is to start more sampling algorithms (some­
times called chains) in parallel and then test whether they 
end up sampling the same distribution. A more formal 
approach is to make use of parallel tempering, where 
multiple chains run in parallel, where jumps between 
chains are allowed. Each chain is run with a different 
temperature, as known from simulated annealing. Parallel 
tempering is promising for lower‐dimensional problems 
[Sambridge, 2013].

For all its shortcomings, the Metropolis–Hastings 
algorithm is computationally superior to rejection sam­
pling, for sampling anything but very‐low‐dimensional 
probability distributions.

The computational efficiency of the Metropolis-Hastings 
algorithm is closely related to the choice of transition 
probability. The efficiency of the rejection sampler is linked 
to the choice of proposal distribution. Ideally such transi­
tion probabilities and proposal distributions should be 
chosen such that the acceptance rate is maximized. 
However, this is often not a trivial task. For example, a 
straightforward application of the Metropolis algorithm to 
sample from a multivariate Gaussian probability distribu­
tion with a Gaussian‐type covariance using a symmetric 
proposal distribution will in practice be computationally 
extremely inefficient. This is due to the fact that any pro­
posed model will lead to a discontinuity in the proposed 
model, which is inconsistent with the (spatial) smoothness 
implied by the Gaussian‐type covariance model. The 
Hamiltonian Monte Carlo approach suggests to make use 
of the local gradient of the probability distribution being 
sampled, in order to allow faster mixing and higher accept­
ance probability of the Monte Carlo Chain [Duane et al., 
1987]. However, the Hamiltonian Monte Carlo requires that 
the gradient of the probability distribution being sampled 
can be evaluated. In the following, we will consider to sam­
ple probability distributions where the probability distribu­
tion value, and hence the gradient, may not be available. 
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We will, therefore, not consider the use of the Hamiltonian 
Monte Carlo any further.

The rejection sampler and Metropolis–Hasting algo­
rithm as described above will, in the following, be referred 
to as the “classic” rejection sampler, and the “classic” 
Metropolis algorithm.

6.5. SAMPLING OF f f f( | ) ( | ) ( | )m m mI I I1 2 1 2,I

Consider the case where f ( | )m I  is proportional to 
the  product of two probability densities f I( | )m 1  and 
f I( | )m 2 :

	 f f I f Im m m| | | ,I 1 2 	 (6.21)

that is, a case identical to the information integration 
problem in Eq. (6.1), where information is available from 
two independent sources. One can choose to sample 
directly from f ( | )m I , using the methods described in the 
previous section, in case f ( | )m I  can be evaluated.

But, in many data integration problems one may not 
be able to evaluate f ( | )m I , as not all f Ii( | )m  can be 
evaluated. For example, if  f Ii( | )m  describes the statisti­
cal information inferred from a training image, then, in 
most cases, the evaluation of f Ii( | )m  is, until now, not 
possible.

It turns out that when f I( | )m 1  and f I( | )m 2  have 
certain properties, f I I( | , )m 1 2  may be sampled even when 
either f I( | )m 1  or f I( | )m 2  cannot be evaluated.

Further, even when both f I( | )m 1  or f I( | )m 2  can be 
evaluated, simple alterations of the classical rejection 
sampler and Metropolis–Hastings, algorithm can lead to 
computationally much more efficient sampling methods.

6.5.1. Extended Rejection Sampling

Say that an algorithm exists that allows generation of 
independent realizations from f I( | )m 1 . Using f I( | )m 1  as 
a proposal distribution for the rejection sampler results in 
a more efficient rejection sampler, specifically for the case 
of sampling the product f f I f I( | ) ( | ) ( | )m I m m1 2 :

EXTENDED REJECTION SAMPLING ALGORITHM 
OF f f f( ) ( ) ( )m I m m| | |I I1 2

1. Propose a model mpropose, as a realization of from 
f I( | )m 1 .

2. Accept this model with probability Pacc:

	

P
f I I

f I f

f
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propose
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m

m m I

m
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| max |
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1 2

1
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where max( ( | ))f Im 2  is the maximum probability 
distribution value of f I( | )m 2 .

