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Abstract We propose a smooth formulation of multiple-point statistics that enables
us to solve inverse problems using gradient-based optimization techniques. We intro-
duce a differentiable function that quantifies the mismatch between multiple-point
statistics of a training image and of a given model. We show that, by minimizing this
function, any continuous image can be gradually transformed into an image that honors
the multiple-point statistics of the discrete training image. The solution to an inverse
problem is then found by minimizing the sum of two mismatches: the mismatch with
data and the mismatch with multiple-point statistics. As a result, in the framework of
the Bayesian approach, such a solution belongs to a high posterior region. The method-
ology, while applicable to any inverse problem with a training-image-based prior, is
especially beneficial for problems which require expensive forward simulations, as,
for instance, history matching. We demonstrate the applicability of the method on a
two-dimensional history matching problem. Starting from different initial models we
obtain an ensemble of solutions fitting the data and prior information defined by the
training image. At the end we propose a closed form expression for calculating the
prior probabilities using the theory of multinomial distributions, that allows us to rank
the history-matched models in accordance with their relative posterior probabilities.
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1 Introduction

History matching is a task of inferring knowledge about subsurface models of oil reser-
voirs from production data. History matching is a strongly underdetermined problem:
having data in a limited number of wells, one needs to estimate rock properties in the
whole reservoir model. This problem has infinitely many solutions, and in addition,
most of them are not geologically plausible. Furthermore, the intensive computa-
tional work needed to simulate the data redoubles the complexity. To address these
challenges, we develop a probabilistic framework that combines complex a priori
information and simultaneously aims at reducing the number of forward simulations
needed for finding solutions. We propose a smooth formulation of the inverse problem
with discrete-facies prior defined by a multiple-point statistics model. This allows us
to use gradient-based optimization methods to search for feasible models. In proba-
bilistic inverse problem theory (Tarantola 2005) the solution of an inverse problem is
represented by its a posteriori probability density function (PDF). Each possible state
in the model space is assigned a number—a posteriori probability density—which
reflects how well the model honors the data and the a priori information (knowledge
about the model parameters independent from the data). The a posteriori PDF of
high-dimensional, underdetermined inverse problems, such as history matching, may
feature isolated islands of significant probabilities and low probabilities everywhere
else. Therefore, when the full description of the posterior PDF is not available, the
goal is to locate and explore islands of significant posterior probabilities.

One may explore the a posteriori PDF in several ways. Monte Carlo methods
(Mosegaard and Tarantola 1995; Cordua et al. 2012) allow, in principle, sampling
of the a posteriori PDF. However, for large scale non-linear inverse problems, there is
a risk of detecting only a single island of significant posterior probability. In addition,
sampling is not feasible for inverse problems with computationally expensive forward
simulations, such as history matching. Other methods rely on optimization (Caers
and Hoffman 2006; Jafarpour and Khodabakhshi 2011) to determine a collection of
models that fit the data and the a priori information. However, these methods fail to
describe a posteriori variability of the models as the weighting of prior information
versus data information (likelihood) is not taken into account.

Regardless of the chosen strategy, most of the research community favors the
advanced prior information that helps to significantly shrink the solution space of
allowed models (Caers 2003; Jafarpour and Khodabakhshi 2011; Hansen et al. 2012).
For instance, the a priori information borrowed from a training image (Guardiano and
Srivastava 1993; Strebelle 2002) would permit only models of a specific configuration
defined by statistical properties of the image. Ideally, training images reflect expert
knowledge about geological phenomena (facies geometry, contrast in rock properties,
location of faults) and play a role of vital additional information, drastically restricting
the solution space (Hansen et al. 2009). Our strategy for exploring the a posteriori PDF,
which is especially suitable for inverse problems with expensive forward simulation
(e.g. history matching), is to obtain a set of models that feature high posterior values,
and rank the solutions afterwards in accordance with their relative posterior probabili-
ties. We integrate complex a priori information represented by multiple-point statistics
inferred from a training image. One of the challenges here is to define a closed form
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expression for the prior probability that, multiplied by the likelihood function, provides
the a posteriori probability. It is not sufficient to perturb the model in consistency with
the training image until the dynamic data are matched as it is done in the probability
perturbation method (Caers and Hoffman 2006). As it was noticed by Hansen et al.
(2012), in this method the fit to the prior information is not quantified, so the method
will spot models of maximum likelihood/non-zero prior, not of maximum posterior;
the resulting model may resemble the training image very poorly, and therefore may
have a low posterior value.

