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Preface and acknowledgement

First version: As a master’s degree student in physics at the Niels Bohr In-
stitute (Copenhagen University), I am required to complete 7.5 ects points of
independent work (”selvstændigt element”)†. This project accounts for 5 of these
points. The project was written during the late spring/summer of 2008.
Second version: In the second version I corrected some minor mistakes, re-
draw one of the figures and changed the general layout.

The project is divided into three parts. The first part examines spacetime sym-
metries and with a fairly high degree of mathematic rigour the stationary, ax-
isymmetric solutions to Einstein’s equation. This part is mainly based on [Wal84],
[Car04] and [tH02].

The second part investigates how it is possible to assign mass, charge and
angular momentum to the spacetimes introduced in the first part. Einstein’s
equation in the weak field limit is examined and a definition of mass and angular
momentum of axisymmetrical, stationary spacetimes is given (Komar integrals).
This part is maily based [Wal84], [Car04] and [MP86].

The third part collects the results from the two first parts and applies it to
the to black holes. The concepts of event horizons, Killing horizons and surface
gravity for black holes are explained. Finally, the laws of black hole mechanics
are examined and interpreted in terms of thermodynamics. This part is mainly
based on [Wal84], [Ole07], [Car04] and [Tow97].

The project assumes the reader to have the same prerequisites as I had when
I started writing it: The project presupposes that the reader has read and un-
derstood the lecture notes on general relativity [Ole07] by Poul Olesen (or the
equivalent). Moreover, it is assumed that the reader knows the fundamentals of
differential and Riemannian geometry, as treated, for example, in [Sch06], [Lee97,

†Note added in the second version: It has come to my attention that the requirement of 7.5
ects points of independent work has suddenly been dropped by the university in the autumn of
2008.

imsart-generic ver. 2008/08/29 file: blackholephysics1.tex date: December 2, 2008



Andreas Vigand Pedersen/Aspects of Black Hole Physics 3

chapters 1-4, 8-10, 12-14] and [Lee00, chapters 1-7]. In particular, the reader
should be conversant with manifold theory, tangent vectors, tensors, n-forms,
metrics and connections, the theory of geodesics, curvature, Killing vectors and
Killing’s equation, integration on manifolds and Frobenius’ theorem. The lat-
ter three subjects are accounted for, in a relatively understandable manner, in
[Wal84, appendices B and C] and [Car04, appendices B, D and E].

I would like to thank my academic advisor Niels Obers for helpful guidance,
illuminating discussions and for taking the time to answer my questions.

Units, conventions and notation

We will work in units where c = 1 and ε0 = 1/4π. In these units Maxwell’s
equations take the form

∂µF
νµ = 4πjν

∂[µFνρ] = 0

We will use the mostly positive metric signature, i.e., the signature (− + + +).
Moreover, we use the same mathematical notation as [Wal84] and [Car04], espe-
cially we denote the µ-component of the covariant derivative of a tensor T ν···

ρ···

by
∇µT

ν···
ρ···

We use the (·, ·)- and [·, ·]-notation to denote respectively the (normalized) sym-
metrize and anti-symmetrize operation on tensors. For example for a two-tensor
Aµν ;

A(µν) ≡
1

2
(Aµν + Aνµ) and A[µν] ≡

1

2
(Aµν −Aνµ)

and so on.
Finally, throughout this text, Killing vectors (and only Killing vectors) are de-

noted by gothic letters.

This text is typeset in LATEX2ε.
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1. Stationary solutions to Einstein’s equation

1.1. Introduction

The aim of the first part of the project is to explore some of the few exact (and
highly symmetric) solutions to Einstein’s field equations of general relativity. Be-
fore we do this let us briefly recall Einstein’s wonderful theory

The main assumption in general relativity (GR) is that the universe (the col-
lection of all events) can be modeled as a four dimensional manifold M equipped
with a Lorentzian (or pseudo-Riemannian) metric gµν , i.e., a metric with signa-
ture − + + +. This manifold is usually referred to as spacetime. According
to Einstein’s theory, the metric gµν is in principle completely determined by the
spacetime distribution of matter though Einstein’s equation

Rµν −
1

2
Rgµν = 8πGTµν (1.1.1)

where Rµν is the Ricci tensor and R = Rµ
µ = gµνRµν is the Ricci scalar. The

tensor on the left-hand side of Einstein’s equation Gµν ≡ Rµν − 1
2
Rgµν is known

as the Einstein tensor. The Einstein tensor is a geometrical quantity, i.e., it is
completely determined by the metric gµν . The tensor Tµν on the righthand side
of Einstein equation is the energy-momentum tensor, which describes the dis-
tribution and flow of matter in our spacetime (M, g). The reader is assumed to
know the physical significance of the energy-momentum tensor in terms of den-
sities and flows of energy and momentum. The energy-momentum tensor for a
physical system is usually determined by the laws of special relativity (SR) along
with the principle of general covariance. For example, a perfect fluid (that is, a
fluid completely characterized by the rest-frame energy density ρ and rest-frame
isotropic pressure p and with the four velocity vector field Uµ) has the energy-
momentum tensor Tµν = (ρ+ p)UµUν + pgµν while the energy-momentum tensor
for an electromagnetic field, described by field strength tensor Fµν , is given by
Tµν = FµρF

ρ
ν − 1

4
gµνFρλF

ρλ. Both of these formulæ can be obtained using the
above described procedure.

Since physics is something that takes place on the spacetime manifold (at least
in GR), it is clear that spacetime geometry (i.e., the metric) directly influences
the laws of physics. Moreover, the metric determines the causal structure of space-
time. General relativity is therefore a vital tool for understanding any physical
phenomena in a strong gravitational field.

Notice the enormous complexity of general relativity: In generic coordinates
{xµ}, the metric has 10 independent components gµν , i.e., 10 unknown functions
of the four coordinates {xµ}. These 10 functions are coupled through Einstein’s
equation, which is a non-linear differential equation! It is straight forward to show
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that Einstein’s equation in the above form is equivalent to the following equation

Rµν = 8πG
(

Tµν −
1

2
Tgµν

)

(1.1.2)

where T = T µ
µ. In particular, we have that in vacuum (Tµν = 0) Einstein’s

equation reduces to
Rµν = 0 (1.1.3)

Using Einstein’s theory of general relativity, we seek stationary (to be defined
below) solutions to Einstein’s equation under the following assumptions

I) The Schwarzschild problem: Completely spherical symmetric problem and
spacetime filled with vacuum, Tµν = 0.

II) The Reissner-Nordström problem: Completely spherical symmetric problem
and spacetime filled with an electromagnetic field, Fµν .

III) The Kerr problem: Axisymmetric problem and spacetime filled with vac-
uum, Tµν = 0.

IV) The Kerr-Newman problem: A general combination of the above three.

The notion of a spacetime being stationary (”time-translation” invariant), spher-
ical symmetric (”rotational” invariant) and axisymmetric (”rotational” invariant
around an axis) are easy to understand in SR (using coordinates), however, as we
will see they need more careful geometrical definitions in GR. It is exactly these
symmetries that will allow us to choose ”clever coordinates” {xµ} in which the
metric components

g = gµν dxµ ⊗ dxν ≡ gµν dxµdxν (1.1.4)

will simplify considerable. Having obtained these simplifying coordinates xµ the
Ricci tensor may be calculated in terms of gµν and Einstein’s equation will finally
yield (after a lot of calculations) the metric components gµν . The main point we
want to convey is that in the clever coordinates {xµ}, solving Einstein’s equation
takes a lot of work but is possible, something which is not possible at all in ”gen-
eral” coordinates. So, understanding the mathematics of spacetime symmetries is
crucial for finding analytical solutions to Einstein’s equation and understanding
general relativity.

As we will see, the four above solutions to Einstein’s equation introduces three
parameters M,Q and a, which all have physical interpretations. The interpreta-
tion of the parameters M and Q is pretty straightforward (as should already be
well-known from [Ole07]), while understanding the parameter a need some more
general considerations. In part 2 we will look into these considerations and justify
the physical interpretations of M,Q and a.
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1.2. The Schwarzschild solution

We want to solve Einstein’s vacuum equation

Rµν = 0 (1.2.1)

under the assumption that our spacetime M is spherically symmetric and station-
ary, static. Enough talk, let us now precisely define what it means for a spacetime
to be stationary, static and spherically symmetric and see how these symmetries
allows us to simplify the metric.

Spacetime symmetries

We start by defining what it means for a spacetime to be stationary.

Definition (Stationary spacetimes) Suppose that a spacetime (M, g) has a
one-parameter-group, ϕt, whose orbits consist of timelike curves. Such a space-
time is called stationary.

Since every one-parameter-group of isometries has a corresponding Killing vec-
tor field (the (Killing) vector field that generates the one-parameter-group of
isometries through its flow) a spacetime is stationary if and only if there ex-
ists a timelike Killing vector field Kµ i.e., a timelike vector field obeying Killings
equation

∇(µKν) = 0 (1.2.2)

As mentioned above we can think of a stationary spacetime as in some sense
being invariant under ”time translations”. Why is this? Well, time is related
to the ” − ” in the − + + + signature of the metric. Consider some point
p ∈ M in the spacetime and consider some particle P located at p. Assuming
that P is a physical particle, its world line γ ≡ γ(τ) may be parameterized by
proper time τ so that γ(0) = p. We now say that an event q = γ(τ ′) on the
world line, with τ ′ > 0, happened after the event p, simply because seen from
the particle it did. Recall the crucial property of physical world lines; they are
timelike curves meaning that at each point of the curve the tangent vector T µ

Fig 1. The spacetime (M, g) is invariant under ”time translations”.
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of the curve is timelike i.e., gµνT
µT ν < 0 (P moves slower than the speed of

light), this is precisely where the ” − ” from the metric signature comes to play.
In this way see that ”time flows” along timelike curves. It should now be clear
why a stationary spacetime can be considered as being invariant under ”time
translations”: Since the orbits of the one-parameter-group, ϕt, all are timelike,
we can use the parameter t to describe the flow of time. So, the flow of the one-
parameter-group of isometries ϕt, described by parameter t, represents the flow
of time in M. Since we are dealing with a one-parameter-group of isometries, we
conclude that the spacetime geometry is invariant under the flow of t ∼ flow of
time as illustrated in fig. 1.

We will now explain what it means for a spacetime to be static.

Definition (Static spacetimes) A stationary spacetime (M, g) is said to be
static if it has a spacelike hypersurface Σ0 which is orthogonal to the timelike
orbits of the isometries ϕt (from the stationary condition).

We therefore see that our spacetime M is static if and only if the Killing field
Kµ is orthogonal to Σ0. The characteristic feature of a static spacetime is explored
in the following theorem.

Theorem (Static spacetimes) The existence of the hypersurface Σ0 (from the
static condition) induces a family of hypersurfaces, {Σt}, parameterized by the
”time” parameter t from the isometries, and all having the same orthogonality
property as the original hypersurface Σ0.

Proof. To show this, assume that the Killing field Kµ is non-vanishing on the
hypersurface Σ0 and consider the integral curves {γp}p∈Σ0

of the Killing field Kµ

starting at the points in Σ0. Remember that these integral curves exactly are the
orbits (of the isometries ϕt) of the points in Σ0. This set of integral curves will
split up our spacetime (at least in some neighborhood of Σ0) in the following
way: Since Kµ 6= 0 on Σ0, every point q (at least in some neighborhood of Σ0)
will lie on a unique integral curve going through Σ0. In this way we can define a
family of hypersurfaces by

Σt = {q ∈ M | q = γp(t) for some p ∈ Σ0} (1.2.3)

So, Σt is simply the collection of points we obtain by considering where the flow
of K

µ takes the points of Σ0 to at the ”time” t, in other words; Σt = ϕt(Σ0).
As mentioned above, the integral curves {γp}p∈Σ0

define a map from Σ0 to Σt

which is given by ϕt
1. This map is one-to-one an onto, under the assumption that

Kµ 6= 0. To see that the set of hypersurfaces {Σt} are all orthogonal to the orbits

1This follows from the correspondence between vector fields, their flows, integral curves and
one-parameter-groups of diffeomorphisms.
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of the isometries, again notice that this is true if and only if the hypersurfaces
{Σt} are all orthogonal the Killing field Kµ. This follows from the fact that Kµ is
invariant under its own flow, that Σt is the image of Σ0 under ϕt and that ϕt is
an isometry i.e., it preserves the inner product and especially orthogonality.

This theorem enables us to use the hypersurfaces {Σt} to give our spacetime
M coordinates: We start by giving Σ0 arbitrary ”spatial” coordinates {xi} (where
we consider Σ0 as a three-dimensional embedded submanifold of M). We write
the metric of Σ0 in these coordinates as

dℓ2 = hijdx
idxj (1.2.4)

A point q ∈ M will now lie in one of the hypersurfaces Σt for some unique t (at
least in a neighborhood of Σ0) and according to the above discussion there is a
unique point p ∈ Σ0 so that ϕt(p) = q. Now denote the coordinates of the point
p ∈ Σ0 by (x1, x2, x3). We simply then give the point q ∈ M the coordinates
(t, x1, x2, x3), see figure 2. In these coordinates the metric gµν takes the form

ds2 = −f(x1, x2, x3)dt2 + hij(x
1, x2, x3)dxidxj (1.2.5)

where −f = gµνK
µKν = KµK

µ and where we have used that, since t is a Killing
parameter, the metric will be independent of t together with the fact that Σt and
Kµ are orthogonal, i.e., there will be no cross-terms of the type dtdxi in the ex-
pression for ds2. As we saw above, in order for these coordinates to work on some
subset of M it is completely essential that on this subset Kµ 6= 0. We therefore
expect a breakdown of the above defined coordinates wherever Kµ = 0.
Just as we interpreted a stationary spacetime as being invariant under ”time
translations”, a static spacetime has a similar interpretation. We see from the
explicit form of the static metric (1.2.5) that it is invariant under the transforma-
tion t → −t. We thus see that our spacetime invariant under ”time reversal”. A

Fig 2. The orbits of the ”time translations” are orthogonal to the hypersurfaces Σt.
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stationary spacetime is hence interpreted as describing a physical situation which
does not change in time while a static spacetime is interpreted as a describing a
truly static physical situation. An example of a stationary but non-static space-
time could be a rotating star: Clearly such a spacetime is invariant under time
translations while reversing time would reverse the direction of rotation and thus
the spacetime geometry. This also means that a non-rotating star is described by
a static spacetime.
Finally we mention that using the theory of hypersurfaces along with Frobenius’
theorem, it can be showed that a spacetime is static if and only if the timelike
Killing field Kµ fulfills the following condition

K[µ∇νKρ] = 0 (1.2.6)

The simplification of the metric to its static form (1.2.5) is the best we can
do (which is already pretty good) without invoking spatial symmetries such as
spherical symmetry. We will therefore now introduce the concept of spherical
symmetry. Just as with time-symmetries we must define spherical symmetry in
a coordinate independent way - we will do this algebraically.

Definition (Spherical symmetry) A spacetime is said to be spherically sym-
metric if its isometry group (the set of all isometries equipped with the obvious
composition) contains a subgroup isomorphic to the rotation group SO(3).

Equivalently a spacetime is spherically symmetric if it possesses three Killing
vector fields (a, b, c) that satisfy

[a, b] = c , [b, c] = a , [c, a] = b (1.2.7)

We immediately recognize this algebra as the rotation algebra (recall if a, b, c are
the infinitesimal rotations around respectively the x, y and z axis, then they will
satisfy (1.2.7)). This is simply because the Killing vector fields precisely are the
infinitesimal generators of their corresponding isometries. This means that we
can identify the infinitesimal SO(3) generators, i.e., the rotation group Lie alge-
bra so(3) with the Killing vector fields generating the SO(3) isometries. Especially
they satisfy the same algebra, i.e., the one given above. Now Frobenius’ theorem
tells us that the set (a, b, c) of vector fields fit together in such a way that they
generate integral submanifolds (through their integral curves). This means that
if we look at the collection of integral curves for respectively a, b and c through
some arbitrary point, they will make out a (integral) submanifold. Since a, b and c

corresponds to the rotation algebra this suggests that these submanifolds exactly
will be (diffeomorphic to) 2-spheres. We will not go further into this discussion,
since it relies on some pretty deep theorems from differential geometry, but we
will simply assume that the orbits of SO(3) (resulting from the group action on
our spacetime manifold M) are diffeomorphic to S2, keeping in mind that this
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Fig 3. The geodesics orthogonal to the orbit spheres determine the angular coordinates through-
out Σ0.

is a reasonable assumption. Since the SO(3) action leaves the orbits ∼ 2-spheres
invariant, the action of SO(3) can then be physically interpreted as rotations.
Having identified the SO(3) action with rotations, we see that a spherically sym-
metric spacetime exactly is a spacetime which is invariant under rotations.

Now consider our original static, spherically symmetric spacetime M. As we
have argued a point p ∈ M will lie on a unique orbit 2-sphere Sp and on a unique
hypersurface Σt. As we will see now the entire 2-sphere Sp is contained in Σt.
In order to show this, assume that the Killing field Kµ is unique and notice that
a rotated timelike Killing field (to be completely precise: The pushforward of a
timelike Killing under the isometry corresponding to the given rotation) is still a
timelike Killing field since rotations are isometries. Since we have assumed that
the Killing field K

µ is unique, we conclude that it must be invariant under rota-
tions2. Since Kµ is invariant under rotations its projection onto Sp must also be
invariant. However, the only vector field on Sp ∼ S2 which is invariant under all
rotations is the zero vector field. We thus conclude that the Kµ is orthogonal to
S in all points. Since Sp is obtained the collection of all the orbits of the point
p under all rotations and we just showed that these orbits all are orthogonal to
Kµ, we conclude that all the orbits and thus Sp is contained in Σt.
We are now almost finished with simplifying the metric components. The final
step consists of using the orbit spheres contained in (and covering) Σ0 to define
”clever” coordinates {xi} on Σ0, which is, according to (1.2.4) a 3-dimensional
Riemannian manifold.
As we now will see it is possible to construct ”spherical coordinates” on a spher-
ically symmetric space. Again we must be very careful in setting up coordinates
since we do not know anything about Σ0 except that it is spherically symmetric.
Recall that ordinary spherical coordinates (r, θ, φ) on R3 have the property that

2Alternatively we could skip the assumption of uniqueness and just assume that Kµ is invari-
ant under rotations. This is certainly reasonable since we in (1.2.5) have separated the ”time”
t and ”space” and Kµ is related to t while rotations are related to space.
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r is the distance to the origin and the straight lines (geodesics) emerging from the
origin have θ, φ = const. We will define spherical coordinates on Σ0 in a similar
manner.
Let p ∈ Σ0 be some point. We start by assigning a ”radial” coordinate r to p.
As we have argued, the point p will lie on some orbit sphere Sp ∼ S2 which is
contained in Σ0. Now consider Sp as a (Riemannian) submanifold of Σ0. Since Sp

has SO(3) in its isometry group and it is diffeomorphic to S2 it must be isomet-
ric to rS2 (the 2-sphere of radius r with the canonical metric) for some r > 0.
Since every point in Σ0 will lie on some orbit sphere, this allows us to assign the
”radial” coordinate r to the point p. Moreover, since Sp

∼= rS2 we can choose
coordinates (θ, φ) on Sp, so that the metric on Sp takes the form

r2dΩ2 = r2(dθ2 + sin2 θdφ2) (1.2.8)

This defines spherical coordinates on Sp for all p ∈ Σ0. This is, however, not
good enough, since we have not specified how coordinates for different points
on different orbit spheres are related. We must now carefully align the spherical
coordinate systems on each of the different orbit spheres, to this end we will
use geodesics. On the 2-dimensional orbit sphere Sp let p have the coordinates
(θ0, φ0) and the coordinates (r, θ0, φ0) on Σ0. Notice that, if we on each orbit
sphere Sq, q ∈ Σ0, specify what point should be assigned angular coordinates
(θ0, φ0), we have defined spherical coordinates throughout Σ0. This specification
is done in the same way as for ordinary spherical coordinates on R3: We consider a
geodesic through p which is orthogonal to Sp. We then define all the points along
this geodesic to have angular coordinates (θ0, φ0) and their radial coordinate is
determined by the ”radius” of the orbit sphere on which they are located (as
explained above), see fig. 3. This defines spherical coordinates on Σ0 (at least in
a neighborhood of Sp). Clearly, the assignment of spherical coordinates is only
well-defined as long ∇µr 6= 0, since if ∇µr = 0 the radial coordinate will be
degenerate. Notice that in these coordinates all the curves with θ, φ = const.
will be geodesics orthogonal to the orbit spheres they pass trough. This follows
from rotational symmetry: Since rotations take geodesics to geodesics, preserve
the inner product (since they all are isometries) and act transitively on Sp ∼ rS2,
we see that any curve θ, φ = const. through Sp can by obtained by rotating the
geodesic through p orthogonal to Sp. Hence all the curves θ, φ = const. will be
geodesics orthogonal to Sp. Due to rotational symmetry, to show that all these
curves will be orthogonal to any orbit sphere they pass through it is enough to
show that this is true the geodesic trough p; (θ, φ) = (θ0, φ0). To this end, notice
that a rotation R around the vector orthogonal to Sp at p will send each point on
the geodesic (θ, φ) = (θ0, φ0) to itself (again because rotations (isometries) rotate
geodesics into geodesics and preserves orthogonality). Now consider some point
q ∈ Sq on the geodesic (θ, φ) = (θ0, φ0) where q /∈ Sp, i.e., Sq 6= Sp. We want to
show that the tangent vector v ∈ TqΣ0 to the geodesic (θ, φ) = (θ0, φ0) in q is in
the orthogonal complement of TqSq. So if we write v = v‖+v⊥ where v‖ ∈ TqSq and
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v⊥ ∈ T⊥
q Sq, we must show that v‖ = 0. Since R sends each point on the geodesic

(θ, φ) = (θ0, φ0) to itself, we have that Rv = v, so (v‖ −Rv‖) + (v⊥ − Rv⊥) = 0.
Notice that since R leaves q invariant it will also leave TqSq and T⊥

q Sq invariant,

i.e., v‖ = Rv‖ and v⊥ = Rv⊥. Again since R leaves q invariant v⊥ = Rv⊥

automatically while v‖ = Rv‖ requires that v‖ = 0.
In the above constructed spherical coordinates the metric hij on Σ0 will take

a particular simple form. Since by construction the vectors ∂θ, ∂φ ∈ TpSp and
according to the above argument ∂r ∈ T⊥

p Sp we have that in the coordinates
(r, θ, φ) the metric components hij take the form

dℓ2 = h(r)dr2 + r2dΩ2

= h(r)dr2 + r2(dθ2 + sin2 θdφ2)
(1.2.9)

where h = hrr

(
= h(∂r, ∂r)

)
is constant on each of the orbit spheres (due to

rotational symmetry), i.e., it cannot depend on the angular coordinates θ and φ.