Note that in this case the actual probability distribu­
tion value of f I( | )m 1  or f I I( | , )m 1 2  need never be 
evaluated, as long as an algorithm exists that generates 
realizations of f I( | )m 1 . If  the algorithm that samples 
f I( | )m 1  is reasonably efficient, the extended rejection 
sampling algorithm may be computationally much more 
efficient than the classic rejection sampler.

As demonstrated previously (Sections 6.2.1.2 and 
6.2.1.3), a large collection of algorithms have been 
developed in recent decades, which are able to generate 
realizations of a (possibly unknown) probability 
distribution, such as, for example f I( | )m 1 , which can 
therefore be used as part of a rejection sampler to sample 
from f I I f I f I( | , ) ( | ) ( | )m m m1 2 1 2 , if  only f I( | )m 2  
can be evaluated.

6.5.2. The Extended Metropolis Algorithm

The extended Metropolis algorithm [Mosegaard and 
Tarantola, 1995] is a modified version of the classic 
Metropolis–Hastings algorithm designed to sample the 
product of two probability distributions, f I I( | , )m 1 2

k f I f I( | ) ( | )m m1 2 , in the specific case where an algo­
rithm exists to iteratively sample f I( | )m 1 . It can be 
applied as follows:

0. Init Generate a starting model, mcurrent, as a realiza­
tion of f I( | )m 1 .

1. Exploration.  Propose a new realization of f I( | )m 1 , 
mpropose, in the vicinity of mcurrent.

2. Exploitation.  Accept the move to mpropose with the 
acceptance probability Pacc:

	
P

f I

f Iacc
proposed

current

min
|

|
.1 2

2

,
m

m
	 (6.24)

If  the move is accepted, mpropose becomes mcurrent. 
Otherwise the random walk stays at the mcurrent location. 
Goto 1.

The exploration must be implemented in such way that 
when iterating, only the exploration step (i.e., accepting 
all model proposals) should lead to an algorithm sam­
pling f I( | )m 1 .

To apply the extended Metropolis algorithm, one must 
(a) be able to compute a value proportional to f I( | )m 2  
for any proposed model mproposed and (b) be able to per­
form a random walk that will sample f I( | )m 1 . There is 
no requirement to be able to evaluate neither f Im | 1  
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nor the product f I I f I f I( | , ) ( | ) ( | )m m m1 2 1 2 . A 
“black box” algorithm that can perform a random walk 
which samples f I( | )m 1  is sufficient [Mosegaard and 
Tarantola, 1995].

All the advantages and disadvantages of using the classic 
Metropolis–Hastings algorithm listed above also applies 
when using the extended Metropolis algorithm. However, 
if an algorithm exists that allows performing a random 
walk, such that f I( | )m 1  is sampled, then the extended 
Metropolis algorithm may be orders of magnitude more 
efficient than using the Metropolis–Hastings algorithm.

6.5.2.1. Sequential Gibbs Sampling
The sequential simulation algorithm, Section  6.2.2, 

was originally developed to allow efficient simulation of 
independent realizations from probability distributions 
f I( | )m 1  based on two‐ and multiple‐point statistics, as 
demonstrated in Sections 6.2.1.1 and 6.2.1.3.

Therefore, any sampling algorithm based on sequential 
simulation can be used to perform a random walk, where 
each visited model is independent of its neighbors. This 
corresponds to a random walk with maximum explora­
tion and hence maximum step‐length. However, a crucial 
part of applying the extended Metropolis algorithm is the 
ability to control the step‐length—that is, controlling 
the exploratory nature of the algorithm performing the 
random walk sampling f I( | )m 1 .