Lange et al. (2012) were the first who aimed at estimating prior probabilities solv-
ing inverse problems with training images. The developed frequency matching (FM)
method is able to quantify the prior probability of a proposed model and hence to itera-
tively guide it towards the high posterior solution. Specifically, Lange et al. (2012) solve
a combinatorial optimization problem, perturbing the model in a discrete manner until
it explains both data and a priori information. In practice, this requires many forward
simulations and can be prohibitive for the history matching problem. While following
the philosophy of the frequency matching method, we are interested in minimizing the
number of forward simulations needed to achieve a model of a high posterior prob-
ability. Similarly to the FM method, we minimize the sum of data and prior misfits.
However, the new smooth formulation of the objective function allows us to apply
gradient-based optimization and sufficiently cut down the number of reservoir simu-
lations. After convergence the model has all statistical properties of the training image
and simultaneously fits the data. Having several starting models, possibly very differ-
ent, we are able to obtain different solutions of the inverse problem and to detect regions
of high posterior probability. In the case of the history matching problem, starting mod-
els obtained from seismic data interpretation probably would be of most practical use.

To our knowledge, gradient-based techniques were first coupled with training
images in the work of Sarma et al. (2008) by means of kernel principal component
analysis (PCA). The authors were the first who used kernel PCA for geological model
parametrization. The kernel PCA generates differentiable (smooth) realizations of the
training image, maintaining its multiple-point statistics and, as a result, reproducing
geological structures. The differentiable formulation by Sarma et al. (2008) allows the
use of gradient-based methods; however, the quality of the solution in terms of con-
sistency with the prior information is not estimated. In this work, we actually derive a
closed form expression for the prior probability. This allows us to quantify the relative
posterior probabilities of the solutions and therefore to assess their importance.

This paper is organized as follows. In Sect. 2, we introduce the smooth formulation
of multiple-point statistics. The proposed formulation makes it possible to measure the
mismatch between multiple-point statistics of the training image and of any, possibly
continuous, model. As the result, we are able to generate realizations of the training
image from any starting model image using gradient-based optimization (Sect. 2.4).
Combination of the proposed measure with the data misfit allows us then to search
a solution to an inverse problem with training-image-based prior by minimizing a
single differentiable objective function (Sect. 2.5). In Sect. 3, we demonstrate the
applicability of the method solving a two-dimensional history matching problem. At
the end, we rank the solutions in accordance with their relative posterior probabilities
using derivations from Sect. 2.3. Section 4 summarizes our findings.
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2 Methodology

In this work, we use a probabilistic formulation of inverse problems, integrating com-
plex a priori information (training image) and data into a single differentiable objective
function. Solving the optimization problem for an ensemble of starting models we
obtain a set of solutions that honor both the observations and multiple-point statistics
of the training image. We start with a definition of the inverse problem.

2.1 Inverse Problems with Training Image-Defined Prior

Denoting the model parameters as m, the non-linear forward operator as g and its
response as d, we introduce the forward problem

d = g(m). (1)

The inverse problem is defined then as the task of inferring the model parameters m
given the observed data dobs, the forward relation g and, if available, some (data inde-
pendent) a priori information about model parameters. Addressing inverse problems,
we employ a probabilistic approach (Tarantola 2005), where the solution is charac-
terized by its a posteriori PDF. The a posteriori PDF σ(m) contains the combined
information about the model parameters as provided by the a priori PDF ρ(m) and
the likelihood function L(m)

σ (m) = k ρ(m)L(m), (2)

where k is a normalization constant. The likelihood function L(m) measures how well
the model m fits the observations dobs

L(m) = c1 exp

(
−1

2
||g(m) − dobs||2CD

)
, (3)

where c1 is a constant and CD is the covariance matrix representing Gaussian uncer-
tainties in the measurements. Prior information is assumed to be obtained from a
training image with discrete pixel (voxel) values, representing some subsurface prop-
erty. In this case, the expression for the a priori probability density function is known
explicitly (Lange et al. 2012)