Having obtained the ”spatial” coordinates on Σ0, by equation (1.2.5) we have
found that the metric for a static, spherically symmetric spacetime, in the above
defined coordinates, is given by (the function f can only depend on the radial
coordinate r by rotational symmetry)

ds2 = −f(r)dt2 + h(r)dr2 + r2(dθ2 + sin2 θdφ2) (1.2.10)

where we keep in mind that there might be regions of spacetime where these
coordinates break down (as explained above).

The solution

Having carefully examined the symmetries of a static, spherically symmetric
spacetime, we have reduced the problem of solving Einstein’s equation to a prob-
lem of determining the two functions f and h, which are only functions of the
radial coordinate r.
The metric (1.2.10) is the best we can do using symmetries and geometrical
considerations - we must now solve Einstein’s vacuum equation. In order to de-
termine the two unknown functions f and h, we must go through the exercise of
expressing the Ricci tensor Rµν in terms of h and g. There are several methods for
computing the curvature, Ricci tensor etc. The simplest method3 is simply just
first to express the Christoffel symbols Γρ

µν in terms of the metric components

Γρ
µν =

1

2
gρλ

{
∂µgνλ + ∂νgµλ − ∂λgµν

}
(1.2.11)

3A more elegant (but sophisticated) method is the so called tetrad (or vierbein) approach
for computing curvature, see e.g. [Wal84].
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and then use the expression for the Ricci tensor in terms of the Christoffel symbols
(the derivation of this relation can be found in [Ole07])

Rµν =
1

2
∂µ∂ν log g − ∂λΓ

λ
µν + Γη

µλΓ
λ
λν −

1

2
Γη

µν∂η log g (1.2.12)

Since the reader is assumed to have seen (and carried out) this final step of
the derivation of the Schwarzschild solution, in for example [Ole07], we will skip
this step and just write down the result: By solving Einstein’s vacuum equation
Rµν = 0 for the two unknown functions f and h, we obtain the following general
solution for the metric of a static, spherically symmetric spacetime:

ds2 = −
(

1 − 2MG

r

)

dt2 +
(

1 − 2MG

r

)−1

dr2 + r2dΩ2 (1.2.13)

with
dΩ2 = dθ2 + sin2 θdφ2 (1.2.14)

as the usual metric on S2 and where M is a real positive parameter. This is the
Schwarzschild solution.

Notice that the Schwarzschild solution (1.2.13) is asymptotically flat meaning
that ”infinitely far away” from the spacetime disturbance (i.e., for r → ∞) the
Schwarzschild metric is just the ordinary flat Minkowski metric ηµν expressed in
spherical coordinates4. Also notice that if we let M → 0 ds2 reduces to the flat
Minkowski metric expressed in ordinary spherical coordinates.

As mentioned above the number M is a parameter of our solution, it comes
about as an integration constant in the derivation of the Schwarzschild metric.
However, it is possible to give M a physical interpretation (we look further into
this identification in part 2): The parameter M can be identified with the physical
mass of the (spherically symmetric) gravitational source responsible for the space-
time disturbance. Inside the mass distribution we of course have that Tµν 6= 0,
so the Schwarzschild solution (1.2.13) is only valid outside the mass distribution.
We will now briefly discuss some of the features of the Schwarzschild solution.

The first thing one notices are the singularities appearing in the Schwarzschild
metric. We see that the metric components become singular in the set of points
with radial coordinates r = 2MG and r = 0. According to the above discussion
there are two possibilities for the origin for such singularities

⋆ A breakdown of Schwarzschild coordinates.
⋆ A genuine singularity in the Schwarzschild spacetime geometry.

4From a strictly mathematical point of view this definition of asymptotic flatness is not
a good definition, since it directly refers to the specific coordinate r. To define asymptotic
flatness properly we need to define the concept of spatial infinity without referring to coordinates
(actually we do not even know that large r ∼ spatial infinity, here we have to rely on our physical
intuition). This can be done using so called conformal transformations (and diagrams). This is
a rather technical discussion which we will not pursue any further.
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As should be well-known to the reader, the singularity at r = 2MG is associated
with a coordinate breakdown while the singularity at r = 0 is a true singularity.
The radial coordinate for the coordinate singularity

Rs = 2MG (1.2.15)

is called the Schwarzschild radius. We completely understand why the coordinates
breakdown at the Schwarzschild radius: Recall that the t-coordinate is associated
with the timelike Killing vector field Kµ through the integral curves of Kµ. In
this way the metric components become independent of the ”time” t. It was,
however, an essential part of the construction of the Schwarzschild coordinates
that the timelike Killing vector field Kµ was non-zero, i.e., KµKµ 6= 0, since if
KµKµ = 0, the integral curves for Kµ cannot be used to carry the coordinates
from the spacelike surface Σ0. Now recall that

K
µ
Kµ = gtt(r) =

2MG

r
− 1 (1.2.16)

so we see at r = 2MG we have K
µ
Kµ = 0, so the coordinate breakdown at

the Schwarzschild radius is perfectly understood. As is well-known to the reader
the singularity at r = Rs is indeed a coordinate singularity meaning that it is
possible to find coordinates in which there are no singularities at r = Rs. An ex-
ample of such coordinates are the Kruskal coordinates. The Kruskal coordinates
are constructed by an analysis of the Schwarzschild geodesics. This allows us to
write up the Schwarzschild metric in a new set of coordinates; the Kruskal coor-
dinates. The Kruskal coordinates have the property that they allow an analytical
continuation for r < RS called the Kruskal extension (see e.g. [Ole07], [Car04] or
[Wal84]). In other words, the Kruskal extension allows us to understand the global
structure of the Schwarzschild spacetime. Similar constructions can be done with
the Reissner-Nordström and Kerr spacetimes (where the global spacetime struc-
tures are very ”strange”). The point is that the part of spacetime r > RS is
just one region of a complicated global structure. However, since this region is
where all the physics we know and can measure is located (cf. the discussion on
event horizons below), we will not concern ourselves with the global extensions
in this project. Moreover, it does not seem clear if the global extensions have any
physical significance or if they are just pure math.

We will now discuss the r = 0 singularity. This was also to be expected, since
the Schwarzschild solution physically corresponds to the gravitational field around
a point particle of mass M . This means that at r = 0 we have ”T00 = ∞”. This
singularity is reminiscent of the singularity of the electric field around a point
charge in electrodynamics. Notice that the r = 0 singularity is a true (or geomet-
rical) singularity, i.e., it is not possible to get rid of by some clever coordinate
transformation. This can be seen by computing the curvature invariant

RµνσρR
µνσρ =

48M2G2

r6
(1.2.17)
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which is indeed singular at r = 0. Also, notice that RµνσρR
µνσρ displays no sin-

gular behavior at r = RS in accordance with the fact the r = RS singularity
corresponds to a breakdown of Schwarzschild coordinates, not spacetime. In or-
der to understand the physics near the r = 0 singularity one has to examine the
interior solutions to Einstein’s equations, i.e., the static , spherically symmetric
solution with e.g. a perfect fluid energy-momentum tensor. This is exactly the
analysis in we need to go through in order to understand the spacetime inside
a star or a planet. It would be rather unsatisfying if such a physically realistic
solution also yielded a singularity at r = 0 (we do not expect a singularity at the
center of Earth). We will not go into this analysis here (see [Wal84]) but merely
state that the static, interior solutions describing objects such as stars, do not
have singularities present at r = 0.

As noted above, the Schwarzschild solution will only be valid outside a static,
spherically symmetric matter distribution e.g. (to good approximation) a non-
rotating star. This means that, if the coordinate singularity at r = 2MG is
located within the matter distribution, it should not be taken too seriously, since
it is a feature of the vacuum solution. For example, the Schwarzschild radius for
the sun is 2.96 km, which is deep inside sun’s interior where the vacuum solution
is not valid. Indeed, just as with the singularity at r = 0, one can show that
[Wal84] the Schwarzschild radius singularity is not present if it is located inside a
spherically symmetric stable mass distribution. There is, however, the theoretical
possibility that all the matter is located within the Schwarzschild radius. In this
case, the vacuum solution is valid all the way in to the Schwarzschild radius
and the coordinate singularities will be present in the metric. Such an object
is the (Schwarzschild) black hole. A black hole is characterized by having an
event horizon; an event horizon is a boundary in spacetime surrounding the black
hole that only allows information to flow into it. This means that what happens
inside the event horizon cannot affect what happens outside the event horizon.
However, the opposite is not true, in other words, you can fall into a black hole
but never come out. Especially, light emitted from inside the event horizon can
never pass the event horizon and will therefore never reach an outside observer.
Moreover, radiation emitted close to, but outside, the event horizon will become
extremely redshifted. Hence, black holes are pitch black, thus the name. As we will
explain in part 3, the presence of event horizons and the presence of coordinate
singularities in the metric5 are closely related. For example, the event horizon
for the Schwarzschild black hole is exactly located at the Schwarzschild radius
Rs = 2MG. In part 3 we look more into the different horizons related to black
holes, moreover there is a few words on the formation of black holes in nature.
Notice that a black hole is an extremely dense objects. By a simple rewriting of

5More precisely, singularities for the metric component grr when expressed in ”asymptotic
Minkowski” coordinates
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Fig 4. Geodesics in the equatorial plane θ = π/2 stay in the equatorial plane for all times.

the Schwarzschild radius we have

Rs = 2.96
( M

M⊙

)

km (1.2.18)

This means that in order to obtain a black hole from e.g. the Sun or the Earth,
one should compress the Sun to a sphere of radius 2.96 km while one should
compress the mass of the Earth to a sphere of radius of approximately 1 cm!

Finally we will briefly discuss the geodesics of the Schwarzschild spacetime.
The first thing we notice is that the equatorial plane θ = π/2 is totally geodesic,
meaning that any geodesic with the following properties

⋆ It goes through the plane θ = π/2 in a point p.
⋆ It is tangent to the plane θ = π/2 in the point p.

will stay in the plane θ = π/2 for all times. By rotational symmetry, this means
that any geodesic in the Schwarzschild spacetime can be obtained by rotating
an equatorial geodesic. We can therefore, with no loss of generality, assume that
θ = π/2 when examining the Schwarzschild geodesics. Let us now take such a
equatorial geodesic γ with coordinates

γ : γµ(τ) ≡
(
t(τ), r(τ), π/2, φ(τ)

)
(1.2.19)

where τ is proper time if γ is timelike and some arbitrary non-affine parameter
if γ is null. Here we have (as usual ⋆̇ ≡ d ⋆ /dτ)

−α = gµν γ̇
µγ̇ν

= −(1 − 2MG/r)ṫ2 + (1 − 2MG/r)−1ṙ2 + r2φ̇2
(1.2.20)

where the number α is equal to 1 for γ timelike (massive particles) and equal to
0 for γ null (massless particles). We will now present a very useful theorem when
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determining the geodesic equations of motion

Theorem: Suppose that Xµ is a Killing vector field and that γ ≡ γ(τ) is a
geodesic (parameterized by proper time τ 6) with tangent vector γ̇µ ≡ γ̇µ(τ).
Then

Xµγ̇
µ = constant along γ (1.2.21)

Proof. The map τ → Xµγ̇
µ is only defined along γ so we must be careful to use

covariant derivatives along γ. In order to show that Xµγ̇
µ is constant along γ, all

we need to show is that d/dτ(Xµγ̇
µ) = 0. We have that7

d

dτ
(Xµγ̇

µ) = DτXµ γ̇
µ + Xµ Dτ γ̇

µ (1.2.22)

here Dτ γ̇
µ denotes the covariant derivative along γ acting on γ̇ (which is only

defined along γ) and similarly for X
µ. Now since γ is a geodesic we have by

definition, that the velocity of γ, i.e., γ̇ is parallel along γ, so Dτ γ̇
µ = 0. Since

the Killing field Xµ is a genuine vector field (i.e., not only defined along γ),
the covariant derivative DτX

µ(τ) along γ is obtained by taking the covariant
derivative of Xµ in the direction of γ̇µ(τ). We therefore have

d

dτ
(Xµγ̇

µ) = DτXµ γ̇
µ = gµνDτX

ν γ̇µ = gµν γ̇
ρ∇ρX

ν γ̇µ = γ̇µγ̇ν∇µXν (1.2.23)

Now, since Xµ is a Killing field we have from Killings equation that ∇µXν =
−∇νXµ, so we are left with a sum consisting of a completely symmetric and a
completely anti-symmetric part which is therefore equal to zero. Thus
d/dτ(Xµγ̇

µ) = 0, which completes the proof.

We therefore conclude that a one-parameter-group of spacetime symmetries
gives rise a conserved quantity for massive particles and light rays (compare
to Noether’s theorem). Finding the geodesics of the Schwarzschild spacetime
beautifully shows how powerful this theorem is. The Schwarzschild spacetime
(or more precisely, the equatorial plane θ = π/2) possesses two Killing fields,
namely Kµ = ∂t and Rµ = ∂φ. In coordinates these are

K
µ = (1, 0, 0, 0) and R

µ = (0, 0, 0, 1) (1.2.24)

Along the (arbitrary) geodesic γ, we therefore have the following two conserved
quantities

E = −Kµγ̇
µ = −gµνK

ν γ̇µ =
(

1 − 2MG

r

)

ṫ (1.2.25)

6This is of course only possible if γ is not null. It is, however, easy to see that if γ is null we
can repeat the proof for the theorem even if τ is not an affine parameter.

7Actually this is a property of the Levi-Civita connection (i.e., the unique, torsion free
connection which is compatible with g) which is always assumed in (classical) GR.
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and
L = Rµγ̇

µ = gµνR
ν γ̇µ = ṙ2φ̇ (1.2.26)

the conserved quantity E has the interpretation of the total energy (kinetic +
gravitational) per unit rest mass for the particle following the geodesic, relative
to a stationary observer at infinity. Observe that we have defined the energy with
a ”−”. This is because both γ̇µ and the time-translational field Kµ are future
directed timelike8, i.e., the product Kµγ̇

µ will be negative, however, we want en-
ergy to be positive. The conserved quantity L has the interpretation of angular
momentum per unit rest mass (compare to Kepler’s second law). Notice, that, of
course, the definitions of E and L coincides with those from SR in the asymptot-
ically flat region.

The equations (1.2.20), (1.2.25) and (1.2.26) completely determine the geodesic
equations of motion in the Schwarzschild spacetime (that was easy!). As is well-
known, these equations account for the anomalous precession of the planet Mer-
cury9, describes the bending of light around the sun and so forth. For a discussion
of these phenomena see any relativity text - Both [Ole07] and [Wal84] have very
good subsections devoted to this.

1.3. The Reissner-Nordström solution

Suppose that instead of vacuum Tµν = 0, we consider a spacetime which contains
a source-free (jµ = 0) electromagnetic field. We now want to solve Einstein’s
equation for such a system, under the assumption the problem is static and
spherically symmetric, i.e., that spacetime is static and spherically symmetric
and that the electromagnetic field tensor Fµν is invariant under time-translations
and rotations (these transformations were defined above).

Symmetries

Since electromagnetism involves long-range forces, we do not in general have
Tµν(p) = 0 even though jµ = 0 in the point p. From special relativity and the
principle of covariance we do, however, exactly know how to write up the energy-
momentum tensor related to an electromagnetic field Fµν = −Fνµ, it is in our

8As we will see in part 3, there is actually a region of the Kerr spacetime where Kµ becomes
spacelike.

9Which is the best test we have of Einstein’s theory to date.
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units given by10

Tµν =
1

4π

{

FµαF
α

ν − 1

4
gµνFαβF

αβ
}

(1.3.1)

Notice that T = T µ
µ = 0 - this simplifies the field equations considerably. The

electromagnetic field tensor Fµν is of course governed by the source-free Maxwell
equations

gµν∇µFνρ = 0 (1.3.2)

∇[µFνρ] = 0 (1.3.3)

Notice how the Maxwell equations involve the metric gµν ; the propagation of
electromagnetic radiation depends on the spacetime geometry. This is of course
a very reasonable result, since the (free) movement of a particle is taking place
along a geodesic (which is null in the case of a photon) and geodesics are purely
determined by geometry. So, the presence of an electromagnetic field affects the
spacetime curvature while the spacetime curvature affects how the electromag-
netic field behaves.

This means that solving Einstein’s equation in the presence of an electromag-
netic field is extremely complicated (even more complicated than the general
vacuum equation!). However, we have assumed that spacetime is static and spher-
ically symmetric. This assumption immediately allows us to write up the most
general metric respecting these symmetries. As we saw above, it is given by

ds2 = −f(r)dt2 + h(r)d2 + r2dΩ2 (1.3.4)

Under the assumption of spherical symmetry and time translation invariance, let
us now examine how the most general electromagnetic field tensor Fµν looks like.
To this end introduce four new vector fields given by

e0 = ∂t

e1 = ∂r

e2 = ∂θ

e3 =
1

sin θ
∂φ

Using the metric (1.3.4) along with the construction of the coordinate vector
field ∂t, ∂r, ∂θ and ∂φ we see that: Rotations leave the two vector fields e0 and e1
invariant, while the two vector fields e3 and e4 are not left invariant by rotations
but rotate amongst each other, meaning that there exists a rotation that rotates

10This expression is obtained from special relativity and the principle of covariance: Recall
that in SR we have T 00 = 1

2×4π
( ~E2 + ~B2) (energy density) and T 0i = 1/4π( ~E × ~B)i, i = 1, 2, 3

(Poynting vector), which combines to Tµν = 1/4π(FµαF
α

ν − 1

4
ηµνFαβF

αβ). By the principle
of general covariance (1.3.1) is then obtained by replacing ηµν → gµν . Alternatively this result
can also be reached by a variation principle.
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e2 to e3 and vice versa (this is exactly why we need the scaling factor 1/ sin θ in e3).
We conclude, under the assumption that Fµν is invariant under rotations, that the
only possible non-zero components (in terms of the vector field ei, i = 0, 1, 2, 3)
of Fµν = −Fνµ are

F01 and F23 (1.3.5)

Moreover, spherical symmetry and time translation invariance implies that F01

and F23 cannot depend on either the time t or the angular coordinates θ, φ.
The dual vector field corresponding to ei, i = 1, 2, 3, 4, are of course given by
respectively dr, dt, dθ and sin θdφ. The most general static, spherically symmetric
electromagnetic field tensor therefore is

Fµν = A(r)
[
dr ⊗ dt− dt⊗ dr

]
+B(r) sin θ

[
dθ ⊗ dφ− dφ⊗ dθ

]
(1.3.6)

So, in terms of the coordinates t, r, θ and φ, the electromagnetic field tensor only
has two independent, non-vanishing components, which are given by

Ftr = A(r) = −Frt

Fθφ = B(r) sin θ = −Fφθ

The solution

Having obtained the non-vanishing components of the electromagnetic field ten-
sor it is now possible from equation (1.3.1) to express the energy-momentum
tensor Tµν in terms of the two functions A and B. Using Einstein’s equation, the
expression for Tµν in the coordinates (t, r, θ, φ), the metric (1.3.4) and Maxwell’s
equations (1.3.2), one obtain a solvable set of ordinary differential equations for
the functions f, h, A and B. Again we will not go explicitly through the compu-
tations (which can be found in [Ole07]), but merely state the result. The solution
to Einstein’s equation in the presence of a source-free electromagnetic field, under
the assumption that the problem spherical symmetric and static, is given by

ds2 = −Π dt2 + Π−1dr2 + r2dΩ2 (1.3.7)

where

Π(r;M,Q2) = 1 − 2MG

r
+
GQ2

r2
(1.3.8)

This is the Reissner-Nordström solution. The Reissner-Nordström solution in-
troduces two real parameters M and Q2. As for the Schwarzschild solution, the
parameter M can be interpreted at the total mass of the gravitational source
while the parameter Q2 is related to the total electric and magnetic (monopole)
charge of the Reissner-Nordström spacetime: By going through the derivation of
the Reissner-Nordström solution, one finds that the two functions A and B are
given by A = −e/r2 and B = m, where e and m are integration constants. Now
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recall that the radial component of respectively the electric and magnetic field
are given by Er = Frt and the ”dual relation” Br = Fθφ/(r

2 sin θ). Therefore

Er =
e

r2
and Br =

m

r2
(1.3.9)

This shows that we may identify the parameters e and m with respectively the
total electric charge and the total magnetic charge11 of the Reissner-Nordström
spacetime. The parameter Q2 is related to the two physical charges e and m
through the relation

Q2 = e2 +m2 (1.3.10)

We see that the Reissner-Nordström solution is symmetric in the electric and
magnetic charge, e and m. This is of course a very reasonable result, since grav-
ity couples to energy and not to charge and in the units we use the electric and
magnetic field contains the same amount of energy per volume per unit charge).
In part 2 we will justify this identification, moreover we will see that it is pos-
sible to give a general definition of electric and magnetic charge for a spacetime
manifold. We will now look into some of the features of the Reissner-Nordström
spacetime.