Sampling of f I( | )m 1 , using an arbitrary step‐length, 
can be accomplished using sequential Gibbs sampling 
[Hansen et al., 2008, 2012], for any probability distribu­
tion that can be sampled using sequential simulation. See 
also Fu and Gómez-Hernández [2008]; Irving et al. [2010] 
for related methods specific for Gaussian based models, 
and Mariethoz et al. [2010] for a method similar to Hansen 
et al. [2008].

Assume that m1 is a “current” model, which is a realiza­
tion of f I( | )m 1 . Then one step of the sequential Gibbs 
sampling algorithm will generate a new realization m2 of 
f I( | )m 1  in the vicinity of m1 using the following steps:

1. Select a subset U of  all M model parameters, m1,i U.
2. Use sequential simulation to generate a realization 

m i U
*  of f i U i U( | )m m ; that is, re‐simulate the model 

parameters in U conditional to the model parameters 
not in U.

3. Update the next model, m2, as m m2 1, ,i U i U  and 
m m2, *i U i U .

Performing these steps iteratively will generate a series 
of models that will represent a random walk sampling 
f I( | )m 1 . This is exactly the requirements of the “black” 
box algorithm needed by the extended Metropolis algo­
rithm to sample f I( | )m 1 .

The number of model parameters in the subset U 
reflects the step‐length. The longest step‐length is when U 
contains all the model parameters in which case m2 will be 
independent of m1.

The sequential Gibbs sampler can in principle be used 
to sample any of the probability distributions described 
in Sections 6.2.1.1–6.2.1.3 through a random walk with 
an arbitrary step size.

Note that a perfect application of sequential Gibbs sam­
pling requires sampling from the full conditional distribution, 
Eq. (6.9), at each iteration. Most of the simulation algo­
rithms based on sequential simulation described previously 
make use of a data neighborhood in which case the condi­
tional distribution will only be approximately correct. If the 
neighborhood is chosen sufficiently large for probability 
distributions based on two‐point statistics, this approxima­
tion does in practice provide the same results as when using 
a full neighborhood. Cordua et al. [2015] observed that using 
sequential Gibbs sampling with the multiple‐point based 
SNESIM algorithm, Strebelle [2002], will render a sam­
pling algorithm, where the sampled probability distribution 
depends on the step perturbation size of the sequential 
Gibbs perturbation. A correction using frequency matching 
Lange et al. [2012] is suggested to remedy the unwanted 
effect of perturbations size and in this way remain to sample 
from a probability distribution that satisfies the multiple‐
point statistics from the training image.

6.5.2.2. Independent Extended Metropolis Algorithm
A simple variant of the extended Metropolis algorithm 

is when the step‐length is set to its maximum; that is, a 
new independent realization of the f I( | )m 1  is proposed 
in the exploration step, similar to the metropolized inde­
pendence sampler proposed by Liu [1996]. In this case, 
any probability distribution from which independent real­
izations can be generated can be used for probabilistic 
data integration. Thus, there is no need to use the sequen­
tial Gibbs sampler. This means that, in principle, most 
developed geostatistical algorithms can be used to describe 
information that can be used for data integration prob­
lems. Application of the independent extended Metropolis 
algorithm avoids the problem of estimating the normali­
zation constant in the acceptance ratio, as is needed when 
applying the rejection sampler, which may lead to a com­
putationally much faster algorithm. This algorithm is as 
simple to implement as the rejection sampler, which in 
practice render the rejection sampler obsolete. Compared 
to the extended Metropolis algorithm, the independent 
extended Metropolis algorithm is easier to implement, but 
also much less computationally efficient.

6.6. EXAMPLE OF SAMPLING f( | )m I I1 2,

To demonstrate different aspects of some of the pre­
sented algorithms, consider a crosshole tomographic 
inverse problem. 40 × 84 model parameters represent 
a  2D electromagnetic velocity field of size 5.85 m × 
12.45 m. This is exactly the same model size as considered 
in Figures 6.2 and 6.4.
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Figure 6.6 shows a reference model generated as a reali­
zation from f Id( | )m 5 , which is based on the statistics 
inferred from the sample model in Figure 6.1.

