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1 Introduction

Reservoir modeling conditioned by recorded seismic reflection data is the most
prominent geophysical technique to investigate the unknown properties of the sub-
surface. However, even if seismology produces good quality tomographic images,
it still remains challenging to obtain a good picture of some particular properties
such as porosity or permeability that are of most interest for oil and gas explo-
ration. The link between elastic parameters and such properties lies in the complex
relationships between, among others, intrinsic properties of rocks, mineralogy, and
interaction with fluids which are usually described by a rock physics model [1]. Since
these relationships are usually nonlinear and affected by uncertainty, it is difficult
to invert seismic data directly for, e.g., porosity employing the standard optimiza-
tion approaches because they generally rely on linearised models and simple scaling
laws. Here we propose an approach based on a Markov chain Monte Carlo (McMC)
technique which is able to combine rock physics modeling and reflection seismology
to invert for porosity and facies of the subsurface. It takes into account the nonlinear-
ities deriving from the rock physics model and moreover it provides an estimation
of uncertainties on the unknown properties. Similar approaches have been studied
before, see e.g., [2–4].

2 Overview of the Markov Chain Monte Carlo Inverse Method

We follow a probabilistic approach, in which all information is represented by prob-
abilities, as described in [5], where the inverse problem consists in performing an
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indirect measurement of unobservable parameters of the subsurface given some mea-
sured quantities on the surface of the Earth. The solution to the inverse problem is the
posterior distribution, a combination of the prior and likelihood functions describing
all possible models and relative probabilities.

Our aim is then to explore the model space in order to obtain a collection of mod-
els which all fit the measured data and are consistent with the a priori information.
Moreover we are interested in estimating the uncertainty on unknown model para-
meters. Markov chain Monte Carlo algorithms represent a natural choice to fulfill
these requirements, so we construct a multi-step algorithm capable of sampling the
posterior distribution. The ingredients necessary to sample solutions to this inverse
problem are essentially two [6]: (I) an algorithm generating samples from a proposal
distribution according to the available prior information and (II) a sampler of the like-
lihood function. The prior geological information is represented by one or multiple
training images which supply the necessary information about geological patterns to
the algorithm. The posterior distribution is finally sampled employing the extended
Metropolis algorithm [6, 7] based on the degree of fit between measured and cal-
culated seismograms. We consider Gaussian uncertainties and hence we utilize an
L2-norm for the misfit function.

Importance of Informed Priors: Geostatistics

One difficulty arising in high-dimensional space sampling is that a tremendous com-
putational effort is needed to properly sample the posterior distribution. The huge
size of model space, in fact, hampers the adoption of this kind of methodology in
several cases. However, the use of proper informed priors can significantly improve
the situation, reducing drastically the size of the model space to be sampled. This is
obtained by employing an algorithm which generates models adhering to the prior
knowledge so that only plausible models are taken into account in the sampling
process. One recently introduced technique consists in generating realizations of a
model exploiting the multiple-point statistics contained in prototype models. Specif-
ically, the sequential Gibbs sampling method (see [8] and references therein) uses
a sequential simulation approach where the algorithm learns the statistics from a
training image which is scanned searching for recurring patterns. In principle, to
increase the number of patterns, multiple training images may be used. A randomly
selected hyper-rectangular volume of the model is then chosen to be re-simulated
at each iteration of the Markov chain to propose a new model, where voxels are
re-computed using sequential simulation conditioned on the rest of voxels [9].

3 Numerical Experiments

The target of our study is a synthetic reservoir model derived (but modified) from the
Stanford VI-E model [10]. It consists of a 3D arrangement of 38×50×20 voxels with
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size of 100, 100 and 4 m each respectively. Each voxel is parameterised with facies
and porosity as the unknown parameters. Using the reservoir model derived from the
Stanford VI-E model we constructed some “synthetic observations” by computing
the seismograms to be inverted. In our case the forward model calculation consists
of several steps. The first is the computation of the elastic properties from the facies
and porosity of the subsoil. Then we compute the synthetic seismograms using a
convolution approach.

The target zone of the reservoir is constituted by two facies, one representing sand
(channel in a fluvial deposition system and oil-saturated) and the other representing
shale (floodplain and brine-saturated). We assume the mineralogy to be known and
describe it as consisting of four minerals (clay, quartz, feldspar, rock fragments)
with known volume fraction in each facies but unknown porosity. The link between
porosity and other petrophysical properties with the elastic moduli of the bulk rock
for sand facies is modeled using the constant cement model [11] and the usual formula
for isotropic VP . An empirical law from [12] is used instead to compute VP for shale
facies.