The first thing one notices about the Reissner-Nordström solution is that it is,
just as the Schwarzschild solution, asymptotically flat. This is of course a very
reasonable result. Furthermore, the Reissner-Nordström solution is of course only
valid outside the spherically symmetric charged object that it describes.

As mentioned above, the Schwarzschild solution is used to describe spacetime
around e.g. stars. We may now ask, does the Reissner-Nordström metric have the
same astrophysical significance as the Schwarzschild metric? Since electrostatic
forces are much stronger than gravity, it is very hard for a astrophysical body,
such as a star to build up any significant charge, simply because it takes a very
small accumulated charge for the electric repulsion to exceed the gravitational
attraction. A simple argument shows that the expected maximal electric charge
e an astrophysical body of mass M can obtain is determined by

e√
GM

≈ 10−18 (1.3.11)

where the factor (1018)−1 comes from the charge-mass ratio of the proton qp/mp =
1018 (which is three orders of magnitude smaller than the charge mass ratio of the
electron). Therefore, it seems that the gravitational field around any spherically
symmetric astrophysical body is perfectly described by the Schwarzschild metric.
This does, however, not mean that the Reissner-Nordström solution is not inter-
esting - exact solutions to Einstein’s theory are always interesting! It is possible12

11Of course in ordinary electrodynamics i.e. Maxwell’s electrodynamics we have m = 0. It
is however nice to keep the possibility of a non-zero m for theoretical reasons.

12I am guessing here.
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Fig 5. The four types of Reissner-Nordström solutions.

that the Reissner-Nordström solution is vital in higher dimensional gravity, quan-
tum gravity and for understanding how gravity couples to more advanced gauge
field.

We will now turn to a discussion of the singularities of the Reissner-Nordström
metric. Just as with the Schwarzschild solution, the singularity at r = 0 is a true
physical singularity (which is reasonable). The reader can convince himself of this
by calculating RµνρλRµνρλ and seeing that this quantity does indeed blow up near
r = 0. The Reissner-Nordström metric contains more singularities than the one
in r = 0. However, just as with the Schwarzschild solution, these singularities
are all coordinate singularities, i.e., we can get rid of them by choosing another
set of coordinates (we will not do this here). The number of singularities for a
given Reissner-Nordström metric depends on the ratio Q2/M2 - this separates
the Reissner-Nordström solution into four distinct cases (see fig. 5)

i) Q = 0: This is just the Schwarzschild solution.
ii) GM2 > Q2: The coefficient Π has two roots r+ and r−,i.e., there are two

singularities in the metric with radial coordinates r+ > r−. A straight
forward calculation shows that the two radii r+ and r− are given by

r± = MG±
√

M2G2 −GQ2 (1.3.12)

As we will see in part 3, the two singularities r+ and r− corresponds to two
event horizons; the inner event horizon located at r− and the outer event
horizon located at r+.

iii) GM2 = Q2: This solution is know as the extreme Reissner-Nordström so-
lution. The factor Π has one root corresponding to one event horizon. The
extreme Reissner-Nordström solution gives rise to one of the most complex
known exact solutions to Einstein’s equation; the multi-extremal Reissner-
Nordström solution (see [Car04]).

iv) GM2 < Q2: The coefficient Π has no roots, i.e., there are no singularities
in the metric. However, the singularity in r = 0 is still present. This is
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an example of a so called naked singularity, since the r = 0 singularity
is not hidden behind a metric singularity in the ”asymptotic Minkowski”
(spherical) coordinates (t, r, θ, φ), corresponding to an event horizon (more
on this in part 3). This solution is in general considered unphysical. Of
course most microscopical objects (e.g., an electron) fall under this category.
However, such objects also obey the laws of quantum mechanics in which
Einstein’s classical theory does not make much sense.

So solutions of the type iv) are thought to be unphysical while the solutions of
type iii) are unstable (and ”extreme”). We will therefore always assume that the
type of solutions we see in nature are of the type ii) or i), i.e., that

GM2 > Q2 (1.3.13)

Using the same methods as we did with the Schwarzschild spacetime, it should be
possible to examine both the pure geodesic movement (here explicitly presented
in coordinates)

d2xµ

dτ 2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
= 0 (1.3.14)

and the equation of motion of a charged particle with charge q and mass m

d2xµ

dτ 2
+ Γµ

ρσ

dxρ

dτ

dxσ

dτ
=

q

m
F µ

ν

dxν

dτ
(1.3.15)

since, as opposed to the Schwarzschild spacetime, Fµν 6= 0. As mentioned above,
the charge-mass ratio of a realistic astrophysical body seems to be extremely
small. However, it is possible that the presence of even a small non-zero net
charge could have an appreciable effect on the orbits of a charged test particle
due to the Lorentzian force - we will not go through such an analysis here.

Before we go on to discussing the Kerr spacetimes, we will take a minute to
mention Birkhoff’s theorem regarding spherically symmetric spacetimes.

Theorem (Birkhoff) Any spherically symmetric solution of the Maxwell/Einstein
electro-vacuum field equations is static and asymptotically flat.

This means that the spacetime around a spherically symmetric charged object
will always be Reissner-Nordström. Notice that this theorem is a generalization
of a well-known Newtonian theorem: The Newtonian gravitational field around a
spherically symmetric mass distribution is the same as if all the mass were con-
centrated in the center. A similar result holds for the electric field around a spher-
ically symmetric charge distribution. This especially means that the gravitational
and electrical field around a time dependent spherically symmetric mass/charge
distribution will be time independent - Birkhoff’s theorem is the relativistic gen-
eralization of this. For a ”proof” of Birkhoff’s theorem see [Car04]13.

13The proof relies of the assumption that a spherically symmetric spacetime can be foliated
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1.4. The Kerr solution

We will now look at the Kerr solution which describes a stationary, cylindrical
symmetrically spacetime around a rotating body. Such a spacetime is clearly not
static, since it is not invariant under time reflection, t → −t. This means that
Kerr solution must inevitable have cross-terms of the type dtdxi. We will not go
into a detailed derivation as with the Schwarzschild solution but for the sake of
completeness take moment to talk about axisymmetry.

Axisymmetry

Following the discussion on spherical symmetry, it would natural to define a sta-
tionary, axisymmetric spacetime to be a stationary spacetime whose isometry
group contains S1. This definition is, however, not precise enough to be useful.
We are nevertheless interested in having continuous isometries whose orbits look
like S1, i.e. closed curves. We will use this as our defining property.
A spacetime (M, g) is said to axisymmetric if it has a one-parameter-group of
isometries ψφ whose orbits consist of closed spacelike curves. Equivalently a space-
time (M, g) is axisymmetric if and only if it has a spacelike Killing field Rµ whose
integral curves all are closed curves.

If a spacetime (M, g), in extend of being axisymmetric, is also stationary and
the two one-parameter-groups from the stationary and axisymmetric conditions
commute, i.e. satisfy

ϕt ◦ ψφ = ψφ ◦ ϕt (1.4.1)

for all t, φ, (M, g) is said to be stationary, axisymmetric. Equivalently a stationary
and axisymmetric spacetime is stationary, axisymmetric if

[K,R] = 0 (1.4.2)

The condition (1.4.1) should be interpreted as a space/time-decoupling condi-
tion. For example, the condition (1.4.1) implies that in an asymptotically flat
spacetime there will be a curve Z on which Rµ vanishes [Wal84], i.e., this curve
is left invariant under the isometries ψφ. In this way, the one-parameter-group of
isometries ψφ can be interpreted as ”rotations” with the curve Z as the ”axis of
rotation” see fig. 6.

The solution

We now seek the stationary, axisymmetric solutions to Einstein’s vacuum equa-
tion Rµν = 0. Going through the derivation of these solutions from first principles

into 2-spheres (which we have showed is possible if the spacetime is spherically symmetric and
static). This is, however, a rather strong assumption.
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Fig 6. The Killing field Rµ vanishes on the axis of rotation Z, i.e., the points on Z are left
invariant under the isometries ψφ.

requires a lot of heavy mathematics which is beyond the scope of this project, so
we will just state the result. The stationary, axisymmetric solutions to Einstein’s
vacuum equation Rµν = 0 are given by

ds2 = −
(

1 − 2MGr

ρ2

)

dt2 − 2MGra sin2 θ

ρ2

(
dtdφ+ dφdt

)

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[
(r2 + a2)2 − a2∆ sin2 θ

]
dφ2 (1.4.3)

where a and M are two real numbers and the two functions ρ and ∆ are defined
by

ρ2(r, θ) = r2 + a2 cos2 θ and ∆(r;M, a) = r2 − 2MGr + a2 (1.4.4)

The coordinates (t, r, θ, φ) in the Kerr solution are known as Boyer-Lindquist
coordinates. The spacetime (1.4.3) is axisymmetric: The coordinate vector field ∂t

(just as with the Schwarzschild solution) corresponds to the timelike Killing field
K (the metric is independent of t) and the coordinate vector field ∂φ corresponds
to the Killing field R (the metric is independent of the φ and φ coordinates are
identified modulo 2π ∼ closed orbits of ∂φ). Clearly we have

[∂t, ∂φ] = 0 (1.4.5)

Plugging the expression (1.4.3) for the Kerr metric into e.g. Maple confirms that
(1.4.3) indeed is a solution to Einstein’s vacuum equation Rµν = 0.
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The parameterM has the same physical interpretation as with the Schwarzschild
solution; it is the total mass (energy) of the gravitational source. The parameter a
also has a physical interpretation. It is related to the total angular momentum of
the gravitational source (recall that the Kerr solution describes the gravitational
field around a rotating object). Define a new parameter J in terms of M and a
by

J = Ma (1.4.6)

This parameter J has the interpretation of the total angular momentum of the
gravitational source. Also, notice that the line element (1.4.3) is invariant under
each of the transformations (t → −t, a → −a), (φ → −φ, a → −a) and (t →
−t, φ→ −φ), which it of course should, since each of the transformations leave the
(component of) angular momentum unchanged. Because of the above symmetries,
we will from now on assume that a ≥ 0.

With the identifications of the parameters M and J = Ma, which are justi-
fied in part 2, we see that, from an astrophysical point of view, the Kerr solution
seems somewhat more fundamental the Reissner-Nordström solution. This is sim-
ply because, as opposed to the charge-mass ratio, there is not an upper limit on
the parameter a = J/M an astrophysical objects (and if there is one, it is rather
large). For example, one could imagine a binary star system consisting of a main
star and a lighter companion star, orbiting around their common center of mass.
Suppose that the companion star comes close enough to the main star so that
matter from the companion star starts flowing towards the main star14, see fig.
7. Eventually the companion star will be completely absorbed by the main star.
Of course the total angular momentum of the system is conserved, therefore the
main star + absorbed companion star can obtain a larger angular momentum-
mass ratio than the stars in the original system, since the original orbital angular
momentum has now been converted into spin angular momentum.

If one has the patience, or a computer, it is straight forward to calculate the

14The volume where this mass transfer is possible (roughly speaking) is called the Roche
Lobe and the process known as Roche Lobe overflow.

Fig 7. Illustration of mass and angular momentum transfer in a binary star system trough
Roche Lobe overflow.
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curvature invariant RµνρσR
µνρσ, and just as with the Schwarzschild and Reissner-

Nordström solutions, there is a point (actually now more than just one point)
where it is singular - this means that the Kerr spacetime has a true (i.e., geomet-
rical) singularity. The location of this singularity is not determined by r = 0, but
rather (a 6= 0) by the equation

ρ = r2 + a2 cos2 θ = 0 (1.4.7)

which is satisfied if and only if r = 0 and θ = π/2. This might seem somewhat
strange, however, the nature of this singularity is better understood if we keep the
parameter a fixed and let M → 0. By doing this, one sees that the Kerr metric
(1.4.3) reduces to the flat Minkowski metric expressed in ellipsoidal coordinates
(this is certainly reasonable since in this limit there is no mass (M = 0) and there
only vacuum), defined by

x0 = t

x1 = (r2 + a2)1/2 sin θ cosφ

x2 = (r2 + a2)1/2 sin θ sinφ

x3 = r cos θ

(1.4.8)

where {xµ} denotes ordinary Minkowski coordinates. Here the points ρ = 0 cor-
responds to a ring of radius a in the z = 0 plane and the ρ = 0 singularity is, of
course here, nothing more than a coordinate singularity. However, this shows that
the Boyer-Lindquist coordinates should be understood as being ellipsoidal coor-
dinates rather than spherical coordinates. This is of course very reasonable since
the Kerr spacetime is not spherically symmetric. We therefore see that the true
singularity at ρ = 0 (M, a 6= 0) should be interpreted as a ring singularity but
rather as a point singularity (as with the Schwarzschild and Reissner-Nordström
spacetimes). Having understood the true singularities of the Kerr spacetime, we
may now look at the coordinate singularities. The coordinate singularities are
determined by the real roots of the function ∆. Therefore the analysis of the co-
ordinate singularities we did for the Reissner-Nordström spacetime also pertains
to the Kerr spacetime (with the substitution GQ2 → a2): The Kerr spacetime
becomes Schwarzschild for a = 0, has a naked singularity (no coordinate sin-
gularity/event horizon) for G2M2 < a2, has one singularity/event horizon for
G2M2 = a2 (the extreme Kerr solution) and has two singularities/event horizons
for G2M2 > a2. Just as with Reissner-Nordström spacetime, the only physical
Kerr spacetimes are thought to be the ones with

G2M2 > a2 (1.4.9)

since naked singularities are not thought to exist in nature. The locations of the
coordinate singularities for the physical Kerr spacetime are given by

r± = MG±
√
M2G2 − a2 (1.4.10)
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and as explained in part 3, these two radii will correspond to event horizons.

Determining the geodesics of the Kerr spacetime follows the same recipe as
with the Schwarzschild spacetime; we use the spacetime symmetries to find a set
of first integrals which allows us to reduce the geodesic equation of motion to a
simple low-dimensional problem. There is, however, a significant difference: The
Kerr spacetime is not spherically symmetric. This means that the two constants
of motion E and L (corresponding to respectively the time-translation and rota-
tional Killing fields) are not enough to determine the equation of motion. It is,
nevertheless, still possible to use the above explained method. This is due to the
fact that the Kerr spacetime has a Killing tensor Kµν (the tensor generalization
of a Killing vector). Such a Killing tensor provides us with an extra constant of
motion along geodesics C = Kµν γ̇

µγ̇ν (in a similar manner as with Killing vectors)
and a corresponding first integral. These equations are enough to determine the
geodesics of the Kerr spacetime - see e.g. [Wal84].

1.5. The Kerr-Newman solution

Finally it is possible to find the most general stationary, axisymmetric grav-
itational and electromagnetic fields that solve the coupled Einstein/Maxwell
equations - this is the Kerr-Newman solution (or just the charged Kerr solu-
tion). Recall that the Reissner-Nordström solution could be obtained from the
Schwarzschild solution by the substitution 2MGr → 2MGr − GQ2. The Kerr-
Newman solution is obtained from the Kerr metric by the same substitution, i.e.,
by the following expression

ds2 = −
[∆ − a2 sin2 θ

ρ2

]

dt2 − a sin2 θ(r2 + a2 − ∆)

ρ2
(dtdφ+ dφdt)

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[
(r2 + a2)2 − ∆ a2 sin2 θ)

]
dφ2 (1.5.1)

where

ρ2(r, θ) = r2 + a2 cos2 θ and ∆(r;M,Q2, a) = r2 − 2MGr +Q2 + a2 (1.5.2)

moreover the electromagnetic vector potential is given by (assuming that there
is no magnetic charge, Q = e)

Aµ = −er
ρ2

[(dt)µ − a sin2 θ(dφ)µ] (1.5.3)

We thus see that the rotation of the black hole also gives rise to a magnetic
dipole potential in addition to the usual electrostatic potential. If we set Q2 = 0
in the Kerr-Newman solution we obtain the Kerr solution while setting a = 0
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renders the Reissner-Nordström solution. The Kerr-Newman solution represents
the spacetime around a rotating, charged object of mass M , ”charge” Q and total
angular momentum J = Ma. The same considerations on singularities pertains
to the Kerr-Newman spacetime as with the Reissner-Nordström and Kerr space-
times; the Kerr-Newman metric has a true ring like singularity located at ρ = 0.
Moreover the coordinate singularities are determined by the real roots of ∆. This
leads to the physical condition that

M2G2 > Q2 + a2 (1.5.4)

in order to avoid naked singularities. The coordinate singularities (corresponding
to event horizons) are given by

r± = MG±
√

M2G2 −Q2 − a2 (1.5.5)
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2. Mass, charge and angular momentum (stationary spacetimes)

2.1. Introduction

As we saw in part 1, the three stationary, axisymmetric solutions to Einstein’s
equation introduce three parameters M,Q and J . As already mentioned, it is
possible to identify these three parameters with respectively the mass (energy),
charge15 and angular momentum of the given gravitational source. Before we can
understand this, we must first clarify exactly what we mean by the mass, charge
and angular momentum in GR.

Generally, the notions of mass, charge and angular momentum are highly non-
trivial to define for a generic spacetime manifold. However, recall that the space-
times we have considered all are stationary and asymptotically flat. Also recall
that we can view an asymptotically flat spacetime as a region of curved space
surrounded by flat Minkowski space. This means that in principle, we can con-
sider the curved space surrounding a gravitational source as a point situated in
Minkowski flat space. Mass, charge and angular momentum are all perfectly-well
defined and understood in special relativity. Moreover, we have seen that for a
stationary, asymptotically flat spacetime, it was possible to define the energy
and angular momentum (relative to a stationary observer at spatial infinity) for
a point particle by the expression (1.2.21). Since any gravitational source can be
considered a collection of point particles, we will therefore assume that is has
an associated total mass (energy) M, charge Q and angular momentum J . By
looking at the Schwarzschild, Reissner-Nordström and Kerr solutions we see that
the three parameters M , Q and J have dimensions of respectively mass, charge
and angular momentum. This means that, apart from maybe some constants,
there is really no other possibility than that M , Q and J are respectively M,Q
and J . In the following we will justify this identification further.

We will start by looking into the weak field approximation. That is, we examine
Einstein’s equation for small perturbations of the flat metric ηµν . Since, in the
weak field approximation, we know the relation between the energy-momentum
tensor Tµν and mass, charge and angular momentum, this will allow us to compare
the parameters M,Q and J appearing the exact solutions to mass, charge and
angular momentum. In order to do this we need to examine Einstein’s equation
to lowest (linear) order in the metric perturbation.

2.2. Linearized Gravity

We will now examine the structure of Einstein’s equation when spacetime is
almost Minkowskian. We start by considering ordinary Minkowski space (M, η).
Since Minkowski space is flat it can be covered by global inertial coordinates {xµ}

15Understood in the sense that Q =
√
e2 +m2.
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where the metric η has the components ηµν = diag(−1, 1, 1, 1) - this is, of course,
noting but special relativity. Now suppose that we introduce some matter to our
Minkowski space (Minkowski space corresponds to the spacetime of a universe
without any matter present) which is some sense not too dense. The introduction
of a ”small” energy-momentum tensor Tµν will result in a small perturbation of
flat spacetime (M, η) to some new spacetime M̃ with metric g. Since we assume
that the perturbed spacetime M̃ is almost flat, the metric g can be written

g = η + h (2.2.1)

where the tensor h describing the perturbation of η, is, in some sense, assumed
small relative to η. Since M̃ is a slightly deformed version of M, we assume that we
can carry the global Minkowski coordinates {xµ} defined on M to M̃ as illustrated
in fig. 8. In these coordinates equation (2.2.1) takes the form

gµν = ηµν + hµν (2.2.2)

where the assumption that h is ”in some sense” small relative to η is translated to
the condition |hµν | ≪ 1. The linearized gravity scheme consists of approximating
various equations by calculating to first (linear) order in the perturbation hµν .
It is important to realize that in the linearized gravity scheme (at least as it is
presented here) we expand the metric around the canonical Minkowski metric
ηµν = diag(−1, 1, 1, 1).