Mimicking a cross borehole tomographic experiment, 
travel times of electromagnetic waves from 702 source 
locations to 702 receiver locations, as indicated in 
Figure 6.6a, are computed using finite frequency theory 
using Hansen et al. [2013a]. Then a realization of zero 
mean uncorrelated Gaussian noise with standard devia­
tion of 0.8 ns, C Id 0 82. , is added to the travel‐time data, 
which are then considered as “observed” data.

Thus one type of indirect information, which we will 
refer to as Iindirect, related to geophysical travel time 
measurement, is available. Iindirect then specifies not only 
the travel‐time data and the measurement uncertainty, 
 ( )0, dC , but also knowledge about how to solve the 
forward problem. This means that we are able to use the 
likelihood function in Eq. (6.13) to evaluate f Iindirect( | ).m

Any of the previously defined probability distributions 
describing different types of direct information 
f I f Id d( | ), , ( | )m m1 6  is also, in turn, considered as 
information available about the model parameters. Recall 
that Figures  6.2 and 6.4 show realizations from these 
probability distributions.

The problem is now to solve the data integration 
problem by generating a sample from f I Idi indirect( | , )m
k f I f Idi indirect( | ) ( | )m m , where i 1 6, , .

6.6.1. Sampling f ( | , )m I Idi indirect  Using Rejection 
Sampling

The extended rejection sampler presented previously, 
making use of sequential simulation to generate realiza­
tions of the direct information, can in principle be used to 
sample the joint distribution f I Idi indirect( | , )m . However, 
in practice the rejection sampler is only applicable to 

very‐low‐dimensional sampling problems and could not 
be applied for the current case.

6.6.2. Sampling f ( | , )m I Idi indirect  Using the Extended 
Metropolis Algorithm

For all the considered probability distributions based 
on direct information, f Id( | )m 1 ,…, f Id( |m 6), a random 
walk that samples the probability distribution, with 
arbitrary step‐length, can be performed using sequential 
Gibbs sampling. Hence, the combined information 
f I Idi indirect( | , )m  can be sampled using the extended 
Metropolis algorithm, without ever evaluating f Idi( | )m .

The extended Metropolis algorithm has been run 
for  100,000 iterations drawing realizations from 
f I Idi Indirect( | , )m , for each of the six types of direct 
information. In all runs, the step‐length is selected such 
that the acceptance rate of the algorithm is around 30%. 
For details about running the extended Metropolis 
algorithm, see, for example, Cordua et al. [2012] and 
Hansen et al. [2013a].

The extended Metropolis sampler was especially prone 
to be caught in local minima sampling f I Id indirect( | , )m 6 , 
and therefore the parallel tempering algorithm was used 
in this case [Sambridge, 2013].

Figures  6.7 and 6.8 show five realizations from the 
probability distribution describing the combined infor­
mation of f I I f I Id indirect d indirect( | , ), , ( | , )m m1 6 . These 
realizations should be compared to the realizations from 
the probability distribution based on direct information 
in Figures 6.2 and 6.4.

Comparing Figures 6.7 and 6.8 to Figures 6.2 and 6.4, 
it is obvious that the spatial variability from the direct 
information is preserved in the realizations from the 
combined probability distributions. If  the direct informa­
tion defines the subsurface as a set of Voronoi cells, as for 
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time dataset.
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f Id( | )m 6 , then realizations from the combined probabil­
ity distribution will consist of Voronoi cells (Figure 6.8c). 
Then one should off  course consider whether a set of 
Voronoi cells provide a geologically reasonable descrip­
tion of Earth structures. In this case, the realizations of 
f I Id indirect( | , )m 6  does not seem to resemble realistic geo­
logical variability.