ρ(m) = c2 exp(−α f (m, TI)), (4)

where the function f (m, TI) measures the dissimilarity between the multiple-point
statistics of the training image TI and the model m; c2 is a normalization constant, α

is the problem-dependent weight factor. The statistics has the form of the frequency
distribution of the observed patterns in the image. A pattern is a set of neighboring
pixels in the image of shape defined by a template T. Consider, for instance, a 2 × 2
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Fig. 1 Discrete image A (a) and its pattern frequency distribution (b); 2 × 2 template applied

square template applied to the binary image shown in Fig. 1a and the obtained his-
togram shown in Fig. 1b (only non-zero counts out of possible 16 combinations are
shown).

Constructing such histograms for the training and the model images, Lange et al.
(2012) define their statistical dissimilarity f (m, TI) by calculating the chi-square
distance between the histograms. The closed form expression for the a priori PDF
(Eq. 4) enables us to estimate the value of the posterior probability of a given model
as well as to search for a maximum a posteriori solution. Lange et al. (2012) find the
maximum a posteriori solution of the inverse problem minimizing the following sum
of misfits

mMAP = argmin
m

{
1

2
||dobs − g(m)||2CD

+ α f (m, TI)
}
. (5)

The FM method defines the a priori PDF as a function of frequency distributions of
the patterns, not of the pixel values. This leads to two limitations: the prior probability
can be estimated only for discrete images, whose categorical values are identical to
those of the training image; in optimization the model image should stay discrete.
In other words, Eq. 5 is a combinatorial optimization problem that typically requires
running a large number of forward simulations. Lange et al. (2012), for instance, used
the simulated annealing algorithm which required several thousands of forward runs
to achieve the solution. Aiming at minimizing the number of forward simulations
(flow simulations) we suggest an alternative approach, which is based on a smooth
formulation of multiple-point statistics. The smooth formulation (Sect. 2.2) allows us
to solve an optimization problem similar to Eq. 5 using gradient-based optimization.

The goal is to gradually change a starting model m into a model mHighPosterior with
high posterior value, that is into one that honors both data and prior information. To this
end, we introduce a differentiable function f d(m, TI) which measures the mismatch
between the multiple-point statistics of the training image and the model. We show
how by minimizing the value of the proposed measure we are able to generate images
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that honor multiple-point statistics of the training image. Finally, a solution to the
inverse problem is found by solving the following optimization problem

mHighPosterior = argmin
m

{
1

2
||dobs − g(m)||2CD

+ f d(m, TI)
}

. (6)

Notice the absence of the weight factor α in comparison with Eq. 5.

2.2 The Smooth Formulation of Multiple-Point Statistics

In this section, we derive a differentiable function f d(m, TI) that allows us to measure
dissimilarity between the multiple-point statistics of the discrete training image and of
any continuous image. To this end, we introduce a new object called pseudo-histogram
(or smooth histogram), which reflects pattern statistics of an image. In contrast to the
frequency distribution, it is a function of pixel values, not of the pattern counts, and
it can be computed for both discrete and continuous images. It has an important
property: for the training image it almost coincides with its frequency distribution.
We then compare training and model images by comparing their pseudo-histograms,
which are differentiable with respect to model parameters. For clarity we use two-
dimensional images in our explanation, though the algorithm is implemented for both
two- and three-dimensional problems. Our notation is presented in Table 1.

Assume that the prior information is represented by a categorical training image TI,
whose pixel values are real numbers (e.g. 10.0 and 500.0) and represent some physical
property (e.g. permeability). First, we scan through the training image TI using the
template T and save its unique (non-repeating) patterns as a database. Unique patterns
of the training image define categories of the pseudo-histograms Hd,m and Hd,TI.
We show in detail how to construct the pseudo-histogram for the model image only,
noticing that Hd,TI is constructed in the same manner. The approach is based on the
idea that a continuous pattern patm

i observed in the image m does not fit into a single

discrete pattern category patTI,un
j , but instead it contributes to all N TI,un categories.