So, we assume that there exist coordinates {xµ} on M̃ in which the metric has
components ηµν = diag(−1, 1, 1, 1) plus some small perturbation ≪ 1. Now, are
these coordinates unique? In other words, are there other coordinates on M̃ where
the metric also takes the form ηµν = diag(−1, 1, 1, 1) plus some small perturba-
tion ≪ 1? Clearly this is not the case for any set of coordinates. If we for example
define spherical coordinates (t, r, θ, φ) on M̃ from the coordinates {xµ}, we see
that in these coordinates the metric takes the form diag(1, 1, r2, r2 sin2 θ) plus

Fig 8. We carry the coordinates on flat Minkowski spacetime to the slightly deformed spacetime
(M̃, g).
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some small perturbation, i.e., an expansion around the flat metric in spherical
coordinates. However, since, we are only interested in coordinates where the met-
ric takes the form diag(−1, 1, 1, 1) plus some small perturbation, we must restrict
ourselves to coordinates {x′µ} which differ from {xµ} by a transformation which,
to zeroth order in hµν , is the identity.
We therefore consider a coordinate transformation of the type

x′µ(x) = xµ − χµ(x)
︸ ︷︷ ︸

order hµν

(2.2.3)

where χµ(x) is of order hµν , i.e, very small. To zeroth order in hµν , the trans-
formation (2.2.3) corresponds to the identity, just as we wanted. Let us now see
how the components of gµν transform under this transformation. Using the tensor
transformation law, we have to first order in hµν (remember that we assume that
χµ ∼ O(hµν))

g′µν = gρσ ∂x
ρ/∂x′µ∂xσ/∂x′ν

= gρσ(δρ
µ + ∂µχ

ρ)(δσ
ν + ∂νχ

σ)

= (ηρσ + hρσ)(δρ
µ + ∂µχ

ρ)(δσ
ν + ∂νχ

σ)

= ηρσδ
ρ
µδ

σ
ν + ηρσ∂µχ

ρδσ
ν + ηρσδ

ρ
µ∂νχ

σ + hρσδ
ρ
µδ

σ
ν

= ηµν + hµν + ∂µχν + ∂νχµ

(2.2.4)

where we used that to order hµν we have that ∂xρ/∂x′µ = δρ
µ + ∂χρ/∂xµ ≡

δρ
µ + ∂µχ

ρ. We therefore have

g′µν(x
′) = ηµν(x) + hµν(x) + ∂µχν(x) + ∂νχµ(x)

= ηµν(x
′) + hµν(x

′) + ∂µχν(x
′) + ∂νχµ(x′)

(2.2.5)

where we used that the components ηµν are all constant functions on M̃ and that
to linear order in hµν we have hµν(x

′) = hµν(x) etc. We thus conclude that the
transformation of hµν given by

hµν → hµν + 2∂(µχν) (2.2.6)

describes the same physical situation. This freedom in choice of hµν is clearly
reminiscent of the gauge freedom Aµ → Aµ + ∂µχ in electrodynamics. As we will
see now, the gauge freedom in linearized gravity will aid us in simplifying Ein-
stein’s equation in the linearized gravity scheme. In order for the gauge freedom
in linearized gravity to be really useful, notice that tensors of order hµν are gauge
invariant. This is because the gauge transformation (2.2.16) corresponds to the
coordinate transformation (2.2.3), so to linear order in hµν the components of
a tensor of order hµν will not change. Specifically, since the energy-momentum
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tensor Tµν is of order hµν (by consistency of Einstein’s equation), it is gauge in-
variant in the linearized gravity scheme.

We will now derive the linearized Einstein field equations. To this end notice
that, to linear order in the perturbation hµν , we have

gµν = ηµν − hµν (2.2.7)

where hµν is hµν with both indices raised with ηµν (not gµν). Just as expected,
the inverse metric gµν is equal to ηµν plus some small perturbation −hµν of order
hµν .
Remember that the Christoffel symbols Γρ

µν in general are determined by

Γρ
µν =

1

2
gρσ

{
∂µgνσ + ∂νgµσ − ∂σgµν

}
(2.2.8)

We therefore see that to linear order in hµν , the Christoffel symbols are given by

(1)Γρ
µν =

1

2
ηρσ

{
∂µhνσ + ∂νhµσ − ∂σhµν

}
(2.2.9)

We can now use this expression to compute the Ricci tensor Rµν to linear order
in hµν . In terms of the Christoffel symbols the Ricci tensor Rµν is given by

Rµν = ∂ρΓ
ρ
µν − ∂µΓρ

ρν + Γα
µνΓ

ρ
αρ − Γα

ρνΓ
ρ
αµ (2.2.10)

We therefore see that to linear order in hνσ we may discard to two last terms and
to linear order we therefore have

(1)Rµν = ∂ρΓ
ρ
µν − ∂µΓρ

ρν

=
1

2
ηρσ

{
∂ρ∂µhνσ + ∂ρ∂νhµσ − ∂ρ∂σhµν

}

− 1

2
ηρσ

{
∂µ∂ρhνσ + ∂µ∂νhρσ − ∂µ∂σhρν

}

(2.2.11)

The first and fourth term cancel while the second and sixth term combine to
∂σ∂(νhµ)σ. All in all we thus get

(1)Rµν = ∂ρ∂(νhµ)ρ −
1

2
∂ρ∂ρhµν −

1

2
∂µ∂νh (2.2.12)

where we have defined h ≡ hµ
µ. The Ricci scalar R to linear order in hµν is now

readily obtained

(1)R = (1)Rν
ν

= ηνµ (1)Rµν

= ηνµ
(
∂ρ∂(νhµ)ρ −

1

2
(∂ρ∂ρhµν + ∂µ∂νh)

)

= ∂ρ∂σhρσ − ∂σ∂σh

(2.2.13)
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Having computed both the Ricci tensor and scalar we finally obtain the Einstein
tensor Gµν = Rµν − 1

2
ηµνR to linear order in hµν

(1)Gµν ≡ (1)Rµν −
1

2
ηµν

(1)R

= ∂ρ∂(νhµ)ρ −
1

2
∂c∂chµν −

1

2
∂µ∂νh−

1

2
ηµν(∂

ρ∂σhρσ − ∂σ∂σh)
(2.2.14)

This expression can be simplified by introducing a ”shifted” hµν , defined by

hµν ≡ hµν −
1

2
ηµνh (2.2.15)

Clearly we have h ≡ h
ν

ν = −h, for this reason hµν is referred to as the trace
reversed perturbation. After a bit of algebra Einstein’s equation Gµν = 8πGTµν

in linearized scheme can then be written as

−1

2
∂ρ∂ρhµν + ∂ρ∂(νhµ)ρ −

1

2
ηµν∂

ρ∂σhρσ = 8πGTµν (2.2.16)

This is the general linearized Einstein field equation.

As we discussed above, the linearized gravity scheme contains the gauge freedom
(2.2.16). We see that under the gauge transformation (2.2.16) hµν transforms as

hµν → hµν + 2∂(µχν) − ηµν∂
ρχρ (2.2.17)

Notice that
∂ν

[

hµν + 2∂(µχν) − ηµν∂
ρχρ

]

= ∂νhµν + ∂ν∂νχµ (2.2.18)

Now suppose that we perform the gauge transformation (2.2.16), where the gauge
parameter χµ is chosen such that it satisfies

∂ν∂νχµ = −∂νhµν (2.2.19)

In this specific gauge the linearized Einstein equation is particularly simple. We
see that in the gauge (2.2.19) we have

∂νhµν = 0 (2.2.20)

by the equations (2.2.17), (2.2.18) and the condition (2.2.19). This is analogous
to the Lorentz gauge from electrodynamics: ∂µAµ = 0. It should, however, be
noted that, just as in electrodynamics, this ”Lorentz” gauge does not fix hµν

completely. We are still free to perform gauge transformations (2.2.16) as long
as (2.2.20) is satisfied. In the gauge (2.2.20), we see that the general linearized
Einstein equation simplifies to (introducing the usual notation 2 ≡ ∂µ∂µ)

2 hµν = −16πTµν (2.2.21)
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As we have argued, the right-hand of this equation is gauge invariant. This equa-
tion is therefore very similar to Maxwell’s equations expressed in Lorentz gauge
2Aµ = −4πJµ. Notice the simplicity of the linearized Einstein equation in the
”Lorentz” gauge (2.2.21): Using the machinery of Greens functions (for 2), we
see that finding the solutions for the trace reversed perturbation hµν is reduced
to computing integrals.

The linearized Einstein field equation has many applications. It is for example
used to study gravitational radiation: According to Einstein’s theory, dense non-
static systems such as binary star systems, neutron stars, and black holes will
disturb spacetime. These curvature fluctuations will propagate through spacetime
as ripples, governed by the two equations

∂νhµν = 0 (2.2.22)

2 hµν = 0 (2.2.23)

Here the linear approximation is assumed to hold, but the metric perturbation is
assumed to be large relative to the energy-momentum tensor of ”ordinary” matter
in the universe e.g. the Sun or the Earth, i.e., we set Tµν = 0. The solution to
the two above equations are simple wave functions and, in principle, it should be
possible to the detect such gravitational waves here on earth16. However, as of
2008, gravitational waves are yet to be observed (at least directly).
Unfortunately, it is beyond the scope of this project to go into the fascinating
topic of gravitational radiation. There is a lot of good material on this to be
found in [Wal84], [tH02] and especially in [Car04].

2.3. The weak field approximation

We will now use the linearized field equations to interpret the parameters M,Q
and J from the Kerr solution in terms of the mass M, charge Q and angular mo-
mentum J of the given gravitational source. First a few words about the general
solution for hµν (and thereby hµν).

In the Lorentz gauge we need to solve

2 hµν = −16πGTµν (2.3.1)

This is exactly (for each component) the equation governing a massless scalar field
in the presence of a source17. As is well-known from relativistic field theory, the

16The theory/sensitivty of gravitational wave detectors is completely amazing! For more on
the experimental side of gravitational waves see for example [OS06]

17In fact, this tensor equation (i.e., not viewed componentwise) is the equation that governs
a massless spin-2 field, [Wal84].
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Fig 9. The future and past light cones for the spacetime point p. The (weak field approximation)
gravitational field in p only depends on Λ−(p) and only affects what happens in Λ+(p).

solution for such a field can be obtained by using the theory of Greens functions.
The Greens function for the d’Alembertian operator 2 is the scalar function
G ≡ G(xµ − x′µ) satisfying

2x G(xµ − x′µ) = δ(xµ − x′µ) (2.3.2)

where the subscript x denotes differentiation wrt. the non-primed coordinates xµ.
These Greens functions exist and can be classified as being either advanced or
retarded. Going through this analysis (which is well-known from relativistic field
theory) shows that the metric field hµν in the spacetime point xµ only depends
on the points on the past light cone Λ−(xµ) of xµ, i.e., the points satisfying

Λ−(xµ) = {yµ ∈ M̃
∣
∣ x0 − y0 = |~x− ~y| , y0 < x0} (2.3.3)

and can only affect events on the future light cone (fig. 15)

Λ+(xµ) = {yµ ∈ M̃
∣
∣ x0 − y0 = |~x− ~y| , y0 > x0} (2.3.4)

This explicitly shows that the well-known prediction that gravity in the weak
field limit propagates with the speed of light.
Using the Greens function G, the general solution for hµν is now given by

hµν = −16πG

∫

d4x′ G(xµ − x′µ)Tµν(x
′µ) (2.3.5)

As a consistency check, notice that this solution fulfills the Lorentz gauge condi-
tion

∂µhµν = 16πG

∫

d4x′
(

∂′µ
(
G(xµ − x′µ)Tµν

)
−G(xµ − x′µ)∂′µTµν)(x

′µ)
)

= 0

(2.3.6)
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where we used that ∂′µG(xµ −x′µ) = −∂µG(xµ −x′µ), G(xµ −x′µ) = 0 at infinity
and energy-momentum conservation ∂µTµν = 0.
In the case of a stationary spacetime, the problem of finding hµν simplifies some-
what. Since here, the metric components do not depend on time, the equation
(2.3.1) simplifies to

△ hµν = −16πGTµν (2.3.7)

where △ = ∂i∂i denotes the usual Laplace differential operator. Now the problem
only depends on the spatial coordinates xi and the Greens function for △ is given
by

G(~x, ~x′) = − 1

4π

1

|~x− ~x′| (2.3.8)

The solution for hµν is then obtained as above with the only difference that
we now only integrate over space. We will now analyze the time independent
solutions for hµν for different energy-momentum tensors to identify M,Q and J .

2.3.1. The effect of a mass distribution on spacetime

We will now examine how the presence of a static mass distribution ρ affects flat
spacetime. We therefore take T00 = T 00 = ρ while the rest of the components are
set equal to zero.

In terms of the Greens function G, the solution to h00 is then given by

h00(~x) = −16πG

∫

d3x′ ρ(x′)G(r, r′) = 4G

∫

d3x′
ρ(~x′)

|~x− ~x′|
= −4Φ(~x)

(2.3.9)

where we have identified −1/4 h00 with the classical Newtonian gravitational
potential Φ, i.e., the scalar function satisfying Poisson’s equation

△ Φ = 4πGρ (2.3.10)

We see that, in principle, h00 and Φ are only determined up to some constant (of
order h00). We therefore conclude that the gauge freedom in Newtonian gravita-
tional physics comes from the gauge freedom of Einstein’s equations for linearized
gravity.

The rest of the components hµν , µν 6= 00, fulfills

△ hµν = 0 (2.3.11)

We can therefore choose all hµν = 0, µν 6= 00. This means that

h = −h = −ηµνhµν = h00 (2.3.12)
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So, the only non-vanishing components of hµν are the diagonal entries and we
have

h00 = h00 +
1

2
η00h =

1

2
h00 = −2Φ (2.3.13)

and

hii =
1

2
ηiih =

1

2
h00 = −2Φ (2.3.14)

The weak field metric is therefore given by the following expression

ds2 = −
(

1 + 2Φ
)

dt2 +
(

1 − 2Φ
)[

dx2 + dy2 + dz2
]

(2.3.15)

It follows quite easy from the geodesic equation of motion, that in the weak
field approximation the motion of a test particle is governed by the equation
d2~x/dt2 = −~∇Φ, [Wal84]. Since Φ is the Newtonian gravitational potential this
is, of course, nothing but the classical equation of motion of a test particle moving
in a Newtonian gravitational field. We have therefore recovered the well known
result: Einstein’s theory of gravitation reproduces Newton’s theory in the weak
field limit.
Notice that it is also possible to derive the component g00 of the perturbed
metric by directly comparing the geodesic equation to the classical equation
d2~x/dt2 = −∇Φ. This is how the weak field limit is presented in for example
[Ole07]. This (simpler) method, however, has its drawbacks; it does not provide
us with the spatial components of the perturbed metric. These components are
essential for understanding the parameter J .

Since we want to compare the weak field metric (2.3.15) to the general Schwarzschild
metric, let us now take the mass distribution to be spherically symmetric ρ(~x) ≡
ρ(r). Here the gravitational potential is given by the well-known formula

Φ = −MG

r
(2.3.16)

where M =
∫
d3x ρ(x) is the total mass of the gravitational source. Now switching

to spherical coordinates

x0 = t

x1 = r sin θ cosφ

x2 = r sin θ sinφ

x3 = r cos θ

(2.3.17)

and redefining the radial coordinate r2 → r2(1+2MG/r), we get to leading order
in the perturbation (i.e., in MG), that the metric can be written as

ds2 = −
(

1 − 2MG

r

)

dt2 +
(

1 − 2MG

r

)−1

dr2 + r2dΩ2 (2.3.18)
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This is readily compared to the Schwarzschild solution (1.2.13) and we conclude
that we can make the identification

M ! M (2.3.19)

In other words, the parameter M in the Schwarzschild solution can be identified
with the physical mass M of the spherically symmetric gravitational source.

2.3.2. The effect of a charged mass distribution on spacetime

Let us now see how the presence of a charge distribution (in addition to a mass
distribution) affects spacetime. Recall that the 00 component of the energy-
momentum tensor (the energy density) of an electromagnetic field is given by

T em
00 =

1

8π

(
~E2 + ~B2

)
(2.3.20)

For a static problem, the magnetic field vanishes due to the non-existence of
magnetic charge (monopoles) in Maxwell’s theory. There is, however, nothing
that stops us from including the possibility of the existence of magnetic charge
in our theory. We therefore define the total charges of the matter distribution

e =

∫

d3x σelectric , m =

∫

d3x σmagnetic (2.3.21)

where respectively σelectric and σmagnetic denotes the density of electric and mag-
netic charge. Notice that this of course only makes sense in the weak field ap-
proximation: We approximate the energy-momentum tensor with the one we know
from special relativity. As we noted above, this approximation is valid to linear
order in the perturbation.

Now, in a spherically symmetric problem, we see that the only non-vanishing
component of T em

µν is T em
00 (since ~E × ~B = 0) and it is given by

T em
00 (~x) =

1

8π

Q2

r4
, r = |~x| (2.3.22)

where we have defined Q2 = e2 + m2. This means that, in the presence of a
spherically symmetric charge distribution, the linearized Einstein equation for
the 00 component of the trace inverted perturbation h00 is modified to

△ h00(~x) = −16πT00 = −16πρ(r) − 2Q2

r4
(2.3.23)

Using that △(1/r2) = 2/r4, we see that the solution for h00 now is modified to

h00(~x) =
2MG

r
− GQ2

r2
(2.3.24)
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All the computations needed to derive the weak-field metric are exactly the same
as the last section only with the difference that 2MG/r should be substituted
with 2MG/r−GQ2/r2. To linear order in the perturbation, we therefore obtain
the following expression for the perturbed metric

ds2 =
(

1 − 2MG

r
+
GQ2

r2

)

dt2 +
(

1 − 2MG

r
+
GQ2

r2

)−1

dr2 + r2dΩ2 (2.3.25)

Comparing to the Reissner-Nordström solution, we then see that we can make
the identification

Q2 ! Q2 (2.3.26)

The conclusion therefore is that the parameter Q in the Reissner-Nordström so-
lution can be identified with the physical (electrical + magnetic) charge Q of the
static, spherically symmetric gravitational source.

Alternatively, as we saw, this result could also be reached by explicitly look-
ing at the electromagnetic field tensor Fµν (i.e., the two functions A and B) and
comparing it to the electromagnetic field tensor for a static, spherically symmetric
charge distribution in flat space, i.e., examining Fµν for r → ∞.

2.3.3. The effect of a rotating mass distribution on spacetime

We have seen that it is possible to give the parameters M and Q the physical in-
terpretation of respectively mass and charge. We mentioned that we do not really
need the linearized gravity formalism to derive these results, simply because both
mass and charge give rise to classical potentials. This is, however, not the case
for the parameter J . The rotation of a body does not give rise to an additional
classical potential! So, we have introduced the linearized gravity scheme for two
reasons. First of all it is an important theoretical tool in general relativity. More-
over, it is vital for understanding the parameter J in the Kerr solution. To linear
order, the effects of a rotation is seen in the dxidt cross-terms (as opposed to the
dt2 and (dxi)2 terms). In order to analyze this, we need the linearized gravity
scheme - we start out with some rather general considerations.

Consider a matter distribution described by an energy-momentum tensor Tµν .
Since we want to describe a rotating system, i.e., a non-static system, the com-
ponents T 0i representing flow of momentum are non-zero. However, since the
system is assumed non-relativistic, time derivatives will be much smaller than
spatial derivatives (remember that c = 1). Using energy-momentum conservation
∂µT

µν = 0, we therefore see that we can order the components of the energy-
momentum tensor as

|T00| ≫ |T0i| ≫ |Tij| (2.3.27)

This shows that the effect on the spacetime perturbation from rotation, is ex-
pected to be much smaller that the one coming from the pure presence of a mass
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but much bigger than the contribution from the sheer components. We are only
interested in looking at the effect of rotation, so we consider the system in its
rest frame, i.e., the system in which

∫

d3x T 0i = 0 (i = 1, 2, 3) (2.3.28)

There can be some confusion whether to use up- or down-stairs indices for the
energy-momentum tensor: The energy-momentum tensor representing physical
quantities (such as energy density, momentum density etc.) is the one with both
indices up, i.e., T µν . This means that, the quantity

∫
d3x T 0i represents the

integral over the momentum density flow in the i’th direction, i.e., the total mo-
mentum in the i’th direction, which is exactly equal to zero in the rest frame.

For this general, non-relativistic system, we now define an angular four-momentum
tensor by

Jµν =

∫

d3x (xµT 0ν − xνT 0µ) (2.3.29)

from which we obtain the usual angular three-momentum in the given system 18

by

J i =
1

2
ǫijkJ

jk =

∫

d3x ǫijkx
jT 0k (i = 1, 2, 3) (2.3.30)

Using energy-momentum conservation, along with a partial integration, we see
that19

∫

d3x xiT j0 = −
∫

d3x xjT i0 (2.3.32)

This concludes our general considerations.