The choice of a spatially uncorrelated probability 
distribution to describe direct information, such as 
f Id( | )m 1  and f Id( | )m 2 , will also affect the com­
bined  information content of f I Id indirect( | , )m 1  and 
f I Id indirect( | , )m 1 , which will also exhibit maximum spatial 
disorder in the outcome realizations. If  more indirect 
information is available (e.g., less noise or more data), 
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such that f Iindirect( | )m  will be more informed, then 
realizations of the combined probability distribution 
f I Id Indirect( | , )m 1  may expose more correlated features, 
corresponding the actual reference model. However, the 
information that cannot be resolved by the indirect 

information will stem from the probability distribution 
of direct information.

Figure 6.9 shows the pointwise mean (sometime called 
the etype mean) computed from all realizations. This 
indicates that, on average, the correct location of the 
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channel structures can be identified, even if  they cannot 
be identified on the individual realizations. Specifically, 
using direct information probability distribution based 
on Voronoi cells results in individual realizations from 
f I Id Indirect( | , )m 6  that are clearly geologically unrealistic 
(compared to the sample model) (Figure  6.8c), while 
realizations from f I Id Indirect( | , )m 5  results in geologically 
highly realistic realizations (Figure  6.8b). On average, 
though, the pointwise mean is remarkable similar 
(Figures 6.9e and 6.9f). Note that such average models 
are, in general, not solutions to the data integration prob­
lem, as they may be inconsistent with both the direct and 
indirect information.

If  the goal is to simulate geologically realistic features, 
then Figures 6.7 and 6.8 clearly show that, for this case, 
direct information describing geological realistic features 
are essential.

Table 6.1 provides the correlation coefficient between 
independent realizations of f I Idi indirect( | , )m . A high 
number indicates that independent realizations are very 
similar and, hence, that the model parameters are well‐
resolved. Relying on the spatially uncorrelated models, 
f I Id indirect( | , )m 1  and f I Id indirect( | , )m 1  provides a very 
low  correlation coefficient, which may suggest a poor 
resolution. The correlation coefficient increases as 
information about the model parameters, consistent with 
the reference model, increases. This indicates that as 
more information is available, consistent with the actual 
unknown subsurface, the resolution will increase.

6.6.3. Sampling f I Id indirect( | , )m 3  Using the Classic 
Metropolis Algorithm

f Id( | )m 3  represents a Gaussian probability distribu­
tion and can be evaluated directly using Eq. (6.5). 
Therefore f I Id indirect( | , )m 3  can be evaluated and, hence, 
sampled using the classic Metropolis algorithm.

Using a spatially uncorrelated uniform proposal distri­
bution, with velocity values between 0.0755 m/ns and 
0.1555 m/s, the classic Metropolis algorithm has been run 
for 4 million iterations in order to sample f I Id indirect( | , ).m 3

Figure  6.10 shows three independent realizations 
from  f I Id indirect( | , )m 3  as well as the corresponding 
pointwise mean model. These results are comparable to 
the results obtained using the extended Metropolis 
sampler (Figures 6.7b and 6.9c).

Figure  6.11 shows the logarithm of the probability 
distribution values for f Id( | )m 3 , f Iindirect( | )m , and 
f I Id indirect( | , )m 3  as a function of iteration number using 
classic Metropolis algorithm, and f Iindirect( | )m  using 
the  extended Metropolis algorithm. Both algorithms 
tend to sample models with comparable values for 
f Iindirect( | )m —that is, suggesting, as Figure  6.10, that 
the same probability distribution has been sampled.