Table 1 Notation
Notation Description

TI Training image, categorical

m Model (test image), can contain continuous values

T Scanning template

Hd,m Pseudo-histogram of m

Hd,TI Pseudo-histogram of TI

N m Number of patterns in m

N TI Number of patterns in TI

N TI,un Number of unique patterns in TI

patmi Pixel values of i th pattern in m

patTI
i Pixel values of i th pattern in TI

patTI,un
j j th unique pattern in TI.
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Therefore, summing over all the N m contributions, the j th bin of the pseudo-histogram
Hd,m is defined as

Hd,m
j =

N m∑
i=1

ci j , (7)

where ci j defines the level of similarity between patm
i and patTI,un

j . We define ci j such

that it equals 1 when vector of pixel values patm
i is equal to patTI,un

j . A natural choice
for ci j would be one based on the Euclidean distance between pixel values of the
corresponding patterns, defined, for instance, as

ci j = 1(
1 + A tk

i j

)s , (8)

where ti j = ||patm
i − patTI,un

j ||2 and A, k, and s are the user-defined parameters
(scalars).

Notice the following property

ci j =
{

1 ti j = 0

∈ (0, 1) ti j �= 0.
(9)

In the same manner, we define the smooth histogram for the training image itself

Hd,TI
j =

N TI∑
i=1

1(
1 + A ||patTI

i − patTI,un
j ||k2

)s . (10)

The smooth histogram computed for the discrete Image A (Fig. 2a is shown in
Fig. 2c by light-blue color, while its original frequency distribution is depicted by the
dark-blue color. Categories of discrete patterns, contributions to which are calculated
using Eq. 8, are shown below the x-axis. Figure 2b shows a continuous image, while in
Fig. 2c one can see its histogram, defined in the smooth sense, depicted by the orange
color. Notice the small counts everywhere: indeed, according to Eq. 9, this image does
not contain patterns sufficiently similar to those observed in the training image. For
the visualization purposes parameters of Eq. 8 are chosen as A = 50, k = 2 and s = 2.
These values are applicable after ti j has been normalized on the quantity representing
maximum possible Euclidean distance between the discrete patterns.

The choice of parameters A, k and s in Eq. 8 is very important: from one side, they
define how well the pseudo-histogram approximates the true frequency distribution;
from the other side, they are responsible for smoothing and, consequently, for the
convergence properties. Figure 3 reflects how different values of k, s with fixed A =
100 influence the shape of the pattern similarity function (Eq. 8). Our empirical
conclusion is that values A = 100, k = 2, s = 2 are optimal. Compare them (Fig. 3)
with the extreme case A = 100, k = 1, s = 2 where the majority of patterns have a
close-to-zero contribution.
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Fig. 2 Pattern statistics represented by frequency distribution and smooth histograms

Fig. 3 Pattern similarity function

Comparing the pseudo-histograms quantitatively, we are able to understand how
well the multiple-point statistics of the training image is reproduced in the model
image. We introduce the following dissimilarity function
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f d(m, TI) = 1

2

N TI,un∑
i=1

(Hd,m
i − Hd,TI

i )2

Hd,TI
i

. (11)

Essentially, it is a weighted �2-norm, where the role of the weight parameter
is played by the smooth histogram of the training image. The suggested measure
enhances influence of the less frequent patterns of the training image and improves
reproduction of the features. If the number of patterns in the training image N TI differs
from the number of patterns in the model N m, we multiply Hd,TI

i by r = N m/N TI.
Algorithm 1 summarizes the main steps for constructing the dissimilarity function
f d(m, TI).

Algorithm 1: Construction of the multiple-point statistics dissimilarity function
Input: Training image TI, model image m, template T
Output: f d(m, TI)
Collect patterns patTI and patm of TI and m
Collect unique patterns patTI,un of TI
Construct the pseudo-histogram of the model image:
for j = 1 : N TI,un do

Hd,m
j = ∑N m

i=1
1

(1+A ||patm
i −patTI,un

j ||k2)s

end
Construct the pseudo-histogram of the training image:
for j = 1 : N TI,un do

Hd,TI
j = ∑N TI

i=1
1

(1+A ||patTI
i −patTI,un

j ||k2)s

end
Compute the dissimilarity function f d(m, TI) (Eq. 10)