Let us now look at a very specific system, namely an axisymmetric stationary sys-
tem that is rotating around the z-axis. We therefore take the only non-vanishing
components of T µν to be T 00, T 01 and T 02 and assume them to be time indepen-
dent. Such a system has angular momentum

J 3 = 2

∫

d3x xT 20 (2.3.33)

while

J 1 = 2

∫

d3x yT 30 = 0 and J 2 = 2

∫

d3x xT 30 = 0 (2.3.34)

18This is clearly not a Lorentz-invariant definition.
19Just use that ∫

d3x xiT j0 =

∫

d3x ∂j(x
ixj)T j0 (2.3.31)

do the partial integration and require energy-momentum conservation ∂µT
µν = 0.
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So this system does indeed describe a pure rotation around the z-axis with total
angular momentum J = J 3 = 2

∫
d3x xT 20 = −2

∫
d3x yT 10. Let us now deter-

mine the metric perturbation hµν . Since the only difference from the calculation
we did above concerns the off-diagonal elements h0i, we see that the diagonal
elements of hµν will be the same as in the non-rotating case (i.e., determined by
the total mass M). For the off-diagonal elements we have

h01 = h 01 = 4G

∫

d3x′
T 01(~x′)

|~x− ~x′| and h02 = h 02 = 4G

∫

d3x′
T 02(~x′)

|~x− ~x′|
(2.3.35)

we may now perform a multipole expansion of the function 1/|~x− ~x′|. We have

1

|~x− ~x′| =
1

r
+
xx′ + yy′ + zz′

r3
+ . . . (2.3.36)

For r ≡ |~x| ≫ |~x′| we may ignore the higher order terms represented by the dots
and we thus get

h01 =
2Gy

r3
J and h02 = −2Gx

r3
J (2.3.37)

Here we used the rest frame condition (2.3.28), the relation (2.3.30) and finally
lowered the indices (which just gives a factor of −1 on the components). Now
in order to compare to the Kerr solution, we must again transform to spherical
coordinates (2.3.17)20. Now the metric perturbation transforms according to the
tensor transformation law

hν′

1
ν′

2
=
∂xµ1

∂xν′

1

∂xµ2

∂xν′

2

hµ1µ2
(2.3.38)

where the primed coordinates now denote spherical coordinates, i.e., x′µ ≡ (t, r, θ, φ)
and the non-primed coordinates are our original Minkowski coordinates, i.e.,
xµ ≡ (x0, ~x). The result of this transformation gives the same expression for the
diagonal terms as before + some new cross-terms. As we see, the only (possible)
non-vanishing cross-terms are htr, htθ and htφ. They are given by

htµ′ =
∂xν

∂xµ′
h0ν (2.3.39)

If we believe the Kerr solution to be true, the two components htr and htθ must
vanish. This is indeed the case, since r and θ enters the same way in x and y, we
have

htr =
1

r

(

xh01 + yh02

)

= 0

htθ = cot θ
(

xh01 + yh02

)

= 0

htφ = −yh01 + xh02 = −2G(x2 + y2)

r3
J = −2GJ sin2 θ

r
20Note that to linear order, the Boyer-Lindquist coordinates reduce to ordinary spherical

coordinates.
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Having found the expression for the metric correction hµν we are thus left with
the following expression for the full metric gµν = ηµν + hµν

ds2 = −
(

1 − 2MG

r

)

dt2 − 2GJ sin2 θ

r

[
dtdφ+ dφdt

]

+
(

1 − 2MG

r

)−1

dr2 + r2dΩ2 (2.3.40)

We therefore conclude that to linear order, the effects of rotation show up in the
dφdt cross-term. This was pretty much expected: We expected the breaking of
time reversal symmetry to show up in dtdxi cross-terms, but cross-terms of the
type dtdθ, dtdr would break axisymmetry.

Having found the weak field approximation for a rotating massive body, we may
now compare it to the exact Kerr solution in order to identify the parameter
J = aM . By comparing the coefficients of the dtdφ cross-term and the diagonal
terms, we conclude that if we identify

M ! M
Ma = J ! J

we will have a = J /M ≪ 1, since the system is assumed non-relativistic. This
means that we can discard all the terms with a2. In the non-relativistic limit we
therefore have ρ2(r) = r2 and ∆(r) = r2 − 2MGr. Plugging this into the exact
Kerr solution reproduces the result (2.3.40). We therefore conclude, the parameter
J can be identified with the physical angular momentum J of the Kerr spacetime.

2.4. Conserved currents in general relativity

In this section we will discuss, on a general spacetime manifold, how a conserved
current gives rise to a corresponding conserved charge integral. We will see that
a Killing field has an associated conserved current and this will allow us to give
a new definition of spacetime mass and angular momentum.

We start by showing how a conserved current Jµ, i.e., a vector field satisfying

∇µJ
µ = 0 , (2.4.1)

gives rise to a conserved charge. Let us recall how this is done in special relativity.
In SR, spacetime is flat, i.e., spacetime has the structure M = R × R3 and the
condition ∇µJ

µ = 0 reduces to

∂µJ
µ = −∂tJ

0 + ∂iJ
i = 0 (2.4.2)

Now define a charge by

Q =

∫

d3xJ0 (2.4.3)
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This charge is conserved since

∂tQ =

∫

d3x∂tJ
0 =

∫

d3x∂iJ
i =

∫

d3x∂iJ
i =

∫

dAiJ
i = 0 (2.4.4)

where we used Stokes’ theorem:
∫

M

∇ · F dV =

∮

∂M

F · dA (2.4.5)

along with the usual assumption that the current Jµ vanishes at spatial infinity.
It should be underlined that the charge integral Q =

∫
d3xJ0 is not only con-

served but also Lorentz invariant. This is because the measure d3x and the zeroth
component of Jµ transform in ”opposite” ways, so the product J0d3x is Lorentz
invariant.

It is possible to mimic this derivation on a general spacetime manifold. Of
course, a general spacetime does not separate time and space as R × R3, so
already here one must be a bit careful. The key ingredient in the derivation is the
fact that Stokes’ theorem does in fact hold on a general manifold. As is well-known
to the reader, on a general n-dimensional manifold, the theory of integration is
not build up around functions but around n-forms. The most general form of
Stokes’ theorem reads that ∫

M

dω =

∫

∂M

ω (2.4.6)

Here M is some domain of M (with some suitable niceness properties), ∂M is the
boundary of M , ω is an n − 1 form and dω is the exterior derivative of ω and
therefore an n-form. Notice that, since M is an n-dimensional manifold and ∂M
is an (n − 1)-dimensional manifold, this makes sense. As mentioned integration
on a general manifold is only defined for n-forms. On a (oriented) Riemannian
(or pseudo-Riemannian) manifold it is, however, possible to define integration of
functions, using the metric tensor g. The Riemannian volume element dV is an
n-form with the property that dV (E1, . . . , En) = 1, whenever {E1, . . . , En} is an
(oriented) orthonormal basis for the tangent space TpM. It is possible to show
that, the Riemannian volume element is unique and that if {xµ} is a right-handed
coordinate chart, locally dV can be written as

dV =
√

|g| dx1 ∧· · · ∧ dxn (2.4.7)

where g ≡ det(gµν). The integral of a continuous function f over some domain
M ⊂ M is then defined as ∫

M

f ≡
∫

M

fdV (2.4.8)

where the right-hand side is now a (well-understood) integral of an n-form. Es-
pecially this implies that

∫

M

f ≡
∫

M

fdV =

∫
√

|g|
n∏

i=1

dxi f(x1, . . . , xn) (2.4.9)
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Fig 10. Definition of the future directed unit normal nµ; notice on Σ1 it is the vector −nµ that
is the unit normal pointing out of M .

when M is contained in one coordinate chart {xµ}. This is nothing but an Eu-
clidian integral and this is how the integral of a function is defined in e.g. [Ole07].
If M is contained in more than one chart, we can use a similar expression for each
of the charts and then sum all the contributions from each chart (a point in an
overlap is counted with weight 1, technically this is a partition of unity). Integra-
tion theory is diffeomorphism invariant, this means that the various integrals are
invariant under coordinate transformations. The point we wish to convey to the
reader is that the ”naive” (intuitive) integration (2.4.9) is well-defined, coordi-
nate transformation invariant and when M is contained in more than one chart,
the integral (2.4.9) is indeed modified in the intuitive (obvious) way. Usually we
will write the integral

∫

M
f as (2.4.9) even if M is not necessarily contained in

one chart.
Back to Stokes’ theorem. Using the various definitions, it is possible to show

that Stokes’ theorem implies that

∫

M

dnx
√

|g|∇µV
µ =

∫

∂M

dn−1y
√

|γ|nµV
µ (2.4.10)

where y denotes coordinates on ∂M , γ is the metric on ∂M induced from the met-
ric g and nµ is a unit normal to the boundary ∂M consistent with the orientation
ofM : Since ∂M is an (n−1)-dimensional hypersurface the unit normal is uniquely
determined up to a sign. Since the orientation on ∂M is the one it inherits from
M , the unit normal nµ must be chosen inward-pointing (outward-pointing) (i.e.,
pointing into (out of) M) if ∂M is timelike (spacelike).

We will now use Stokes’ theorem in the form (2.4.10) to see that a conserved
current gives rise to a conserved charge. Suppose that we are given some spacelike
hypersurface Σ and a current Jµ. We can define a charge associated with this
spacelike hypersurface by

Q[Σ] = −
∫

Σ

dn−1y
√

|γ|nµJ
µ (2.4.11)

where nµ is a future directed timelike unit normal (nµn
µ = −1) to Σ. This integral

physically represents the flow of current through the surface Σ. The minus sign in
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the definition (2.4.11) is needed to assure that the charge (2.4.11) coincides with
the usual definition of charge in SR (see below). Now suppose that the current
Jµ is conserved, i.e., ∇µJ

µ = 0. We will now show that QΣ is independent of the
spacelike surface Σ and can thus be interpreted as being independent of ”time”,
i.e., conserved. To this end, consider two spacelike surfaces Σ1 and Σ2 and assume
that Σ2 is in the future region of Σ1. Moreover, consider a surface Λ that connects
the boundaries ∂Σ1 and ∂Σ2 as in fig. 10. The surface {Σ1 + Σ2 + Λ} is a closed
surface with Λ located at spatial infinity where we assume that the current Jµ

vanishes. Using Stokes’ theorem we therefore have

∫

int(Σ1+Σ2+Λ)

dnx
√

|g|∇µJ
µ =

∫

Σ1+Σ2+Λ

dn−1y
√

|γ|nµJ
µ

=

∫

Σ2

dn−1y
√

|γ|nµJ
µ −

∫

Σ1

dn−1y
√

|γ|(−nµ)Jµ

= Q[Σ2] −Q[Σ1]

(2.4.12)

Here we used that, since Σ1 and Σ2 are spacelike, the unit normal vector nµ used
in Stokes’ theorem must point out of the surface {Σ1 + Σ2 + Λ}. Therefore, on
the surface Σ2, the unit normal nµ is future directed timelike while on Σ1 it is the
unit normal −nµ that is future directed timelike (see fig. 10). Since ∇µJ

µ = 0,
we therefore conclude

Q[Σ2] = Q[Σ1] (2.4.13)

So the charge Q[Σ] is indeed independent of the spacelike hypersurface Σ. Before
we invoke this result to give an expression for the mass and angular momentum
of a spacetime, we will take a few seconds to introduce and prove the so-called
Killing vector lemma.

Theorem (Killing vector lemma) Suppose that X
µ is a Killing vector field,

then
∇µ∇νXρ = R λ

ρνµ Xλ = −R λ
νρµ Xλ (2.4.14)

where Rµνρλ is the Riemann curvature tensor.

Proof. The (components of the) Riemann tensor fulfills that21

∇µ∇νXρ −∇ν∇µXρ = R λ
µνρ Xλ (2.4.15)

21This is how the Riemann tensor is defined in e.g. [Wal84], i.e., as a measure of how second
covariant derivatives fail to commute on one-forms. Usually the Riemann tensor is defined as a
measure of how second covariant derivatives fail to commute on vectors. The two definitions are,
however, equivalent if one assumes the Levi-Civata connection (as we always do in classical GR),
since here the covariant derivative of the metric vanishes. Therefore, we can raise (lower) indices
inside covariant derivatives by multiplication of gµν (gµν) outside the covariant derivative.
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Now by Killings equation ∇(µXν) = 0 we can rewrite this equation to

∇µ∇νXρ + ∇ν∇ρXµ = R λ
µνρ Xλ (2.4.16)

The Riemann tensor fulfills some very specific symmetries which, of course, the
left-hand side of the above equation must also satisfy. We will use this observation
to show the desired result, more specifically we will use that the Riemann tensor
fulfills

R λ
µνρ +R λ

νρµ +R λ
ρµν = 0 (2.4.17)

By equation (2.4.16) we then have

2∇ν∇ρXµ =
(
∇µ∇νXρ + ∇ν∇ρXµ

)
+

(
∇ν∇ρXµ + ∇ρ∇µXν

)
−

(
∇ρ∇µXν + ∇µ∇νXρ

)

=
(
R λ

µνρ +R λ
νρµ −R λ

ρµν )Xλ

= −2R λ
ρµν Xλ

(2.4.18)

where we used the symmetry (2.4.17).

The electric charge integral

As a nice example of the use of the above theory, let us give an expression for
the total electric charge of a spacetime. Recall, the electric current associated to
the electromagnetic field tensor Fµν is given by

jµ
e =

1

4π
∇νF

µν (2.4.19)

This current is conserved,
∇µj

µ
e = 0 (2.4.20)

To show this, it is sufficient to show that the commutator [∇µ,∇ν ] applied to F µν

vanishes, since F µν is antisymmetric. Of course, in general [∇µ,∇ν ] 6= 0, however
for an arbitrary covariant two-tensor Xαβ we have

[∇µ,∇ν ]X
αβ = Rα

λµνX
λβ +Rβ

λµνX
αλ (2.4.21)

Using the antisymmetry of F µν along with the usual symmetries of the Riemann
curvature tensor, we have

[∇µ,∇ν ]F
νµ = Rν

λµνF
λµ +Rµ

λµνF
νλ

= Rν
λµνF

λµ −Rµ
λµνF

λν

= Rν
λµνF

λµ −Rµ
λνµF

λν

= 0

(2.4.22)
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Since ∇µj
µ = 0, we may now associate an electric charge to spacelike surface Σ

by

Qe = −
∫

Σ

d3x
√

|γ|nµj
µ
e

= − 1

4π

∫

Σ

d3x
√

|γ|nµ∇νF
µν

(2.4.23)

which is conserved. Notice, this definition of electric charge coincides with the
one from special relativity. In SR we usually take the spacelike hypersurface Σ to

Σt = {xµ | t constant} ∼= R3 (2.4.24)

with γ = diag(1, 1, 1) and nµ = (1, 0, 0, 0), i.e., nµ = (−1, 0, 0, 0). Furthermore

in SR we identify jµ = (ρ, ~J), where ρ is the electric charge density. This means
that

QSR
e = −

∫

R3

d3x
√

|γ|nµj
µ =

∫

R3

d3x ρ(~x) = total electric charge in SR

(2.4.25)

This explains the origin of the minus in the definition (2.4.11).
Since the 3-dimensional volume integral (2.4.23), representing the charge Qe,

is an integral over a divergence of an antisymmetric tensor, it is possible (again
using Stokes’ theorem (2.4.10)) to rewrite it to a surface integral as

Qe = − 1

4π

∫

Σ

d3x
√

|γ|nµ∇νF
µν

= − 1

4π

∫

∂Σ

d2x
√

|α|nµσνF
µν

(2.4.26)

where the two-dimensional surface ∂Σ is the boundary of Σ at spatial infinity
(typically a 2-sphere of ”infinite” radius), αij is the induced metric on ∂Σ and
σµ is the (outward-pointing) unit normal to ∂Σ. Using this formula, it is straight
forward to show that the total electric charge of the Reissner-Nordström space-
time is indeed given by the parameter e = Q (m = 0): If we choose the timelike
surface as in (2.4.24) and ∂Σ to be a 2-sphere at spatial infinity, we see that in
coordinates, the two unit normals are given by

nµ = (Π−1/2, 0, 0, 0) and σµ = (0,Π1/2, 0, 0) (2.4.27)

where we used that the Reissner-Nordström metric is diagonal. This also means
that

nµ = (−Π1/2, 0, 0, 0) and σµ = (0,Π−1/2, 0, 0) (2.4.28)

moreover on ∂Σ √

|α| = r2 sin θ (2.4.29)
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Therefore

Qe = − 1

4π

∫

∂Σ

d2x
√

|α|nµσνF
µν =

1

4π

∫

S2
r

dθdφr2 sin θF tr

∣
∣
∣
∣
∣
r=∞

(2.4.30)

As mentioned above, we have that

F tr =
e

r2
(2.4.31)

We therefore have
Qe = e (2.4.32)

So the electric charge integral constructed from the Maxwell equation (2.4.19)
does indeed coincide with the parameter e. Using the ”dual” of the Maxwell
equation (2.4.19), a similar construction can be done for the magnetic charge.

2.4.1. Komar integrals

Just as with the electric charge integral, it would be nice if we could define
respectively the mass and angular momentum of a spacetime in terms of currents.
To this end we now introduce the Komar integral associated with a Killing vector
Xµ. For a Killing vector field Xµ consider a current defined by

Jµ[X] = XνR
µν (2.4.33)

Furthermore, assume that spacetime is not ”too exotic”, i.e., assume that our
spacetime does not contain any singularities etc.22 - (for now) think of the space-
time we are considering in the following, as the spacetime around a star or a
planet. By virtue of Einstein’s equation (1.1.1), the current Jµ[X] can be written
as

Jµ[X] = 8πGXν

(

T µν − 1

2
gµνT

)

(2.4.34)

We will now show that Jµ[X] is conserved. To realize this, recall that ∇µT
µν = 0

and ∇ρg
µν = 0, therefore

∇µJ
µ[X] = 8πG

{

∇µXν

(

T µν − 1

2
gµνT

)

+ Xν∇µ

(

T µν − 1

2
gµνT

)}

= 4πGX
µ∇µT

= −1

2
X

µ∇µR

= 0

(2.4.35)

22For example, in the Schwarzschild spacetime the current (2.4.33) would be everywhere
equal to 0 and thus not very interesting.
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Here we used that Xµ is Killing and that the covariant derivative of the Ricci
scalar R in the direction of Xµ vanishes. This is seen by using the Killing vector
lemma along with Killings equation. It is, of course, a reflection of the fact that
geometry does not change along Killing fields. Since ∇µJ

µ[X] = 0, the charge

Q[X] = −
∫

Σ

dn−1y
√

|γ|nµJ
µ[X]

= −
∫

Σ

dn−1y
√

|γ|nµX
νRµν

= −8πG

∫

Σ

dn−1y
√

|γ|nµXν

(

T µν − 1

2
gµνT

)

(2.4.36)

is conserved. Just as we did with the electric charge integral, it is possible to
rewrite the expression for Q[X] to a surface integral. This follows from the con-
tracted Killing vector lemma:

∇ν∇µ
X

ν = Rµν
Xν (2.4.37)

This means that the current Jµ[X] can be written as

Jµ[X] = ∇ν

[
∇µ

X
ν
]

(2.4.38)

Now since the two tensor ∇µXν is antisymmetric (Xµ is Killing), the 3-dimensional
integral (2.4.36) can be written as 2-dimensional integral

Q[X] = −
∫

∂Σ

d2x
√

|α|nµσν∇µ
X

ν (2.4.39)

This is the Komar integral associated with the Killing vector field Xµ. So, each
Killing vector field has an associated conserved charge, which can be written as a
2-dimensional surface integral at spatial infinity.

Now recall Noether’s theorem from classical physics. It states that

Continuous symmetry of the action of a physical system →
Conserved charge (the Noether charge).

This leads to the well-known result that, if a physical system in invariant under
time translations, the conserved Noether charge is the total energy, while if it
is invariant under rotations around an axis, the conserved Noether charge is the
angular momentum wrt. the given axis. Let us assume that such relations also
hold in general relativity. We thus conjecture that Noether’s theorem generalizes
to general relativity and that the Noether charge (energy, angular momentum
etc.) associated with the symmetry, represented by a Killing field Xµ, is given by
the Komar integral for Xµ (up to some normalization).
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Now, a stationary spacetime is characterized by having a timelike killing field
Kµ. Of course this Killing field is only determined up to a multiplicative con-
stant. This means that if we want to associate a well-defined charge with the
timelike killing field K

µ, we must specify a normalization of K
µ. We normalize

the time translational Killing field Kµ in the obvious way: In an asymptotically
flat stationary spacetime (with associated time translational Killing field Kµ) we
choose the normalization of Kµ by requiring that Kµ is future directed and that

− KµK
µ → 1 at spatial infinity (r → ∞) (2.4.40)

With these normalization conditions, we see that the Killing field K
µ exactly

corresponds to the Killing field that generates the forward time translations at
spatial infinity. Therefore, in the spacetimes we have considered Kµ is normalized
to K = ∂t (this was also the normalization we used to define the ”point mass”
energy (1.2.25)). As we have argued, a stationary spacetime can be interpreted
as being invariant under time translations and the Killing field representing this
symmetry is exactly Kµ. Following the above discussion, this means that, the
total mass (energy) of a stationary spacetime is given by the following Komar
integral

MKomar =
1

4πG

∫

∂Σ

dA nµσν∇µ
K

ν (2.4.41)

where dA denotes the area element
√

|α|d2x on ∂Σ. The normalization factor of
−4πG is justified below.
An axisymmetric spacetime is characterized by possessing a spacelike Killing field
Rµ whose orbits consist of closed curves. Just as with the Killing field Kµ, we must
specify a normalization of Rµ. We do this by requiring that Rµ generates rotations
at spatial infinity, i.e, in an axisymmetrical asymptotically flat spacetime Rµ is
normalized so that the flow ψφ corresponding to Rµ fulfills that ψφ = ψφ+2π.
Therefore if the spacetime is Kerr, then R = ∂φ (this was also the normalization
we used to define the ”point mass” angular momentum (1.2.26)). As we have
seen, the Killing field R

µ has the interpretation of being the generator of rotations
around the axis of rotation (where Rµ = 0). This means that, the total angular
momentum around the axis of rotation is given by the following Komar integral

JKomar = − 1

8πG

∫

∂Σ

dA nµσν∇µ
R

ν (2.4.42)

Notice that the normalization factor of 8πG differs from the one we used in
for the Komar mass by a factor of −2. The formulas for the Komar mass and
angular momentum were derived under the assumption that spacetime is not
”too exotic”. However, the two expressions (2.4.41) and (2.4.42) only depend on
asymptotic data. This means that we can change the gravitational source in any
way we want without changing M and J , provided that the asymptotic metric is
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unchanged (which is certainly a reasonable assumption). We therefore take the
two surface integrals (2.4.41) and (2.4.42) to be valid in general, especially this
means that we can apply them to black holes (which we will do in part 3).