However, it also highlights that the number of 
iterations needed to achieve burn‐in—that is, where 
the  algorithm starts to generate realizations of 
f I Id indirect( | , )m 3 —is very different. Using the extended 
Metropolis algorithm burn‐in is reached after around 
103 iterations, whereas it takes about 106 iterations to 
reach burn‐in using the  classic Metropolis algorithm 
with a uniform proposal distribution. Further, the 
number of  iterations between independent realiza­
tions is about 4 103 using the extended Metropolis 
algorithm but about 1 5 106.  using the classic 
Metropolis algorithm. Hence, the difference in com­
putational requirements for sampling f I Id indirect( | , )m 3  
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Table 6.1  Correlation Coefficient Between Independent 
Realizations of f I Idi indirect( | , )m

Id1 Id2 Id3 Id4 Id5 Id6

CC 0.08 0.08 0.35 0.44 0.55 0.05
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using the two types of  Metropolis algorithms is close 
to a factor of  1000.

The main reason for this huge difference in computa­
tional efficiency is related to the fact that using the classic 
Metropolis algorithm, one must sample f Id( | )m 3  as part 
of sampling f I Id indirect( | , )m 3 . On the other hand, using 
the extended Metropolis algorithm, the use of sequential 
Gibbs sampling ensures that all proposed models are 
realizations of f Id( | )m 3 , and hence the computa­
tional  requirements are mostly related to evaluating 
f I Id indirect( | , )m 3 .

6.7. DISCUSSION

The example in the previous section demonstrates the 
benefits of being able to use information about for example 
geologically plausible structures. It also demonstrates a 
case where the information quantified by f Id( | )m 1 , …, 
f Id( | )m 5  is consistent with the actual “earth” as shown in 
Figure 6.6a. However, in practice the inference of statistical 
properties from a sample model, such as the one shown in 
Figure 6.1, may be associated with varying degrees of sub­
jectivity. Also, an inferred statistical model may not be able 
to describe the actual spatial properties of the subsurface.

Consider the sample model in Figure 6.1. The width of 
the channels in this sample model is consistently around 
0.6 m. The same is the case for the width of the channels 
in the realizations of f Id( | )m 5  shown in Figure  6.4b. 
In fact, the probability of locating a channel (that is, not 
intersecting other channels) with width w 1 m or 
w 0 45. m is zero. Further, in this sample model each 
model parameter can only take two values. This means 
that any other value will have a probability of zero of 
occurring. For any real case, the information exemplified 
in the sample model in Figure 6.1 will most likely exhibit 
too little variability. Hence, f Id( | )m 5  may be low in 
entropy and, in fact, inconsistent with the true Earth. 
Therefore it may be difficult, if  not impossible, to inte­
grate this information with other types of data. For an 
example on the use of inconsistent direct information, 
see, for example, Hansen et al. [2008]. The difficulty in 
quantifying direct information is that one should try to 
quantify as much direct information as possible, while at 
the same time allow realistic uncertainty [Jaynes, 1984; 
Journel and Deutsch, 1993].

Extreme High‐Entropy Uniform Model.  An extreme 
choice of an uninformed statistical model is the uni­
form  model. Consider the integration of two types of 
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independent information, f I( | )m 1  and f I( | )m 2 , where 
f I( | )m 1  represents a uniform distribution  ( , ). Then 
f I I( | , )m 1 2  is given by

	 f I I f I f Im m m| , | |1 2 1 2 	 (6.25)

	 f Im | 2 	 (6.26)

In other words, when f I( | )m 1  is a uniform distribu­
tion, it adds no information about the model parameters, 
as f I I f I( | , ) ( | )m m1 2 2 . In principle, any 40 × 84 pixel 
random cutout of the reference model in Figure 6.6a is as 
probable an outcome of the uniform model f Id( | )m 2  as 
any of the single realizations shown in Figures 6.2b, 6.4a, 
6.4b, and 6.4c. In reality, though, the uniform model as a 
choice for a description of the distribution of m involves 
a rather extreme assumption about maximum entropy, or 
maximum disorder. Any typical realization of f I( | )m 1  
will expose high disorder. In other words, the probability 
of realizing a model with a high degree of disorder is very 
high. The probability of realizing a highly ordered model, 
such as the reference model with ordered channel like 
structures, is extremely low. This is exactly what is exem­
plified by the realizations from f Id( | )m 2  in Figure 6.2b. 
The high entropy assumptions of f Id( | )m 2  will also be 
associated to f I Id indirect( | , )m 2  as shown in Figure 6.7b.