Seismic modeling is carried out in the framework of the acoustic approximation,
where the basic ingredients are the P-wave velocity and the density model. The
seismic data are “recorded” at the surface on top of each pixel column as a zero-offset
section. This in reality can correspond to data recorded at different source-receiver
offset that have been processed such that they represent an equivalent zero-offset
section which is easier to interpret. The wavelet is constructed from a Ricker function
with 50 Hz peak frequency and is assumed to be known in the inversion process.

4 Results and Discussion

We ran 2 · 106 iterations, obtaining about 7 · 105 models, of which only one every
102 was retained to ensure independence of samples. Figure 1a shows one partic-
ular model from the solutions. We ended up with a collection of models repre-
senting samples of the posterior distribution which can be used to estimate sub-
surface properties and their relative probabilities/uncertainties. The solutions are
used as a database that can be queried to obtain information on several different
aspects since it represents the complete solution of the inverse problem. Here we
show two examples of the kind of information which can be retrieved from the
collection of models. The first is to compute the value of porosity at two different
locations, obtaining histograms of possible values (Fig. 1b). The histogram tells us
which range of values is most probable and, moreover, gives us an estimation of
the uncertainty. The two histograms show a different behavior, one having a more
pronounced peak, reflecting the different degree of resolving power. The second
example is a map of the probability of having the sand facies on a slice of the 3D
model at z = 40 m (Fig. 1c). The continuity of structures depicted in Fig. 1c is due
to the prior information deriving from the geostatistical algorithm which takes into
account the spatial continuity present in the training image. This example shows
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(a)

(b) (c)

Fig. 1 a An example of a two-facies reservoir model from the collection of solutions with some
slices through the volume of observed seismograms plotted on top. b Histogram of porosity for
two voxels, one located at (x, y, z) = (1500, 3500, 20) m and the other at (1000, 1000, 48) m. c
Probability of having sand (and hence a channel) on a 2D slice of the model at z = 40 m

how it is possible to retrieve more sophisticated information from the database of
solutions that can result very useful for real problems applications. Again, the uncer-
tainty, clearly imaged in this probability plot, is an integral part of the answer we were
searching for.

References

1. Mavko, G., Mukerji, T., & Dvorkin, J. (2003). The rock physics handbook. Cambridge: Cam-
bridge University Press.



Reservoir Modeling Combining Geostatistics with McMC Inversion 687

2. González, E., Mukerji, T., & Mavko, G. (2008). Seismic inversion combining rock physics and
multiple-point geostatistics. Geophysics, 73(1), R11–R21.

3. Bosch, M., Mukerji, T., & Gonzalez, E. (2010). Seismic inversion for reservoir properties
combining statistical rock physics and geostatistics: a review. Geophysics, 75(5), 75A165–
75A176.

4. Rimstad, K., & Omre, H. (2010). Impact of rock-physics depth trends and markov random
fields on hierarchical bayesian lithology/fluid prediction. Geophysics, 75(4), R93–R108.

5. Tarantola, A. (2005). Inverse problem theory and model parameter estimation. Philadelphia:
SIAM.

6. Mosegaard, K., & Tarantola, A. (1995). Monte carlo sampling of solutions to inverse problems.
Journal of Geophysical Research, 100(B7), 12431–12447.

7. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Equations of
state calculations by fast computing machines. Journal of Chemical Physics, 21(6), 1087–1092.

8. Hansen, T., Cordua, K., & Mosegaard, K. (2012). Inverse problems with non-trivial priors:
efficient solution through sequential gibbs sampling. Computational Geosciences, 16, 593–
611.

9. Strebelle, S. (2002). Conditional simulation of complex geological structures using multiple-
point statistics. Mathematical Geology, 34, 1–21.

10. Castro, S., Caers, J., & Mukerji, T. (2005). The Stanford VI reservoir: 118th annual report.
Technical report. Stanford Center for Reservoir Forecasting, Stanford University, Palo Alto,
CA.

11. Dvorkin, J., Nur, A., & Yin, H. (1994). Effective properties of cemented granular materials.
Mechanics of Materials, 18(4), 351–366.

12. Gardner, G., Gardner, L., & Gregory, A. (1974). Formation velocity and density: the diagnostic
basics for stratigraphic traps. Geophysics, 39(6), 770–780.


	148 Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion
	1 Introduction
	2 Overview of the Markov Chain Monte Carlo Inverse Method
	3 Numerical Experiments
	4 Results and Discussion
	References