We will now justify the normalization factors in the Komar expressions. We
do this by requiring that in the classical limit, the Komar mass and angular
momentum coincides with the usual classical expressions. This is most easily
done using the Komar charge expressed as a 3-dimensional volume integral, i.e.,
using the expression (2.4.36). In the Newtonian limit we choose Σ as (2.4.24) and
here we have

nµ = (1, 0, 0, 0) , K
µ = (1, 0, 0, 0) , R

µ = (0, 0, 0, 1) (2.4.43)

in ordinary spherical coordinates (t, r, θ, φ). We therefore get (let dV denote the
volume element on Σ)

MKomar = −8πG

NM

∫

Σ

dV nµKν

(

T µν − 1

2
ηµνT

)

≈ −4πG

NM

∫

Σ

dV T tt (2.4.44)

and

JKomar = −8πG

NJ

∫

Σ

dV nµRν

(

T µν − 1

2
ηµνT

)

≈ 8πG

NM

∫

Σ

dV T tφ (2.4.45)

where we used the ordering relation of the energy-momentum tensor (2.3.27).
Now, recall the two Newtonian expressions for respectively mass and angular
momentum in terms of the energy-momentum tensor;

MNewton =

∫

dV T tt and JNewton =

∫

dV T tφ (2.4.46)

where the latter relation is realized by using the usual relation (2.3.30) and trans-
forming to spherical coordinates. We therefore see that we must indeed choose
NM = −4πG and NJ = 8πG.

Having obtained the expression for the Komar mass, let us now try to calculate
the Komar mass of the Schwarzschild spacetime (to get a feel of the math). Just as
we did with the Reissner-Nordström charge integral, we take the two-dimensional
surface at spatial infinity to be a 2-sphere of infinite radius. The unit normals nµ

and σµ are therefore the same as before (with Q = 0). We must now work out
the factor nµσν∇µKν . This is, however, not too hard, in fact, all we need is the
Christoffel symbol Γr

tt. It is given by

Γr
tt =

MG

r2

{

1 − 2MG

r

}

(2.4.47)

We now have
nµσν∇µ

K
ν = −∇t

K
r = −gtt∇tK

r (2.4.48)
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We now use the usual formula for the coordinate expression of the covariant
derivative of a vector field;

gtt∇tK
r = gtt

(
∂tK

r + Γr
tµK

µ
)

= gttΓr
tt (2.4.49)

So

nµσν∇µ
K

ν =
MG

r2
(2.4.50)

Therefore

MKomar =
1

4πG

∫

∂Σ

dA nµσν∇µ
K

ν =
1

4πG

∫

S2
r

dθdφr2 sin θ
MG

r2

∣
∣
∣
∣
∣
r=∞

= M

(2.4.51)

So, the Komar mass of the Schwarzschild spacetime is exactly equal to the pa-
rameter M ( it would have been rather unsatisfying if this were not the case!).
A similar calculation (much longer) shows that the Komar mass and angular
momentum of the charged Kerr spacetime are given by respectively M and J .

2.5. Energy conditions

Consider Einstein’s equation

Rµν −
1

2
Rgµν = 8πGTµν (2.5.1)

In Einstein’s original theory, the only real condition on the energy-momentum
tensor is that it is conserved, i.e.,

∇µT
µν = 0 (2.5.2)

Apart from this, we are in principle free to use any energy-momentum tensor
we want. However, it turns out that it is possible to find (conserved) energy-
momentum tensors that produce pathological results [Car04], when plugged into
Einstein’s equation. For example, consider the energy-momentum tensor of a
perfect fluid

Tµν = (ρ+ p)UµUν + pgµν (2.5.3)

This energy-momentum tensor is conserved for any pressure p, energy density ρ
and unit time-like vector field Uµ. It is, nevertheless, not clear if any p and ρ
produce physically sound results (for example, can ρ be negative?) and if these
values are acquirable for ”realistically” matter. To resolve these problems, one
introduces the so called energy conditions. The energy conditions describe prop-
erties common to all (or almost all) states of matter and nongravitational fields.
The energy conditions can therefore be thought of as a set of conditions we im-
pose on the energy-momentum tensor in order for it to describe realistic matter.
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Moreover, imposing the energy conditions will eliminate most of the unphysical
solutions to Einstein’s equation [Car04]. The energy conditions are useful when
one works with a non-specified energy-momentum tensor and are vital for prov-
ing certain singularity theorems and the laws of lack hole dynamics (see part 3).
There are several (currently around 6) more or less mathematically independent
energy conditions in use, each suitable for its own type of matter field. In this
section we will focus on the so called dominant energy condition (which in general
is thought to be the most fundamental energy condition).

Definition (the dominant energy condition) An energy-momentum tensor
field Tµν is said to satisfy the dominant energy condition if for all future-directed
timelike vector fields t, the vector field

T (t) = −tµT ν
µ ∂ν (2.5.4)

is future-directed timelike or null (possible zero).

This condition might seem somewhat arbitrary at first sight, but it has a very
nice physical interpretation. The dominant energy condition (DEC) can be inter-
preted as the condition that energy and momentum should not be able to flow
faster than the speed of light nor should it be able to appear out of nothing
[Wal84]. The DEC (which is a mathematic statement) is in other words equiva-
lent to the physical statement that all reasonable matter should respect causality.
It is possible to make the DEC a bit more transparent in terms of the energy-
momentum tensor. This follows from the fact that the energy-momentum tensor
Tµν is symmetric in its indices and is therefore diagonalizable23. This means that
there exists an orthogonal basis {vµ, xµ, yµ, zµ} consisting of eigenvectors of T µ

ν ,
so that

Tµν = ρvµvν + p1xµxν + p2yµyν + p3zµzν (2.5.5)

where vµ is future directed timelike and ρ, p1, p2, p3 are the real eigenvalues. The
quantity ρ has the interpretation of rest energy density while the three ”spatial”
eigenvalues p1, p2 and p3 are the so-called principal pressures. For example, con-
sider the ideal fluid energy-momentum tensor (2.5.3). It is straight forward to
find an orthonormal basis that diagonalizes Tµν - simply go to inertial orthonor-
mal coordinates where the fluid is at rest, i.e., Uµ = (1,~0). In these coordinates,
the energy-momentum tensor takes the form (remember that we work in inertial

23Actually, it is T µ
ν that needs to be diagonalizable since it represents a linear map from

vectors to vectors. There could be a problem if one of the eigenvectors where null, however
energy-momentum tensors of physical realistically tends always to be diagonalizable [Wal84].
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coordinates where the components of the metric tensor are ηµν)

Tµν =







ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p







(2.5.6)

We therefore see that the ρ-eigenvalue corresponds to the rest energy of the ideal
fluid while the three principal pressures are all equal to p = isotropy. Let us now
return to a non-specified energy-momentum tensor Tµν . Using that {vµ, xµ, yµ, zµ}
is an orthonormal basis, we see that any future directed timelike vector tµ can be
written as

tµ = c0v
µ + c1x

µ + c2y
µ + c3z

µ (2.5.7)

where c0 > 0 and c20 >
∑3

i=1 c
2
i . Now using the orthonormal decomposition of

Tµν , we see that for any future directed timelike vector tµ, we have

− tµT ν
µ = c0ρv

µ − c1p1x
µ − c2p2y

µ − c3p3z
µ (2.5.8)

Now this vector is future directed timelike or null (possible zero) if and only if

tµtλT ν
µ Tλν ≤ 0 (2.5.9)

and
vν [−tµT ν

µ ] ≤ 0 (2.5.10)

This is clearly equivalent to the condition

ρ ≥ 0 and ρ ≥ |pi| (i = 1, 2, 3) (2.5.11)

The DEC therefore says that the energy density for realistic matter cannot be
negative, however, negative pressure is allowed as long as its magnitude does not
exceed the energy density. The latter condition has a clear physical interpretation;
if the pressure is too large compared to the energy density, the flow of energy and
momentum will be too fast, i.e., non-causal. In a similar manner, it is possible
to show that the energy-momentum tensor of electromagnetism and scalar fields
respects the DEC.

For completeness we now mention a few of the other energy conditions in use:
The weak energy condition (WEC) says that

Tµνt
µtν ≥ 0 (2.5.12)

for all timelike tµ. The weak energy condition has the physical interpretation
that the energy density of matter (described by Tµν) cannot be negative. Notice
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that the DEC implies the WEC. Another energy condition is the strong energy
condition (SEC). The SEC states that

(

Tµν +
1

2
Tgµν

)

tµtν ≥ 0 (2.5.13)

for all timelike tµ. We will not try to justify this energy condition, but only note
this is a rather strong condition (an inflationary universe will not respect the
SEC [Tow97]), also note that the SEC does not imply the WEC.

imsart-generic ver. 2008/08/29 file: blackholephysics1.tex date: December 2, 2008



Andreas Vigand Pedersen/Aspects of Black Hole Physics 57

3. Black holes

3.1. Introduction

The discussion of the Schwarzschild black hole on p. 15 can be generalized to
the Kerr spacetime. The Kerr spacetime describes the spacetime outside an ax-
isymmetric, stationary body. Again, we can imagine an object which has all of
its matter located within surface r = r+. For such an object the Kerr spacetime
is valid all the way into the coordinate singularity

r = r+ , (3.1.1)

the so-called event horizon. Such an object, i.e., the spacetime behind the surface
is the Kerr black hole. In this part we will look into the physics of black holes.

As we saw in part 2, the parameters M,Q and J of the Kerr solution had the
interpretation of respectively mass, charge and angular momentum of the Kerr
spacetime. Moreover, we saw that the Komar mass and angular momentum for
the Kerr spacetime exactly were equal to M and J . Therefore, from now on,
we will simply denote the black hole mass, charge and angular momentum by
respectively M,Q and J .

3.2. Event horizons

We will now go into a bit more detailed discussion regarding event horizons. Just
as with the concept of spatial infinity, asymptotically flat spacetimes etc., the
concept of event horizons also has a very sophisticated coordinate-independent
definition [Wal84]. In this project we will be satisfied with defining event horizons
in a coordinate dependent manner. We will do this by first examining what the
process of falling into a Schwarzschild black hole looks like for respectively a
freely falling observer and a distant observer. This will point out the physical
significance of the event horizons and will aid us in giving a more mathematical
definition of event horizons.

Falling into a Schwarzschild black hole

Suppose that a long time ago in a galaxy far, far away a spaceship24 discovers
a black hole. The spaceship chooses to send a probe carrying a clock into the
black hole in order to examine why the black hole is so black. We will now
describe how the descend towards the black hole looks from respectively the
spaceship and the probe. We assume that the spaceship is at rest wrt. the black
hole and that it is located very far away from the black hole where spacetime

24Whose crew consists of a race that has mastered interstellar travel but does not know
anything about general relativity
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can be considered Minkowskian. Furthermore, we assume that the probe is falling
freely, i.e., moving on a geodesic. For simplicity, let us assume that the geodesic is
completely radial and is in the equatorial plane (this is possible since the subspace
θ = π/2, φ = const. is totally geodesic, which follows from (1.2.26) - if a geodesic
has φ̇ = 0 at some time, it will always have φ̇ = 0). According to our discussion
of the Schwarzschild geodesics the (timelike) geodesic radial motion of the probe
is governed by the equations (1.2.20), (1.2.25), i.e., the two equations

1 = (1 − 2MG/r)ṫ2 − (1 − 2MG/r)−1ṙ2 (3.2.1)

and

E =
(

1 − 2MG

r

)

ṫ (3.2.2)

where the quantity E is conserved along the geodesic. Notice that there are three
times in play here

⋆ The proper time along the geodesic describing the motion of the probe, τ =
∫
dτ

√
−gµν ẋ

µẋν . The proper time τ is the time measured by a freely falling
clock, i.e., the clock carried by the probe.

⋆ The proper time τ̃ along the motion of the spaceship (which is at rest in (local)
Minkowski spacetime). This is the time measured by the clock carried by
the spaceship.

⋆ The coordinate time t. A priori, this time has no physical meaning, it must be
identified in terms of the physical proper time. Since the spacetime is at
rest in (almost) flat space we can make the identification τ̃ = t.

If we assume that the probe starts out at rest when it leaves the spaceship we
have that E = 1 (in general E will be determined by the initial velocity |~v| of the
probe by E = γ(~v) = 1/

√
1 − ~v2). We therefore have the following two simple

equations

ṫ =
(

1 − 2MG

r

)−1

and ṙ2 =
2MG

r
(3.2.3)

Solving these equations for the radial coordinate r as respectively a function of
proper time τ and the coordinate time t is a straight forward. A straight forward
integration of the second equation yields (notice, this equation has the same
structure of that governing the motion of a freely falling object in Newtonian
mechanics)

τ(r) = 2
2MG

3

[
( r0

2MG

)3/2

−
( r

2MG

)3/2
]

(3.2.4)

where r0 is defined so that τ(r0) = 0 = t(r0). We therefore see that the probe
reaches the Schwarzschild radius Rs = 2MG in a finite amount of proper time
(and it will continue toward the singularity). Therefore, reaching the Schwarzschild
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radius is nothing special seen from the prope25. This, however, is drastically dif-
ferent from how the spaceship views the journey. Near r = 2MG we have

dr

dt
=
ṙ

ṫ
= − 1

2MG
(r − 2MG), for 2MG / r (3.2.5)

with the solution

r(t) = 2MG +
{

(r0 − 2MG) exp(−t/2MG)
}

(3.2.6)

We therefore see that from the point of view of the distant spaceship, the Schwarzschild
radius is never reached! Seen from the spaceship, the probe will simply keep slow-
ing down in such a manner that the Schwarzschild radius is never passed. More-
over, we see that any radiation emitted from the probe will become increasingly
redshifted. This means that at some point the probe will become invisible since
all its radiation will become extremely redshifted. Actually, no radiation emitted
from behind the Schwarzschild radius can escape to the spaceship. This follows
from the equation (1.2.20). For light we have α = 0, so we see

∣
∣
∣
dr

dt

∣
∣
∣ = 1 − 2MG

r
(3.2.7)

Since radiation emitted from behind the Schwarzschild radius would have to pass
the Schwarzschild radius in order to reach the spaceship, we see that at the
Schwarzschild radius it would simply stop, i.e., never reach the spaceship and the
surrounding universe. We thus see that the distant observers in the spaceship will
never find out what happens behind the Schwarzschild radius. The only way to
find out what happens behind the Schwarzschild radius is to go behind it and
once the surface r = 2MG is passed there is no way one can escape from it again.
For this reason the surface r = Rs = 2MG is called the event horizon of the
Schwarzschild black hole.

Coordinate singularities and event horizons

Here we wish to treat event horizons a bit more in general. To this end we will
take a few seconds discussing the notion of null hypersurfaces.

Definition (null hypersurface) Let Σ be hypersurface in a Lorentzian mani-
fold (M, g) with an associated normal vector field σ. If the normal vector field σ is
everywhere spacelike, timelike or null, the hypersurface is said to be respectively
timelike, spacelike or null26.

25Of course, close to the Schwarzschild radius the gravitational tidal forces are very strong
and would be properly tear the probe apart.

26This definition coincides with the usual definition of spacelike (timelike) hypersurfaces,
since if σ is timelike (spacelike) the tangents vectors to Σ will be spacelike (timelike).
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Now, any hypersurface can be written in the form (at least locally27)

f(x) = const. (3.2.8)

for some function f . If a hypersurface Σ is specified as in (3.2.8), we can write
down a normal field of Σ in terms of f , it is given by

σ = gµν∇νf∂µ (3.2.9)

so σ has the components
σµ = gµν∇νf (3.2.10)

Proving this claim is easy; since the function f is constant on Σ, we know that
if we differentiate f in the direction of Σ we will get zero, i.e., if vµ is a tangent
vector to Σ, then vµ∇νf = 0. We therefore have for any tangent vµ to Σ

σµv
µ = vνgµνg

µλ∇λf = vν∇νf = 0 (3.2.11)

Notice that if Σ is a null hypersurface with normal vector σµ, then since σµ is
null

σµσ
µ = 0 (3.2.12)

we therefore conclude that σµ also is tangent to Σ. We therefore see that the
null hypersurfaces exactly are the hypersurfaces where the normal field is also
tangent.

We will now explain the significance of null hypersurfaces in the context of
event horizons. As mentioned before, an event horizon is defined as a ”region of
no escape”, i.e., a region of spacetime where it is impossible for a causal curve to
escape to spatial infinity. This definition implies that event horizons are always
guarantied to be null hypersurfaces but the opposite is certainly not true (for
example, there are a lot of null hypersurfaces in flat Minkowski space). However,
the spacetimes we have considered in part 1 all have the property that their
topological structure outside the coordinate singularities can be written as

R
︸︷︷︸

t−coor.

× R+
︸︷︷︸

r−coor.

× S2
︸︷︷︸

θ,φ−coor.

(3.2.13)

At spatial infinity (r → ∞) the 2-spheres are clearly spacelike but as r decrease
they become ”less and less” spacelike28. Now suppose that when the radial coor-
dinate r reaches some value RE the corresponding hypercylinder R×S2 becomes
null. This hypercylinder must be an event horizon; this is realized by looking at fig.
11. As the radial coordinate approaches RE , the light cones in (t, r)-coordinates
close up and on the actual null cylinder r = RE , the light cones are totally closed
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Fig 11. The light cones close up near the event horizon.

up and pointing tangent to r = RE (simply because the null-direction is also tan-
gent to the hypercylinder r = RE since it is null). Since all (tangents to) causal
curves are confined to the light cones, it is now clear that in (t, r)-coordinates
nothing will be able to enter or exit the null hypersurface r = RE , i.e., it is an
event horizon. Of course there exist curves that reach the event horizon in a fi-
nite amount of proper time. Therefore, it is possible to enter the event horizon by
falling into it, however, as seen from spatial infinity, this process takes an infinite
amount of time.

This means that in order to find the event horizons of the spacetimes possessing
the structure (3.2.13), we must find out at which radii the cylinder r = const.
becomes null. According to the above discussion, the normal field to r = const. is
given by gµν∇νr = gµr. Therefore, to find the radii for which r = const. becomes
null we must find out when the vector field gµr becomes null, i.e., we must solve
the equation

0 = gµνg
µrgνr = δr

νg
νr = grr (3.2.14)

Since we are considering axisymmetric spacetimes there are no cross-terms of the
type drdt... in the metric. We therefore have that grr = 1/grr, we thus conclude
that the location of the event horizon(s) of a axisymmetric spacetime is located
where the metric component grr becomes singular. To find the event horizons, we
must therefore identify the coordinate singularities of the component grr, i.e., in
general solve

∆(r;M,Q2, a) = 0 (3.2.15)

which, as we saw, had the solution(s)

RE = r± = MG±
√

M2G2 −Q2 − a2 (3.2.16)

27The hypersurfaces used in GR are often defined in this way
28Of course such a statement does not make sense, since a hypersurface is either spacelike,

timelike or null, but hopefully the meaning is clear when one looks at fig. 11
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3.2.1. The no-hair theorem and Hawking’s area theorem

We have seen that the stationary, axisymmetric spacetimes coupled to electro-
magnetism have the possibility of containing an event horizon, i.e., containing a
black hole. We saw that these black hole solutions were characterized by the mass
M , charge Q and angular momentum J of the black hole. The different solutions
were described according to

Black hole solutions Not rotating J = 0 Rotating J 6= 0
Not charged Q = 0 Schwarzschild Kerr
Charged Q 6= 0 Reissner-Nordström Kerr-Newman

We may now ask how general these solution are? We have argued that it is possible
to assign a definite mass, charge and angular momentum to any asymptotically
flat, axisymmetric, stationary spacetime. Now suppose that such a spacetime con-
tains an event horizon with no singularities present outside the event horizon (i.e.,
the spacetime contains only one black hole). Since the spacetime is stationary,
all the matter responsible for the black hole has fallen inside the event horizon.
According to our discussion of event horizons, no information is able to escape
from inside of the event horizon to the outside (while the opposite is certainly
possible). This suggests that the spacetime structure (at least outside the event
horizon) must be independent of what happens inside the event horizon. This
therefore indicates that all black hole solutions fall in the four above categories.
We are thus lead to suggest the no-hair theorem

Theorem (No-hair theorem) The stationary spacetimes describing a black
holes are either axisymmetric or static. A black hole is therefore always Kerr
(possible charged) and is therefore completely characterized by its mass M , charge
Q and angular momentum J .

It is possible to give a mathematical proof for this theorem. It requires very
careful analysis of event horizons, black holes and general singularities29. Fur-
thermore, it relies on the cosmic censorship conjecture which conjectures that it
is impossible for naked singularities to form in nature; in nature singularities will
always be behind an event horizon and thus hidden from a distant observer.

The no-hair theorem tells us that, if two spacetimes undergo complete gravi-
tational collapse, so that they end up with the same external observables (M,Q
and J), they will end up in the same state, no matter their initial data - ”the
black hole has no hairs”. For this reason, from now on when we talk about a black
hole we will always assume that it is Kerr (possible charged) and thus completely

29An analysis I cannot claim to have understood, yet.
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determined by its mass, charge and angular momentum.