This poses a problem, not only related to visual plausi­
bility. In real life, end users may not be interested in the 
model parameters m themselves, but in a variable k linked 
to the model parameters through some transfer function 
h as k mh ( ). k may be very sensitive to the type of spatial 
variability. Consider, for example, flow modeling of ground­
water reservoir or hydrocarbon reservoirs. Say the channel 
structures (blue in Figure 6.6a) represents highly permeable 
structures embedded in low permeability material. Then, 
flow modeling results will provide radically different results 
depending on which model is chosen to describe spatial 
variability. For illustrative examples see, for example, 
Journal and Deutsch [1993]; Journel and Zhang [2006].

Another property of spatially uncorrelated models, such 
as f Id( | )m 1  and f Id( | )m 2 , is that the number of effective 
“free” model parameters Mf is the same as the number of 
model parameters M, M Mf . The number of “free” 
model parameters is the minimum number of model param­
eters needed to represent m [Hansen et al., 2009]. When the 
number of model parameters increases, the data integration 
problem may become increasingly more difficult in terms of 
sampling from the distribution of combined information.

Extreme‐Low Entropy Models.  Other types of models 
represent cases of extreme low entropy. Consider, for 
example, a checkerboard model in a regular grid, where 
each model parameter (pixel) takes the value “black” or 
“white”. The neighbor pixel up or down, left or right to 

one centered pixel has the opposite value as the center 
pixel. This also means that for such a model, the number 
of free parameters is M f 1, independent of the actual 
number of parameters. If  such a checkerboard model is 
used to describe direct information, then an exhaustive 
search of all possible models can be undertaken simply 
by evaluating two models, one with a white pixel centered 
at a reference parameter and one with a black pixel cen­
tered at a reference parameter.

Another extreme type of low‐entropy model is the 
multivariate Gaussian model, where all the model para­
meters are completely correlated. Again, this would indicate 
that one only needs to know the value of one model param­
eter in order to know the value of all model parameters 
(M f 1) independent of the number of model parameters.

Intermediate Entropy Models.  In general, the number 
of free model parameters will depend on the chosen a 
priori model. For multivariate Gaussian models, Hansen 
et al. [2009] demonstrate that in general the number of 
effective free parameters is related to the correlation 
length. The longer the correlation length, the smaller 
the  value of  Mf. When the correlation length is zero, 
the  model parameters become independent, and hence 
M Mf .

Low Entropy as the Source of Inconsistencies.  In order 
to avoid inconsistencies in data integration, careful con­
sideration should be used when quantifying different 
types of information f Ii( | )m . If  only known informa­
tion is quantified and all uncertainties are taken into 
account, inconsistencies should not arise. 

However, sometimes data integration, in the form 
of sampling from f I I( | , )m 1 2 , can become unsolvable if  
there is inconsistency between the available information 
[Hansen et al., 2008]. There are at least four explanations: 
(1) The direct information is specified such that the data 
cannot be matched within their uncertainty, (2) the 
modeling uncertainty related to the forward model is 
underestimated, (3) the measurement uncertainty is 
underestimated, and (4) the parameterization has been 
chosen too sparse to allow realistic representation of 
Earth structures [Mosegaard and Hansen, 2015]. In any 
case inconsistencies may arise when some of the informa­
tion has been described with too little uncertainty.