2.3 Relation of the Dissimilarity Measure to Prior Probability

In this section, we show how the value of prior probability density ρ(m) can be
estimated and how it is related to the dissimilarity function (Eq. 11). We define the prior
probability of the model parameters through their marginal probabilities, which can be
estimated by constructing the frequency distribution. In other words, by maximizing
the probability of the histogram to be a realization of the process that generated the
histogram of the training image, we maximize the probability of the image to share the
same multiple-point statistics as the training image. Our idea consists in representing
an image as an outcome of some multinomial experiment (see also Cordua et al. 2012).
Consider two categorical images: training and test. Assume that a pattern in the test
image is a multiple-point event that leads to the success for exactly one of the K
categories, where each category has a fixed probability of success pi . By definition,
each element Hi in the frequency distribution H indicates the number of times the i th
category has appeared in N trials (number of patterns observed in the test image). Then
the vector H = (H1, . . . , HK ) follows the multinomial distribution with parameters
N and p, where p = (p1, . . . , pK )
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ρ(m) = P(H) = N !
H1! · · · HK ! pH1

1 · · · pHK
K . (12)

We assume that the histogram of the training image defines the theoretical distribu-
tion underlying the multinomial experiment. Then the vector of probabilities p can be
obtained from the frequency distribution of the training image HTI: by normalizing
its entries on the total number of counts we obtain the probabilities of success. In
general, the histogram of the training image is very sparse, therefore many categories
of patterns will be assigned zero probability. It means that if a test image has a sin-
gle pattern that is not encountered in the training image, its prior probability from
Eq. 12 will be zero. This happens due to the insufficient prior information derived
from the training image; it is very likely, however, that many of the non-observed
patterns have some non-zero probabilities to exist. This problem is well known in the
field of the natural language processing (NLP): small vocabulary can imply zero prob-
abilities of some words to exist. The NLP research community address the challenge
with a fundamental technique called “smoothing” (Chen and Goodman 1999). The
common idea of smoothing algorithms lies in making prior distributions more uniform
by adjusting low probabilites upward and high probabilities downward. Since there is
no information about the probabilities of the patterns not encountered in the training
image, we assume them to be equal to ε. To make the sum of pi equal to one, we
subtract a small number γ from all non-zero bins of HTI

pi =
{

HTI
i −γ

N TI HTI
i > 0

ε HTI
i = 0

, (13)

where γ = ε(K − N TI,unique)N TI/N TI,un.
This simple technique called absolute discounting is one of the many smooth-

ing techniques, however, to define which smoothing methodology is the best for the
training-image-based prior is the subject of a separate research and thus we do not
address it here. After defining pi , P(H) can be computed through its logarithm

log(P(H)) = log

(
N !

H1! · · · HK !
)

+
K∑

i=1

Hi log(pi ). (14)

Further we apply Stirling’s approximation

log(n!) = n log n − n + O(log n). (15)

Defining I = {i : Hi > 0} we obtain

log

(
N !

H1! · · · Hk !
)

= log(N !) −
∑
i∈I

log(Hi !) ≈ N log N − N

−
∑
i∈I

(Hi log(Hi )−Hi ) = N log N −
∑
i∈I

Hi log(Hi ). (16)
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and finally

log(P(H)) ≈ N log N +
∑
i∈I

Hi log

(
pi

Hi

)
=

∑
i∈I

Hi log

(
N pi

Hi

)
. (17)

Having at hand a discrete image, one can compute its relative prior probability
using Eq. 17. Moreover, it is also applicable to the result of minimization of Eq. 11,
since the algorithm aims at finding an image, whose pixel values are very close to the
expected categorical values and therefore its patterns can be considered as a success in
the multinomial experiment. The misfit with the prior information can be then written
as

− log(P(H)) ≈
∑
i∈I

Hi log

(
Hi

N pi

)
. (18)

Substituting Hi with N pi + εi and applying Taylor expansion of the second order one
arrives to the chi-square distance divided by two

− log(P(H)) ≈ 1

2

∑
i∈I

(Hi − N pi )
2

N pi
. (19)

Notice that Eq. 19 justifies our choice of the dissimilarity function (Eq. 11). Indeed, by
minimizing expression 11 we minimize the value defined by Eq. 19 as well. Further,
if we denote h = H/N , Eq. 17 is transformed as

log(P(H)) ≈
∑
i∈I

Nhi log

(
pi

hi

)
= −

∑
i∈I

Nhi log

(
hi

pi

)
= −N DK L(h||p), (20)

where DK L(h||p) is the Kullback–Leibler divergence, a dissimilarity measure
between two probability distributions h and p. In other words, it defines the infor-
mation lost when the theory (training image) is used to approximate the observations
(test image).