We will now state another important theorem in general relativity. It is the
so-called area theorem which roughly states that the area of a black hole event
horizon cannot decrease with time. In order to understand this statement we
must first understand what we mean with ”the area of an event horizon”. First
of all, the event horizon of a black hole is not a two dimensional manifold but a
three dimensional submanifold of spacetime - this means that an event hori-
zon does not have an area but rather a volume. However, we usually think
of the term ”event horizon” as the spatial part of the actual event horizon
(event horizon ∼ time × spatial part of event horizon). Therefore, the area of
an event horizon is the area of the two dimensional embedded manifold we ob-
tain by looking at the event horizon ”at a fixed time”. On a general spacetime
manifold the slices of spacetime ”at a fixed time” are known as Cauchy surfaces.
Again, this is a rather technical discussion, but let us be content by thinking of a
Cauchy surface as a timelike three-dimensional hypersurface on which specifying
initial conditions completely determines the future (and the past) ∼ spacetime
”at a fixed time”. We are now able to state and understand the area theorem

Theorem (Hawking’s area Theorem) Suppose that H is the event horizon of
a black hole in a spacetime that is asymptotically flat (+ some additional technical
requirements) and suppose that Σf and Σp are two Cauchy surfaces where Σf is
in the future region of Σp. Now consider the two spatial parts (spacelike hyper-
surfaces), Hf = H∩Σf and Hp = H∩Σp, of the event horizon H corresponding
to respectively Σf and Σp. If the matter in the spacetime manifold respects the
WEC, then the area of Hf is greater or equal to the area of Hp.

The proof of the area theorem (which can be found in [Wal84] and to some
extend in [Tow97]) again relies on a careful analysis of event horizons and of null
hypersurfaces under the assumption of the cosmic censorship conjecture. The
area theorem, as it is stated above, is not of much direct use, however, the black
hole coordinates (Boyer-Lindquist for a given set M,Q2 ad J) provides us with
a surface of the type H = H ∩ Σ, determined by r = r+ and t = const.. Let us
see how this works for the Schwarzschild black hole. The induced metric on the
”spatial part” of the event horizon r = Rs is given by (simply set dr = dt = 0 in
the Schwarzschild metric)

dℓ2 = R2
sdΩ

2 (3.2.17)

The area of the Schwarzschild event horizon is thus given by

As = R2
s

∫

dφdθ sin θ = 4πR2
s (3.2.18)

or in terms of the physical mass

As = 16πM2G2 (3.2.19)
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The area of a general black hole will also get contributions from the black hole
charge and angular momentum, but in order to get an idea of how powerful the
area theorem is, let us see what it implies for the Schwarzschild black holes:
Since As = 16πM2G2 the area theorem tells us that if a black hole of mass
M1 is somehow disturbed (spacetime becomes non-stationary), then when it has
settled down again (spacetime becomes stationary again), it will be a new black
hole of mass M2, where M2 ≥ M1, since the black hole area has increased. The
physical content of this is clear; the presence of an event horizon allows energy
to pass through the event horizon but never escape (however, as we will see,
it is possible to extract energy from a rotating black hole). The area theorem
also gives us a better understanding of what happens in a black hole ”collision”;
suppose that two Schwarzschild black holes of mass M1 and M2 collide and form
a new Schwarzschild black hole as depicted in fig. 12.30 What is the mass M3 of
the new black hole? Of course the answer to this question depends on the specific
configuration of the problem but energy is carried away by gravitational radiation
so M3 < M1 +M2; The area theorem allows us to put a lower limit on M3, since
A3 ≥ A1 + A2

M3 ≥
√

M2
1 +M2

2 (3.2.20)

the maximal efficiency η = 1 − M3/(M1 + M2) for the mass → gravitational
radiation process is therefore

η ≤ 1 − 1/
√

2 ≈ 29% (3.2.21)

so the area theorem somehow puts an upper limit of the amount of energy we
can extract from a black hole.

Finally notice the resemblance to a thermodynamical system. Once we impose
the thermodynamical equilibrium condition (∼ stationary condition on the space-
time) on a thermodynamical system, the system is completely determined by its
thermodynamic parameters (e.g. temperature, volume, pressure). For example,
the state of a monatomic gas is determined by the internal energy U and volume
V - it does, so to speak, not care about how it ended up in the state (U, V ). Just
as both internal energy and volume are extensive variables, so are respectively
the black hole mass M , charge Q and angular momentum J . In principle, we
could convert the energy contained in gravitational radiation to work. As have
seen it is impossible to extract all the energy from a black hole because of the area
theorem, i.e., it is impossible to convert all the energy in a black hole to work.
This again bears resemblance to a thermodynamical system where the entropy is
introduced as a measure of the systems unavailability to convert internal energy
into work. At the end of this part, we will look a more into the mathematical
analogy between black hole physics and thermodynamics.

30Clearly, this requires that the two black holes have no angular momentum wrt. each other,
i.e., no orbital angular momentum.
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Fig 12. The merging of two Schwarzschild black holes.

3.3. More on horizons

In this section we introduce the rather abstract concept of Killing horizons on
a spacetime manifold. A priori Killing horizons have nothing to do with event
horizons, however, as we will see it is possible to interpret the event horizon of
a Kerr black hole as a Killing horizon. We end this section off by looking at the
so-called ergosphere which is a region of the Kerr spacetime where it is impossible
for physical particles to stay stationary.

3.3.1. Killing Horizons

We will now introduce the important concept of Killing horizons. As we shall
see these geometrical constructions will turn out to provide us with another link
between black hole physics and thermodynamics.

Definition (Killing horizon) Suppose that Xµ is a Killing vector field and
that Σ is a null hypersurface. If X

µ is normal to Σ, we say that Σ is a Killing
horizon for the Killing vector field Xµ.

More generally, a null hypersurface Σ is said to be a Killing horizon if it is Killing
horizon for some Killing vector field (i.e., we do not always specify the Killing
field). For a general Killing horizon, it is possible to attach a scalar function in
the following way. Since the Killing field Xµ is normal to Σ we have that

X
µ
Xµ

∣
∣
Σ

= 0 (3.3.1)

This means that Σ can be specified by setting the function XµXµ equal to zero
(=constant). We therefore see that the vector field

gµν∇ν

(
X

ρ
Xρ

)
= ∇µ

(
X

ν
Xν

)
(3.3.2)
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is normal to Σ, but this implies that on the horizon Σ

∇µ
(
X

ν
Xν

)
= −2κ X

µ (3.3.3)

for some scalar function κ (where the factor of −2 is, of course, purely conven-
tional). The scalar function κ is called the surface gravity of Σ. Using Killings
equation notice that (3.3.3) implies

X
ν∇µXν = −X

ν∇νXµ = −κ Xµ (3.3.4)

As the surface gravity is defined now, it is a rather abstract quantity. Our first
task is therefore to find a formula for the surface gravity κ in terms of the Killing
field Xµ. To this end notice that, since the vector field Xµ is normal to Σ we know
by Frobenius’ theorem that on the horizon

X[µ∇νXρ] = 0 (3.3.5)

Moreover, since Xµ is Killing we have

∇[µXν] = ∇µXν (3.3.6)

Thus

X[µ∇νXρ] =
1

3

{

Xµ∇[νXρ] − Xν∇[µXρ] + Xρ∇[µXν]

}

=
1

3

{

Xµ∇νXρ − Xν∇µXρ + Xρ∇[µXν]

}

= 0

(3.3.7)

So
Xρ∇µXν = Xρ∇[µXν] = −2X[µ∇ν]Xρ (3.3.8)

Now multiply this equation by ∇νXν and contract the indices. This gives

(∇µ
X

ν)Xρ(∇µXν) = −2(∇µ
X

ν)X[µ∇ν]Xρ

= −2Xµ(∇µ
X

ν)(∇νXρ)

= −2κXν(∇νXρ)

= −2κ2
Xρ

(3.3.9)

where we used that if Bµν is antisymmetric then for any Aµν we have A[µν]B
µν =

AµνB
µν along with the equation (3.3.4). This means that we have obtained the

following simple expression for the surface gravity

κ2 = −1

2
(∇µ

X
ν)(∇µXν)

∣
∣
∣
Σ

(3.3.10)

This is indeed a simple formula, since obtaining the surface gravity κ is now re-
duced to taking covariant derivatives (not even in the direction of Σ).
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Several comments are in order concerning general Killing horizons. First of all, as
mentioned above Killing horizons does not a priori have anything to do with event
horizons. It is for example not hard to realize that ordinary Minkowski spacetime
is filled with Killing Horizons. Of course, ordinary Minkowski spacetime contains
no event horizons. Furthermore, notice that if Σ is a Killing horizon with associ-
ated Killing vector Xµ and with surface gravity κ, it will also be a Killing horizon
for kXµ (k constant) but with surface gravity k2κ. We therefore conclude that
the surface gravity of a Killing horizon Σ is not an intrinsic (i.e., geometrical)
quantity for Σ. However, if we consistently choose a normalization of the Killing
field Xµ, this will uniquely fix the surface gravity of the Killing horizon Σ. As ex-
plained below such a normalization can be achieved by choosing a normalization
of respectively the time translational Killing field Kµ and the rotational Killing
field Rµ. We will use the same normalization for Kµ and Rµ as we did when we
defined the Komar mass and angular momentum (explained in section 2.4.1). As
we will also see below, this normalization allows us to give a physical interpreta-
tion of the surface gravity. Finally, we mention that it seems that Killing horizons
play an important role in understanding the causal structure of spacetime31. We
will not try to justify this claim but keep it in mind for further studies. Before
we move on to looking at how event horizons can be considered Killing horizons,
we will state an important theorem regarding surface gravity

Theorem Suppose that Σ is a Killing horizon and that the energy-momentum
tensor obeys the dominant energy condition. It then holds that the surface gravity
κ of the Killing horizon Σ is constant on Σ.

Proof. We include this (sketchy) proof to show the use of the dominant energy-
condition. The derivation relies on the fact that on the Killing horizon it holds
that

RµνX
µ
X

ν = 0 (3.3.11)

It is beyond the scope of this project to justify this, but it follows from a detailed
analysis of the so-called generators of null horizons32 and Killing’s equation. Now
using Einstein’s equation along with XµX

µ = 0, we see that on Σ

TµνX
µ
X

ν = Tµ(X)Xµ = 0 (3.3.12)

Since the energy-momentum tensor Tµν satisfies the DEC and Xµ is null, the
vector T µ(X) is timelike or null. The equation (3.3.12) can therefore only be
satisfied if the vector T µ(X) is proportional to Xµ. This implies that X[µTν](X) =

31For example, cosmological De Sitter space contains a Killing horizon.
32This is the theory of geodesic congruences. Both [Wal84] and [Tow97] have a chapter

devoted to this.
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0 (go to coordinates where Xµ = (1, 0, 0, 0) and use that if a tensor has all
components equal to zero, it must be the zero tensor). Therefore

X[ρTµ]νX
ν = 0 (3.3.13)

By use of Einstein’s equation and the equations (3.3.4), (3.3.8) along with the
Killing vector lemma, it is straight forward (for details, see [Wal84]) to show that

X[ρ∇µ]κ = −X[ρTµ]νX
ν (3.3.14)

We therefore conclude that X[µ∇ν]κ = 0, which in turn means that ∇νκ is pro-
portional to Xµ and therefore normal to Σ. Thus for any tangent tµ to Σ we
have

tµ∇µκ = 0 (3.3.15)

i.e., κ is constant on Σ.

3.3.2. Event horizons as Killing horizons

Consider the (outer) event horizon H of a charged rotating black hole r = r+.
As we have argued the event horizon is a null hypersurface. This means that if
we can find a Killing field which is everywhere normal to H, the event horizon
H is a Killing horizon for which we may associate a unique (after normalization)
surface gravity. Let us start by looking at the Schwarzschild black hole. As we
have seen

gtt → 0 as r → RS (3.3.16)

Therefore Kµ is normal to the Schwarzschild event horizon H. We therefore con-
clude that the Schwarzschild event horizon H is a Killing horizon for Kµ. Let us
now return to the general Kerr black hole. Recall that the Kerr spacetime has two
Killing vector fields: The time translational Killing field Kµ and the rotational
Killing field R

µ. The first thing we notice is that K
µ is not normal to H for a

rotating black hole, since gtφ 6= 0 on H. However, since the Kerr black hole is
rotating we could imagine that we could choose a local rotating frame in which
the event horizon is static33, i.e., in the rotating frame, the event horizon looks
Schwarzschild. Now let Xµ be the Killing field that generates time translations in
the rotating frame. Since the event horizon looks Schwarzschild in the rotating
frame, we expect Xµ to be normal to the event horizon. The vector field Xµ rep-
resents ”time translations” in the rotated frame so it must be given by a ”time
translation” + ”rotation” in non-rotating frame. We therefore expect the Kerr

33In other words, we imagine that the event horizon of the Kerr black hole rotates in some
sense. We then choose a frame which rotates along the rotating event horizon so that this region
of spacetime in this particular frame looks static. Such a transformation can only make a region
of spacetime look static otherwise we would conclude that the Kerr spacetime is static which
it is most certainly not. Notice how this is in accordance with Mach’s principle.
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event horizon to be a Killing horizon of a vector field Xµ of the type (where ΩH

is a constant)
X

µ = K
µ + ΩHR

µ (3.3.17)

Of course any (constant!) linear combination of Killing fields is again a Killing
field, so the vector field Xµ, given by the above expression, is indeed Killing. Notice
that our normalization of Kµ and Rµ (K = ∂t, R = ∂φ) fixes the normalization
of Xµ. The number ΩH is determined by requiring that X = ∂t + ΩH∂φ is normal
to H. Since the tangent space to the hypersurface H is spanned by ∂t, ∂θ and ∂φ

we see that X
µ is normal to H if the following two equations

gtt + ΩH gtφ = 0 (3.3.18)

and
gtφ + ΩH gφφ = 0 (3.3.19)

are satisfied on all of H. Apart from the above plausibility argument it is not
evident that both these equations can be solved and that they can be solved with
the same ΩH. This is, however, the case, as the reader can easily verify. This
means that the event horizon H is a Killing horizon for the Killing field

X
µ = K

µ + ΩHK
µ (3.3.20)

where the constant

ΩH = −
gtφ

gφφ

∣
∣
∣
∣
∣
r=r+

=
a

r2
+ + a2

(3.3.21)

is called the angular velocity for the rotating black hole. Having found the (unique
determined) Killing vector field that makes the event horizon H into a Killing
horizon and satisfies the normalization conditions, we can calculate the surface
gravity associated with H. To see how this is done, we will now calculate the
surface gravity for the Schwarzschild black hole, i.e., a = Q = 0. To this end we
will use the formula (3.3.10) which can be rewritten as

κ2 = −1

2
gµρgνλ(∇ρX

ν)(∇µX
λ)

∣
∣
∣
H

(3.3.22)

For the Schwarzschild black hole ΩH = 0 so the Killing vector field X
µ is given

by Xµ = Kµ. Therefore in coordinates we have

X
µ = (1, 0, 0, 0) (3.3.23)

Recall the usual formula for the covariant derivative of a vector field in coordinates

∇µX
ν = ∂µX

ν + Γν
µρX

ρ (3.3.24)
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Thus
∇µX

ν = Γν
µρX

ρ = Γν
µt (3.3.25)

The only non-vanishing Christoffel symbols of the type Γν
µt are Γt

rt and Γr
tt and

they are given by

Γt
rt =

MG

r2(1 − 2MG/r)
and Γr

tt =
MG(1 − 2MG/r)

r2
(3.3.26)

Using this along with the fact that the Schwarzschild metric is diagonal we obtain

κ2 = −1

2

{

gttgrr(Γ
r
tt)

2 + grrgtt(Γ
t
rt)

2
}∣
∣
∣
r=2MG

(3.3.27)

We have
grrgtt =

(
gttgrr

)−1
= −g−2

rr = −(1 − 2mG/r)2 (3.3.28)

Therefore the surface gravity for the Schwarzschild black hole is given by

κ =
1

4MG
(3.3.29)

Notice that κ decreases with M . A straight forward but long and tedious compu-
tation shows that in general, the surface gravity for the Kerr black hole is given
by

κ =
(M2 − a2 −Q2)1/2

2M [M + (M2 − a2 −Q2)1/2] −Q2
(3.3.30)

3.3.3. The ergosphere

We will now explain what it means for a path (in a stationary spacetime) to
be stationary. A stationary path is a one-dimensional curve which is invariant
under the ”time translations” ϕt defining the stationary spacetime. Equivalently a
stationary path is an orbit of the one-parameter-group ϕt. Physically a stationary
path can be interpreted as a curve where only time flows, i.e., the spatial part
does not change. Clearly for such a path we have for the tangent Uµ (in some
parameterization)

Uµ = V −1(x)Kµ (3.3.31)

for some normalization factor V −1. A physical particle is said to be stationary
if its world line γ is a stationary path. The tangent γ̇µ for a physical (massive)
particle in the affine parameterization γ ≡ γ(τ) fulfills that γ̇µγ̇µ = −1. Therefore,
we conclude that for a stationary particle we have

γ̇µ = V −1
K

µ, V 2 = −KµK
µ (3.3.32)

We therefore see that if a stationary asymptotically flat spacetime contains a
region where the time translational Killing field K

µ becomes spacelike, KµK
µ ≥ 0,
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it will be impossible for a physical particle located in this region to stay stationary.
This is also seen if we calculate the acceleration aµ of a particle of mass m that is
held stationary (clearly stationary paths will not, in general, be geodesics since
freely falling particles certainly moves in space as time goes.). We have

aµ = Dτ γ̇
µ = γ̇ν∇ν(V K)µ = − 1

V 2
Kν∇µ

K
ν (3.3.33)

so
aµ = ∇µ log V (3.3.34)

here we used that V 2 = −KµK
µ implies that Kµ∇νK

µ = −V∇νV along with
Killing’s equation. The stationary particle is thus under the influence of a force
F µ of the magnitude

F =
m

V

√

(∇µV )(∇µV ) (3.3.35)

which goes to infinity when V → 0. The level surface V = 0 for is called the
stationary limit surface (for obvious reasons). If we use the usual normalization
of Kµ we therefore see that the function V (called the redshift factor) goes from 1
at spatial infinity to 0 at the stationary limit surface. The stationary limit surface
of the Schwarzschild spacetime is just the event horizon H. This means that as
long as we stay outside the event horizon, it is always possible to stay stationary.
However, notice that for the general rotating (a 6= 0) charged Kerr black hole we
have

− V 2 = KµK
µ = gtt =

a2 sin2 θ − ∆

ρ2
(3.3.36)

Now since ∆ = r2 + a2 + GQ2 − 2MGr, the right-hand side becomes positive
when

r2 + a2 cos2 θ +GQ2 − 2MGr < 0 (3.3.37)

We therefore see that in the region defined by (referred to as the ergosphere)

r+ < r < MG + (M2G2 −GQ2 − a2 cos2 θ)1/2 (3.3.38)

it is impossible for a physical particle to stay stationary. In this way the ergosphere
is no different than the black hole itself (i.e., the spacetime inside the event
horizon) there is, however, one crucial difference: It is possible for a physical path
to enter the ergosphere and exit it again. As is easy to show, such a path must
have (a > 0)

dφ

dτ
> 0 (3.3.39)

when it is inside the ergosphere. The different physical and non-physical paths
are depicted in fig. 13.
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Fig 13. The paths (a), (c), (e) and (f) are all physical while the paths (b) and (d) cannot be
obtained by a physical particle.