Sampling from f I Id indirect( | , )m 5  Using Different 
Neighborhood. The entropy, and the degree of spatial 
variability, is affected when the size of the neighborhood 
is changed (i.e., when changing the number of condi­
tional data), which is used to compute/evaluate the 
conditional distribution as part of running sequential 
simulation. The smaller the amount of conditional data, 
the smaller the amount of information that is assumed 
(the entropy increases).
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For the realizations generated from f Id( | )m 5  and 
f I Id indirect( | , )m 5 , shown in Figures  6.4b and 6.8b, the 
number of conditional points for the sequential simula­
tion algorithm used is Nc 60. Figure  6.12 shows one 
realization obtained from sampling f I Id indirect( | , )m 5  using 
Nc [ ]1 2 4 8 15 30, , , , , . The same type of extended 
Metropolis algorithm as described earlier is used. 
Figure  6.13 shows the corresponding pointwise mean 
(top row) and point wise standard deviation (bottom row) 
obtained from all generated realizations. Note how the 
variability is increasingly associated with the location of 
the channel edges as the number of conditional data 
increases. Note that f Id( | )m 5  corresponds to f Id( | )m 2  
when no conditioning points data are used (i.e., assuming 

no spatial dependency). The spatial disorder is clearly seen 
to decrease as the number of conditioning points increase.

6.8. CONCLUSIONS

The goal of probabilistic data integration is to (1) inte­
grate all available information I [ , , , ]I I IN1 2  related to 
model parameters m into one probability distribution 
f ( | )m I  and (2) generate a large sample from f ( | )m I  
allowing detailed uncertainty analysis and propagation 
of uncertainty into other types of parameters (such as, 
for example, related to flow simulations).

In some rare cases, f ( | )m I  can be evaluated, in which 
case the “classic” Metropolis algorithm (or in principle 
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the rejection sampler) can be used to sample f ( | )m I  
directly. However, the type of (usually simplistic) infor­
mation that can be quantified and allows evaluation of 
f ( | )m I  is often not adequate to describe information at 
hand. Further, even when this is the case, such a sampling 
problem can become prohibitively computationally 
demanding, even for the relatively small 2D models con­
sidered here, which will be, in practice, intractable. Direct 
sampling of f ( | )m I  using the rejection sampler or the 
classic Metropolis algorithm will, in general, lead to a 
computationally intractable problem.

On the other hand, complex models of direct informa­
tion can be quantified in a way that allows efficient sampling, 
based on sequential simulation, from these models, without 
the need to evaluate f I( | )m 1  and, hence, f ( | )m I . When 
such information is available, together with other types of 
information such as indirect information from, for example, 
geophysical data Iindirect, where f Iindirect( | )m  can be evalu­
ated, then f I Iindirect( | , )m 1  can be sampled efficiently using 
the extended Metropolis algorithm utilizing the sequential 
Gibbs sampler to sample f I( | )m 1 .

Compared to using direct sampling of f ( | )m I  using the 
classic Metropolis algorithm with a uniform proposal distri­
butions, the use of extended Metropolis can lead to a sam­
pling problem that is orders of magnitude more tractable.

A wide range of statistical methods, providing varying 
degrees of information content, are currently available 
that can be used with the extended Metropolis algorithm 
and that allow characterization of probability distribu­
tions describing quite complex and geologically realistic 
spatial features. These methods allow building statistical 
models that assume, in principle, a lot more than is typi­
cally known. Therefore, care should be taken when quan­
tifying direct information, to avoid subjective information 
such that only information that is actually known is quan­
tified and taken into account and such that all uncertain­
ties are taken into account. If  this is not the case, then the 
data integration problem may become either inconsistent 
and unsolvable, or solvable but providing biased results 
with too little associated uncertainty.

On the other hand, realistic description of direct 
information has several advantages: (1) Realizations from 
the probability distribution describing the combined 
information will be consistent with structural geological 
information. (2) Sampling from f ( | )m I  will be computa­
tionally more efficient. (3) The complexity of the inverse 
problem can be dramatically reduced due to the reduced 
number of effective free model parameters.
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