2.4 Generating Near-Maximum A Priori Models

Minimizing Eq. 11, we are able to generate near-maximum a priori model, given a
starting guess. We solve the following optimization problem

mHighPrior = argmin
m

{
f d(m, TI)

}
. (21)

To use an efficient unconstrained optimization framework in case of non-negative
model parameters (such as permeability), we apply the logarithmic scaling of the
parameters (Gao and Reynolds 2006)

xi = log

(
mi − mlow

mup − mi

)
. (22)

123



Math Geosci

Fig. 4 Training image
representing permeability field
(mD) used in the numerical
examples

Here i = 1, . . . , n, where n is the number of pixels in the test image m, mlow and mup

are the lower and upper scaling boundaries of the parameters. The log transform does
not allow extreme values of the model parameters and makes the algorithm perform
in a more robust way. For consistency we transform the training image as well.

Any gradient-based optimization technique can be used for solving Eq. 21, however
we used a quasi-Newton method, which was our method of preference when solving
inverse problems (Sect. 2.5). It requires only the value of the objective function and
its gradient, while the Hessian needed for the search direction is evaluated through
approximation (Nocedal and Wright 2006). Appendix A shows how to compute the
gradient of Eq. 11 analytically. In this work, we employed the unconstrained imple-
mentation of the L-BFGS method (Zhu et al. 1997). Here follows an example. Consider
a training image (Fig. 4), which is an upscaled part of a training image proposed by
Strebelle (2000). We assume that it represents permeability of an oil reservoir with a
values of 500 mD in channels and 10 mD in the background.

To derive the multiple-point statistics, we used a square template of 6 × 6 pixels
[optimal size according to the entropy approach suggested by Honarkhah (2011)].
The training image has 789 unique 6 × 6 patterns, therefore, the pseudo-histograms
(Eq. 11) have 789 bins. Parameters A, k and s (Eq. 8) were set to the empirically
optimal values of 100, 2 and 2. Figure 5a shows three starting guesses: one random,
and two upscaled smoothed parts of the aforementioned image of Strebelle (2000).
Figure 5b shows the solutions after 20 iterations. Finally, Fig. 5c demonstrates the
solutions obtained after 100 iterations. Since unconstrained optimization is used, the
solutions have few outliers; nevertheless, the logarithmic transformation used in the
optimization allows us to regulate the boundaries of pixel values. In this example the
minimum possible value is 5 mD, and the maximum is 550 mD. The solutions clearly
reproduce features of the training image. The value of the misfit with prior (Eq. 11) is
close to 100.0.
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Fig. 5 Generating near-maximum a priori models

2.5 Solving Inverse Problems

It would be tempting to find a high posterior model by minimizing the objective
function

O(m) = 1

2
||dobs − g(m)||2Cd

+ f d(m). (23)

However, the two terms in this objective function have different dimensions and scales;
this may lead to inconsistency in optimization. We overcome these difficulties trans-
forming the current objective terms into dimensionless ones. For the current imple-
mentation we used the following expression (Osyczka 1978)

F trans
i (x) = Fi (x) − F∗

i

F∗
i

. (24)

Here Fi (x) is the i th function to transform, and F∗
i is the target (desired) value of the

objective function value. We denote the target value of the data misfit term as u∗ , and
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Table 2 Reservoir model
parameters

Model size 50 × 50 cells

Cell size 10 × 10 m

Initial water saturation 0.0

Porosity 0.3 (constant everywhere)

from Oliver et al. (2008) expect u∗ ≈ N/2, where N is the number of observations.
The target value of the prior misfit f ∗ is non-zero, since the training image and
images statistically similar to it have slightly different histograms. However the order
of magnitude of f ∗, which corresponds to the well reproduced features of the training
image, is the same and can be found empirically. It can be estimated by finding, for
instance, the value of f d(m∗), where m∗ is an image honoring multiple-point statistics
of the training image. Alternatively, the order of f ∗ can be found solving Eq. 21 for
some starting model. One of the easiest ways to combine objective functions into a
single function is to use the weighted exponential sum (Marler and Arora 2004). We
put equal weights on two misfit terms and the exponent equal to 2. This leads to the
final expression for the objective function

O∗(m) =
(

1
2 ||dobs − g(m)||2Cd

− u∗

u∗

)2

+
(

f d(m, TI) − f ∗

f ∗

)2

. (25)

Notice that the term with the largest difference between its current and target values
gets higher priority. Essentially, u∗ and f ∗ play the role of weights, and the exact
values do not need to be known, only the order of magnitude is important. In practice,
target values can be set below the desired values to provide faster convergence.