Physical interpretation of surface gravity and angular velocity

We will now give a physical interpretation of respectively the surface gravity and
angular velocity of a black hole. We start by looking at surface gravity.
Usually the term ”surface gravity” of an object is used for the gravitational force
(per unit mass) experienced by a test particle on the surface of the given object.
However, a meaningfull/intuitive physical interpretation of something related to
a very strong gravitational field, such as a black hole, should be in terms observ-
ables that can be measured at spatial infinity (relativity is relative and we are
(hopefully) always located far away from a black hole). Consider the stationary
particle of mass m from before. The particle is under the influence of the force

F = maµ (3.3.40)

However, an observer located at spatial infinity will not measure that the particle
is influenced by the force F µ but instead a force redshifted by a factor V . This
statement can be understood if one imagines that the distant observer is holding
the particle stationary by a (massless) string. The force the distant observer needs
to apply to the sting in order to keep the particle stationary has the magnitude34

F∞ = ma∞ = V F, a∞ =
√

(∇µV )(∇µV ) (3.3.41)

which is, as we will see now, finite and in fact equal to the surface gravity κ (times
m). To prove this claim, first notice that for a general Killing field Xµ with an

34According to (1.2.21) (with γ̇µ = 1/V Kµ, since the point mass m is stationary), the energy
as measured from infinity is redshifted by a factor of V . By using conservation of energy, we
see that the force at the end of the string (at spatial infinity) must also be redshifted by the
factor V .

imsart-generic ver. 2008/08/29 file: blackholephysics1.tex date: December 2, 2008



Andreas Vigand Pedersen/Aspects of Black Hole Physics 73

associated Killing horizon Σ we have the following identity

3(X[µ∇ν
X

ρ])(X[µ∇νXρ]) = X
µ(∇ν

X
ρ)Xµ(∇νXρ)−2Xµ(∇ν

X
ρ)Xν(∇µXρ) (3.3.42)

which is straight forward to show if one writes out the left-hand side and uses
Killing’s equation. Now this identity holds on all of the spacetime manifold but
by equation (3.3.7) we know the left-hand side goes to zero as we approach the
horizon Σ. Also, since Σ is a Killing horizon for Xµ we know that XµXµ goes to
zero as we approach the horizon Σ. This means that we cannot just divide the
left-hand side by XµXµ and evaluate on the horizon. However, the derivative of
the left-hand side vanishes on the horizon Σ (since it is a product of two factors
that each vanish on Σ) while the derivative of XµXµ is given by −2κXµ which
is non-zero provided κ 6= 0. This means that, the limit of the ratio between
the left-hand side of equation (3.3.42) and X

µ
Xµ goes to zero as we approach Σ

(l’Hospital’s rule). So

0 = lim
p→H+

{

(∇ν
X

ρ)(∇νXρ) + 2
(Xν∇ν

X
ρ)(Xµ∇µXρ)

−XµXµ

}

(3.3.43)

Here limp→H+ denotes the limit as we approach the horizon from the outside
where the Killing field Xµ is assumed to be timelike, i.e., −XρXρ > 0. Now using
the relation (3.3.10) along with the expression for the ”physical acceleration” aµ

for an orbit of Xµ

aµ =
Xν∇νX

µ

−XρXρ

(3.3.44)

we get that
κ = lim

p→H+
(V a) (3.3.45)

where a ≡ (aµaµ)1/2 and V ≡ (−XµXµ)
1/2. Let us now return to black holes

where we have chosen Xµ so that the event horizon H is a Killing horizon for
Xµ. According to the above analysis, which lead to the equation (3.3.45), the
surface gravity is related to the acceleration of the physical orbits of Xµ near H.
The force F∞ was however related to the acceleration of the physical orbit of Kµ

near H, which is only defined outside the ergosphere. On a general rotating black
hole, the only point p where H and the stationary limit surface intersect is on
the rotation axis (i.e., the point (r = r+, θ = 0)). Now observe that the orbits of
respectively Kµ and Xµ through p are the same (since Rµ vanishes on the axis of
rotation). Therefore, the surface gravity can be interpreted as the force (per unit
mass), that is needed to keep a particle located on the rotation axis just outside
H stationary (see fig. 14).

We will now give an interpretation of the angular velocity ΩH. Notice that for
the Killing field Xµ = Kµ + ΩHRµ we have

X
µ∇µ(φ− ΩHt) = 0 (3.3.46)
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Fig 14. Physical interpretation of the surface gravity κ.

this means that the function φ − ΩHt is constant on the orbits of X
µ. As we

have argued the Killing field Xµ can be interpreted as being the generator of time
translations in a local rotating frame which is rotating along the event horizon.
This suggests that we can interpret the quantity ΩH as the angular velocity of
the ”spatial part” of the event horizon as measured from spatial infinity. This
interpretation is also supported by the fact that the minimum angular velocity
(in the direction of ∂φ) of a particle located on the horizon is given by ΩH (for the
simple argument see [Car04, p. 266-267]). Therefore spacetime is dragged along
the rotation of the rotating black hole, this phenomenon is know as dragging of
inertial frames35.

3.4. Black hole dynamics

3.4.1. The Penrose Mechanism

In this section we will see that it is possible to extract energy from a rotating
black hole. To this end, we will discuss the so-called Penrose mechanism (or Pen-
rose process). We start out with some general considerations.

A particle of mass m following a path γ(τ) has the four-momentum

pµ = mγ̇µ (3.4.1)

On a stationary, axisymmetric spacetime, we were able to define respectively the
energy and angular momentum of the particle by the expressions

E = −Kµp
µ and pµ = Rµp

µ (3.4.2)

On the Kerr spacetime (1.4.3), the two quantities take the form

E = m
(

1 − 2MGr

ρ2

)

ṫ+
2mGMar

ρ2
sin2 θ φ̇ (3.4.3)

35This is an effect of all rotating bodies, not only the ”extreme” case of a Kerr black hole.
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Fig 15. The Penrose mechanism.

and

L = −2mMGar

ρ2
sin2 θ ṫ+

m(r2 + a2)2 −m∆a2 sin2 θ

ρ2
sin2 θ φ̇ (3.4.4)

Far away from the rotating black hole, the Killing field Kµ is timelike and the
energy E is positive as it should be. However, recall that the Kerr spacetime has a
region (the ergosphere) where the Killing field Kµ becomes spacelike. This means
that, inside the ergosphere it is possible to have

E < 0 (3.4.5)

As we will now see, the fact that inside the ergosphere energy can be negative, but
outside the ergosphere must be positive, will allow us to extract energy from a
rotating black hole. The idea is very simple: Suppose that a particle A, located at
spatial infinity, is send toward a rotating black hole. Denote the four-momentum
of the particle A by pµ

A - the particle A therefore has the energy

EA = −Kµp
µ
A > 0 (3.4.6)

Recall the crucial property of the quantities E and L; they are conserved along
geodesics. This means that, as the particle A freely falls toward the rotating
black hole, its energy will be conserved. Now suppose that, once the particle A
has entered the ergosphere (but is still outside the event horizon), it splits up in
two particles B and C, in such a way that the particle B has negative energy
and enters the black hole while the particle C escapes from the ergosphere and
to spatial infinity36. Denote the four-momentum of the two particles B and C

36Of course, the real trick consists in showing that two such geodesic trajectories exist.
However, Penrose was able to show that this is indeed the case, thus the name of the mechanism.
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by respectively pµ
B and pµ

C . By conservation of four-momentum, we have at the
moment of the split up A→ B + C that

pµ
A = pµ

B + pµ
C (3.4.7)

and by contraction with Kµ, we see

EA = EB + EC (3.4.8)

Now since the particle A started outside the ergosphere and particle C escapes
from the ergosphere, we conclude that EA, EC > 0. However, we arranged the
split up so that EB < 0, therefore

EC = EA + |EB| (3.4.9)

We therefore see that the particle C has more energy than the particle A started
out with! By total conservation of energy, the particle C must have carried away
an amount |EB| of energy away from the black hole. In other words, when the
black hole has settled down, after having absorbed the negative energy particle,
we have

δM = −|EB| (3.4.10)

This shows that it is possible to extract energy from a rotating black hole. How-
ever, if we are to believe the cosmic censorship conjecture, there must be some
limit on the amount of energy we can extract from a rotating black hole. If this
were not the case, we would be able to extract energy from a rotating black hole
until the event horizon disappears and the r = 0 singularity becomes naked. Such
a limit does indeed exist, it follows from the fact that a negative energy particle
must carry negative angular momentum. In order to realize this, notice that the
four-momentum vector pµ

B (as always) is future directed timelike while the Killing
field ξµ, by construction, is future directed null on the event horizon. This means
that, the particle B entering the rotating black hole obeys

pµ
Bξµ = pµ

B(Kµ + ΩHRµ) = −EB + ΩHLB < 0 (3.4.11)

which shows that ifEB is negative, then LB must also be negative. Since δM = EB

and δJ = LB, we therefore conclude that the changes in the black hole mass and
angular momentum satisfy

δJ <
δM

ΩH

(3.4.12)

Hence, if we carry away from a black hole, we must also carry away angular
momentum, which in turn will slow down the rotation of the black hole. At some
point, all the black hole angular momentum has been carried away and the black
hole becomes Schwarzschild, i.e., the ergosphere disappears and no more energy
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extraction can take place. The condition (3.4.12) can be rewritten in terms of the
so called irreducible mass, defined by

M2
irr =

1

2

(

M2 +
√

M4 − (J/G)2
)

(3.4.13)

As is straight forward to check, it holds that

δMirr =
a

4GMirr

√
G2M2 − a2

(δM/ΩH − δJ) (3.4.14)

The condition (3.4.12) can therefore be written

δMirr > 0 (3.4.15)

This shows that it is impossible to decrease the irreducible mass via the Penrose
mechanism. It fact this is true for any physical process. This is seen using the
area theorem: The induced metric on the event horizon is given by

αijdx
idxj = ρ2(r+)dθ2 +

(r2
+ + a2)2 sin2 θ

ρ2(r+)
dφ2 (3.4.16)

The area for the Kerr black hole is therefore

A =

∫
√

|α| dθdφ = 4π(r2
+ + a2) (3.4.17)

Now, the black hole area A is related to the irreducible mass through

A = 16πG2M2
irr (3.4.18)

Therefore, if we could decrease the irreducible mass in a physical process, we
would be able to decrease the black hole area, which is not possible by the Hawk-
ing area theorem.

Consider an ”ideal process” with δMirr = 0 in which we extract energy and
angular momentum from a black hole. We see from (3.4.13) that the black hole
mass cannot be reduced below Mirr. The quantity

M −Mirr (3.4.19)

therefore has the interpretation of ”rotational energy” of the rotating black hole.

3.4.2. The laws of black hole dynamics

The Penrose process showed us that it is possible to extract energy and angular
momentum from a black hole. The Penrose process therefore teaches us that a
black hole is not just an absorber - in other words it is a much more dynamical
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object than first thought. Of course there is nothing special about the Penrose
process other than its simplicity37: A black hole is an object that can exchange
energy, angular momentum and charge with the surrounding universe through all
sorts of physical processes.

As we will now see, it is possible to write down a formula that encapsulates the
dynamics of black hole mechanics. To do this, we will start out by re-expressing
the angular momentum J and total mass M (energy) of an axisymmetric, sta-
tionary spacetime containing a black hole. Recall that we were able to express
the angular momentum of an axisymmetric spacetime as a surface integral over
a surface S at spatial infinity

J = − 1

8πG

∫

S

dA nµσν∇µ
R

ν (3.4.20)

where nµ and σµ are the two unit normals to S (with nµ being the future directed
timelike normal) and dA is the area element on S. Furthermore, recall that this
formula was derived using the (normalized) Komar current

Jµ[R] = Rν

(

T µν − 1

2
gµνT

)

=
1

8πG
∇ν(∇µ

R
ν) (3.4.21)

along with Stokes’ theorem (see section 2.4.1). Now let Σ be a asymptotically flat
spacelike hypersurface in the exterior black hole spacetime with outer boundary
S and with inner boundary H consisting of the intersection between the event
horizon H and Σ (see fig. 16). Furthermore suppose that we choose Σ so that
it intersects the horizon H on a 2-sphere, i.e, H ∼ S2. We can nu use the two
expressions for the Komar current (3.4.21) along with Stokes’ theorem to equate
a surface integral at the boundary of Σ, i.e., the two surfaces S and H , with a
volume integral over Σ. By Stokes’ theorem we have

∫

S

dA nµσν∇µ
R

ν +

∫

H

dA nµσν∇µ
R

ν = 8πG

∫

Σ

dV nµRν

(

T µν − 1

2
gµνT

)

(3.4.22)
where dV denotes the volume element on Σ. Several comments are in order. First,
since the surface H is null, the two normals nµ and σµ cannot be chosen to be
unit vectors. However, Stokes’ theorem still applies if we choose the following
normalization of nµ and σµ (and use that H ∼ S2)

nµσ
µ = −1 (3.4.23)

Second, the Killing vector Xµ is timelike (null) future directed on H , this means
that we can identify nµ = Xµ on the boundary of the event horizon H . Using the

37For example, it is possible to carry energy away from a rotating black hole using a scalar
field wave incident upon the black hole [Wal84, page 327-328].
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Fig 16. The spacelike hypersurface Σ has outer boundary S and inner boundary H.

expression (3.4.20), we therefore see that the angular momentum can be written
as

J =
1

8πG

∫

H

dA Xµσν∇µ
R

ν −
∫

Σ

dV nµRν

(

T µν − 1

2
gµνT

)

(3.4.24)

We can write up a similar expression for the spacetime mass. As we have argued,
the mass of an axisymmetric, stationary spacetime is given by the following sur-
face (Komar) integral

M =
1

4πG

∫

S

dA nµσν∇µ
K

ν (3.4.25)

Using the same reasoning as above, we then see that we have

M = − 1

4πG

∫

H

dA Xµσν∇µ
K

ν +

∫

Σ

dV nµKν

(

2T µν − gµνT
)

(3.4.26)

Recall the relationship between the three Killing fields Kµ,Rµ and Xµ

K
µ = X

µ − ΩHR
µ (3.4.27)

where the constant ΩH is the angular velocity of the black hole. Using this we
get

M = − 1

4πG

∫

H

dA Xµσν∇µ
X

ν +

∫

Σ

dV nµXν

(

2T µν − gµνT
)

+ 2ΩH

{

1

8πG

∫

H

dA Xµσν∇µ
R

ν −
∫

Σ

dV nµRν

(

T µν − 1

2
gµνT

)
}

(3.4.28)

We now use the expression (3.4.24) for the angular momentum to obtain

M = − 1

4πG

∫

H

dA Xµσν∇µ
X

ν +

∫

Σ

dV nµXν

(

2T µν − gµνT
)

+ 2ΩHJ (3.4.29)

imsart-generic ver. 2008/08/29 file: blackholephysics1.tex date: December 2, 2008



Andreas Vigand Pedersen/Aspects of Black Hole Physics 80

The first term can now be expressed in terms of the black hole horizon area A and
the surface gravity κ. Using the relation (3.3.4) and the normalization condition
(3.4.23), we see that

1

4πG

∫

H

dA Xµσν∇µ
X

ν =
1

4πG

∫

H

dA κσνX
ν = − κ

4πG

∫

H

dA = − κA

4πG
(3.4.30)

where we used that the surface gravity is constant over the horizon H . We have
now found an expression for the spacetime mass in terms of the horizon area,
surface gravity, angular velocity and spacetime angular momentum:

M =
κA

4πG
+ 2ΩHJ +

∫

Σ

dV nµXν

(

2T µν − gµνT
)

(3.4.31)

As interesting as this formula is, it is not quite what we are looking for. In the
following we wish to find an expression for the differential dM (exactly what we
mean with this is explained below). First, note that if the matter field Tµν is of
electromagnetic nature, the trace T = T µ

µ vanishes. Therefore, in this case

M =
κA

4πG
+ 2ΩHJ + 2

∫

Σ

dV nµXνT
µν (3.4.32)

If the black hole is surrounded by vacuum Tµν = 0, which we will assume below,
the above formula will reduces to

M =
κA

4πG
+ 2ΩHJ (3.4.33)

Before we move on, notice that the formula (3.4.31) is very general. The equation
(3.4.31) tells us the relationship between the mass and angular momentum of an
stationary, axisymmetric spacetime containing a black hole. The matter field Tµν

is completely unspecified (of course it must respect the DEC, since the DEC ⇒ κ
constant on H). Especially, the equation (3.4.31) does not assume that the black
hole has ”no hairs”38.

A formula for the differential mass dM

Consider a stationary vacuum black hole of mass M and angular momentum J
(for simplicity, suppose that Q = 0). Now suppose that we make a small station-
ary, axisymmetric change in the metric. This will change the black parameters
M and J slightly to M + dM and J + dJ . We want to find an expression for
the differential mass dM . A straight forward variation of equation (3.4.33) shows
that

dM =
1

4π
(Adκ+ κdA) + 2(JdΩH + ΩHdJ) (3.4.34)

38The no-hair theorem only applies if Tµν describes an electromagnetic field or vacuum
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As we will now see, the two terms Adκ and JdΩH combine in a very special
way. An analysis of the behavior of the terms Adκ and JdΩH can be found
in [Wal84]. This analysis relies, not only on the definition of the Komar mass
(2.4.41), but also on the so-called ADM-energy39. Defining and understanding the
ADM-energy is beyond the scope of this project but we note that the ADM energy
is an alternative definition of the energy of a (asymptotically flat) spacetime and
(under certain assumptions) is equivalent to the Komar energy [Car04].

Fortunately, there exists a very nice little derivation of dM that does not rely
on the ADM-energy (among other things!) but rather the no-hair theorem: By
the no-hair theorem, i.e., uniqueness, we know that the mass M of a black hole
is completely determined in terms of the area A and the angular momentum J ;

M = M(A, J) (3.4.35)

Now choose geometric units (c = G = 1). Here both A and J have dimensions
of M2. This means that the function M = M(A, J) must exhibit the following
scaling behavior

αM = M(α2A, α2J) (3.4.36)

The function M is therefore a homogenous function of degree 1/240. Thus by
Euler’s theorem for homogenous functions

A
∂M

∂A
+ J

∂J

∂A
=

1

2
M (3.4.38)

Therefore by equation (3.4.33) we have

A
{∂M

∂A
− κ

8π

}

+ J
{∂M

∂J
− ΩH

}

= 0 (3.4.39)

Since the parameters A and J are free, this identity can only be true if ∂M/∂A =
κ

8πG
(reintroducing G) and ∂M/∂J = ΩH. Therefore

dM =
κ

8πG
dA+ ΩHdJ (3.4.40)

In section 3.2.1 we noted an analogy between the black hole theorems (the no-
hair and area theorem) and thermodynamics. The equation for dM makes this
analogy even more apparent.

39Short for Richard Arnowitt, Stanley Deser and Charles Misner. For a relatively under-
standable introduction the ADM-energy, see [Tow97].

40Recall, a vector function f is said to be homogeneous of degree k if

f(αv) = αkf(v) (3.4.37)
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Recall the first law of thermodynamics

dE = TdS + work terms (3.4.41)

Here E is the energy, T is the temperature, S is the entropy and the ”work
terms” denote the work done on the system when we change the configuration
parameters defining the system (such as volume, magnetization etc.). Recall that
the terms on the right-hand side of the first law of thermodynamics all have the
form

I
︸︷︷︸

intensive
variable

× dE
︸︷︷︸

extensive
variable

(3.4.42)

Let us now compare the first law of thermodynamics to the formula for the differ-
ential mass (3.4.40): Both the formulæ tell us how the energy of their respective
systems (a black hole and a thermodynamical system) changes if we make small
changes in their parameters. The first thing we notice is that the term ΩHdJ in
(3.4.40) is precisely the work term we would expect a rotating body to have (the
work we have to do on a rotating Newtonian body in order to change its angular
momentum by an infinitesimal amount dJ is exactly given by ΩdJ). Moreover,
the terms in the formula for the differential mass dM all possesses the struc-
ture (3.4.42). This suggests that we can identify the term κ/(8πGdA) as a ”heat
term” and in fact consider a black hole as a thermodynamical system (!) with
the following identifications (up to a multiplicative constant for A and κ)

E ! M

S ! A

T !
κ

8πG

Of course, if a black hole really is a thermodynamical system, it must also respect
the zeroth and second law of thermodynamics (for all we know, the ”first law”
3.4.40 could be a pure coincidence). The zeroth law of thermodynamics states
that if a thermodynamical body is in equilibrium, the temperature T is constant
throughout the body. According to the above identifications, we identify the tem-
perature of a black hole with its surface gravity (up to a multiplicative constant),
however, we found that the surface gravity κ is constant over the event horizon of
the black hole (see p. 67). Therefore, the zeroth law is satisfied! What about the
second law of thermodynamics? The second law of thermodynamics states that
the entropy of an isolated body cannot decrease with time. Now recall the area
theorem due to Hawking: ”The area A of a black hole horizon cannot decrease
with time”. Since we identify the entropy of a black hole with its horizon area
(up to a multiplicative constant), we see that the second law of thermodynamics
is also satisfied! Finally, recall that a thermodynamical object emits radiation
corresponding to its temperature T . This means that if the surface gravity really
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is to be interpreted as a black hole temperature, a black hole must emit thermal
radiation corresponding to κ/8π (times some constant). Since a black hole is not
able to emit radiation from its horizon, it seems unlikely that it should radiate
at all. However, we have not taken quantum effects into account and since the
gravitational field is extremely strong near the horizon, it is possible that quan-
tum fluctuations cannot be ignored here. This is exactly the case, as Hawking
was able to show with his famous semiclassical calculation (1974): A black hole
emits thermal radiation (Hawking radiation) corresponding to the temperature
(in units kB = c = ~ = 1)

T =
κ

2π
(3.4.43)

All of these considerations strongly suggests that the identification of black holes
as thermodynamical systems should be taken serious: Since a black hole has a
temperature it also has an entropy. From the relation TdS = (κ/8πG)dA we
conclude from the above expression for T that

S =
kBA

4ℓ2P
(3.4.44)

where we have reintroduced kB, c and ~ and where

ℓP =
√

G~/c3 (3.4.45)

is the Planck length. Notice how the no-hair theorem poses two problems now.
First of all, the entropy of a system is related to the (logarithm of the) number
of accessible microstates of the given system. However, the no-hair theorem indi-
cates that a black hole has only one accessible microstate. Therefore, the no-hair
theorem suggests that the entropy of a black hole should be very low (well, in
fact zero)! However, if we calculate the entropy of a solar mass black hole, we see
that the entropy (3.4.44) will contain a factor (3km/ℓP)2 (very big!).

Moreover, taking Hawking radiation into account, we see that a black hole
will eventually evaporate41. From the no-hair theorem we expect the Hawking
radiation to be completely independent of the material entering the black hole.
Therefore it seems that the information contained in a black hole simply disap-
pears as the black hole evaporates! This is of course in deep conflict with the
most fundamental principles of modern physics. It is therefore the hope that a
quantum theory for gravity will be able resolve these problems (among others).

41Is this is violation with the area theorem? No, since the quantum field responsible for
Hawking radiation does not respect the WEC
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