Similarly to Sect. 2.4, we apply the logarithmic transformation (Eq. 22) to the model
and to the training image. For solving (25), we suggest using quasi-Newton methods
that are known to be efficient for history matching problems (Oliver et al. 2008). The
gradient of the data misfit term is calculated by an adjoint method implemented in
the reservoir simulator Eclipse (Schlumberger GeoQuest 2009). The gradient of the
prior term is computed analytically (Appendix A). The algorithm is stopped when the
values of the objective terms in the optimization problem (25) approach their target
values. The computational efficiency of the algorithm decreases with increase of the
number of categories in the training image and/or the template size, since a larger
number of Euclidean distances is to be calculated.

3 History Matching Example

We perform history matching on a two-dimensional synthetic oil reservoir, aiming
at estimating its permeability field. All other parameters, such as porosity, relative
permeabilities and initial saturation are assumed to be known. To investigate non-
uniqueness of the solution we solve Eq. 25 for a set of starting models. Table 2 lists
some parameters of the reservoir model.

Figure 6 shows the true permeability field that features sand channels of 500 mD and
background shale of 10 mD; 13 injectors are marked by triangles, and 13 producers by
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Fig. 6 True model of
permeability (mD) with injection
and production wells (triangles
and circles, respectively)

circles, respectively. All wells work at the bottom hole pressure control: 300 Barsa for
the injectors and 50 Barsa for the producers. Production data are generated by running
a forward simulation with the true permeability model and adding 5 % of Gaussian
noise. Physics of the flow (steady two-phase immiscible displacement) allows us to
use few observations and not to lose in history matching accuracy. We choose just
two measurements (at 100 and 200 days) per well, 52 measurements in total (we
measure water rate in injectors and oil rate in producers). This approach results in
faster performance, since much less time is required to compute sensitivities. However,
we show the full history to assure the quality of history matching.

Prior information is given by the training image in Fig. 4. We use the same para-
meters as in Sect. 2.4 to derive multiple-point statistics and construct the objective
function. The ensemble of ten starting guesses (Fig. 7a) is presented by randomly
chosen parts of a smoothed and upscaled version of the training image proposed by
Strebelle (2000). Solving Eq. 25, we set target values of u∗ and f ∗ at 10.0 and 25.0 to
assure the convergence of the algorithm to the desired values of the misfits. For the data
misfit we expect a value close to N/2 where N is the number of measurements (Oliver
et al. 2008) and for the prior close to 102. On average the algorithm converges in 100
iterations; its performance depends on the closeness of the initial guess to the solution.
Figure 7b demonstrates the transformation of the models after 50 iterations: most of
the original channels are blurred and new ones are being constructed. Figure 7c shows
models at the 150th iteration. The algorithm successfully reproduces high-contrast
channels featuring the expected continuity and width. Naturally, since the data sensi-
tivity decreases with increasing distance from a well, the location of channels is very
well defined on the sides of the model, in the vicinity of wells, while in the middle we
observe some deviation from the true model. This example clearly demonstrates the
consequences of the underdetermined inverse problem: existence of many solutions
all satisfying the available information. Figure 8a shows history matching for the first
solution: injection rates of the first four injectors and production rates of the first four
producers (counting from top). Convergence plot for the prior and the data misfit is
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Fig. 7 a Starting models,
b models after 50 iterations,
c models after 150 iterations
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Table 3 Posterior ranking of
the solutions Model N log(ρ(m)) − 1

2 ||g(m) − dobs||2CD

1 −8122.0324

2 −8134.6031

3 −10383.1467

4 −7860.2211

5 −6568.7915

6 −8900.5525

7 −9781.7611

8 −7107.3847

9 −6734.4299

10 −7608.2761

True model −7713.9272

shown in Fig. 8b (notice log scale for the data misfit term). Red lines mark the desired
values of the misfits.

Finally, we are able to distinguish among the solutions (Fig. 7c) by calculating their
relative posterior probabilities derived from Eqs. 2 and 3

log(σ (m)/(kc1)) = log(ρ(m)) − 1

2
||g(m) − dobs||2CD

(26)

where log(ρ(m)) is defined by Eq. 17. We chose γ = 0.1 (Eq. 13). Table 3 lists the
results (enumeration of the models starts from top).

For comparison, in the last row, we give the value calculated for the true model
(Fig. 6). We can conclude that models 5, 8 and 9 are the most preferable within this
ensemble, while model 3 is the most inferior.

4 Conclusions

We presented an efficient method for solving the history matching problem employing
a gradient-based optimization technique that integrates complex a priori information
(in the form of a training image). History matching is a severely undetermined inverse
problem and existence of multiple solutions is a direct (and unfortunate) consequence
of this property. However, production data contain valuable information about rock
properties, such as porosity and permeability. Inversion of them is necessary for con-
struction of reservoir models that can be used in prediction. Geological information,
if available, can drastically decrease the size of the solution space, hence reducing the
non-uniqueness of the solution. One way of applying the methodology is to explore
the solution space. Since we are able to start from any smooth model in many cases
we can detect solutions that have high posterior values and look very different, due
to the fact that they belong to the different islands of high probability. Quantification
of the relative posterior probabilities allows us to rank solutions and choose the most
reliable ones.
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The algorithm needs a starting guess, and, clearly as in any gradient-based opti-
mization, the convergence properties depend on it. In the history matching problem,
the choice of the starting guess is particularly important. The sensitivity of the produc-
tion data with respect to the rock properties decreases non-linearly with the distance
from wells. Therefore, it is hard to invert for model parameters in the areas with poor
well coverage. The situation can be greatly simplified if one would integrate seismic
data, or at least, would use the results of the seismic inversion as the starting guesses.
This is a topic of our future research.
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Appendix A: Computing Gradient of the Dissimilarity Function

In order to perform the gradient-based optimization of Eqs. 21 and 25 the derivatives
of the dissimilarity function f d(m, TI) (Eq. 11) with respect to model parameters
have to be computed. Below we show how to compute this gradient analytically.

By definition, ∇ f d(m, TI) =
[

∂ f d

∂m1
, . . . ,

∂ f d

∂mn

]T
where m ∈ Rn . From Eq. 11 it

reads

∇ f d(m, TI) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ Hd,m
1

∂m1

∂ Hd,m
2

∂m1
· · · ∂ Hd,m

NTI,un

∂m1

∂ Hd,m
1

∂m2

∂ Hd,m
2

∂m2
· · · ∂ Hd,m

NTI,un

∂m2
...

...
. . .

...

∂ Hd,m
1

∂mn

∂ Hd,m
2

∂mn
· · · ∂ Hd,m

NTI,un

∂mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hd,m
1 −Hd,TI

1

Hd,TI
1

Hd,m
2 −Hd,TI

2

Hd,TI
2
...

Hd,m
NTI,un−Hd,TI

NTI,un

Hd,TI
NTI,un

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

From Eqs. 10 and 8 it follows

∂ Hd,m
j

∂mz
=

N m∑
i=1

∂ci j

∂mz
=

N m∑
i=1

−Aks(1 + Atk
i j )

(−s−1)tk−1
i j

∂ti j

∂mz
, (28)

where i = 1, . . . , N m, j = 1, . . . , N TI,un and z = 1, . . . , n.
Notice, that

∂ti j
∂mz

= 0 if mz /∈ patm
i . Otherwise, if patm

i = [vi,1 . . . vi,N ]T , and

patTI,un
j = [u j,1 · · · u j,N ]T , where N is the number of pixels in the pattern, we get

ti j = ||patm
i − patTI

j ||2 =
√

(vi,1 − u j,1)2+, . . . ,+(vi,N − u j,N )2, (29)

and, therefore
∂ti j

∂mz
= vi,s − u j,s

||patm
i − patTI

j ||2
, (30)

where vi,s = mz .
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