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Fullerenes

Fullerenes are carbon molecules that form polyhedral cages. Their bond
structures are exactly the planar cubic graphs that have only pentagon and
hexagon faces. These are called fullerene graphs.

A wealth of information can be derived directly from the fullerene graphs.
This talk will focus on fullerene manifolds or intrinsic surfaces and how these
embed naturally in space.

A fullerene graph's dual is the planar graph for which faces become vertices
and vice versa. This representation is easiest to work with for reasoning

about their surface properties.
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Fullerenes come in many shapes and sizes. On N vertices, there are O(N?)
distinct isomers.

15-Cao 1n-Ceo 1h-Coso

C]-C524 menhir Td-C1140 D5h'c360

Table: A selection of a few fullerenes
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Gaussian curvature

Gaussian curvature K = k1Ko is the product of principal curvatures and
describes how a surface bends.

K=0 K>0 K<0

It is an intrinsic and local property of the manifold, and is independent of
how it may be embedded.
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The Gauss-Bonnet theorem

Integrating the Gaussian curvature over an orientable surface yields:

/ ds K(s) = 27(2 — 2g)
S

¢ o &

Sphere Plane / Torus Genus 2
4 0 —4m

Fullerene surfaces have spherical topology, i.e. a total of curvature of 4.
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Discrete Gauss-Bonnet theorem
Discrete version of Gauss-Bonnet:

N
> K, =2m(2 - 2g)

v=1

For a point v, the Gaussian curvature K, is the difference between 27 and
the angle of a circle around the point:

K, =27 — 3,6, (v)

Fullerenes have total curvature 47 like the sphere, i.e. always exactly 12

pentagons, each contributing %’r.
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Folding and unfolding positive curvature surfaces

NVAVAVAVAV \/\/\/
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/N N\ N\ \ AVAVAVAVAN
Deg. 6 patch D;g- 5 vertex
% cut out.

Deg. 5 cone
Gauss. curvature %’r
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Figure: G,,-Cqg2 Eisenstein plane unfolding and 3D-embedding. @
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Ideal fullerene embedding in space

Given a fullerene dual graph, can we find an isometric embedding, i.e., one
that doesn't stretch or twist its surface metric? This is true when all the
triangles remain equilateral in the embedding.

This is the natural embedding of the fullerene dual, and modulo a slight
distortion due to physical effects, it closely resembles the physical fullerene
structure.
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Does the ideal embedding always exist?

Yes! By Alexandrov's Theorem:

Theorem

Let M be a convex polyhedral metric on the sphere. Then there exists a
convex polyhedron P C R3 such that the boundary of P is isometric to M.
Moreover, P is unique up to a rigid motion.

A fullerene surface defines a convex polyhedral metric, so a isometric convex
embedding exists and is unique.
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Can we find it?

Usually, but not always. We have used numerical force-field optimization,
which sometimes breaks down due to large forces; increasingly often as
fullerenes grow in size.

Idea: Degree-5 vertex placement uniquely decides shape. Thin out, and find
ideal twelve-cornered shape using surface distances.
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Problem 1: Triangulation of coarse surface is important, most
triangulations yield garbage.

Solution 1: Delaunay triangulation ensures faces without Gaussian
curvature; surface lengths approximate spatial lengths. Need to
perform intrinsic Delaunay triangulation, since we don't have
embedding. Algorithm by Fisher et al. (2007).

Problem 2: How to obtain full fullerene given coarse structure?

Solution 2: Unfolding to Eisenstein plane determines which deg. 6 nodes
are inside each triangle. Unfold and interpolate.
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Distances along fullerene surfaces

The surface metric is only piecewise flat: Multiple straight lines connect the
same two points. Three points do not define a unique triangle.

M / \
\
b
/ \
\ / \_/
2 1 2 2 b
3 v 1 3 v 1
N/ VAN /\
1 5 4 5
\
\ \\
N W

Figure: Length of red path is 21/3. Length of green path is 3.
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It is impossible to equip the surface with a global, isometric 2D-coordinate

system.

However, any pair of adjacent simplices can share a Cartesian coordinate
system. Inside such a pair, lengths and angles are “flat”, and we can
calculate them in the usual manner. Outside the pair, the coordinate system
is invalid if neighbouring a cone point. But a region containing only deg. 6
vertices are “flat” and can be equipped with a common coordinate system. [ )
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Procedure
Given fullerene dual graph:

e
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Procedure
Given fullerene dual graph:

1 Compute coarse intrinsic Delaunay Dég-Caso
triangulation of surface.
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Procedure
Given fullerene dual graph:

1 Compute coarse intrinsic Delaunay
triangulation of surface.

2 Unfold triangles to Eisenstein plane.
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Procedure
Given fullerene dual graph:

1 Compute coarse intrinsic Delaunay

triangulation of surface. AVAVAVAT YA
2 Unfold triangles to Eisenstein plane. 777% B K XX
3 "Rasterize” triangles to find degree-6
nodes in each triangle. S SR
V7 S \VAVA
N
AVAVL TZAVAVANY
AV AVAVAY CINNININN/
- RN
WA AVAVAVAVAVAYAY
L
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Procedure
Given fullerene dual graph:

1 Compute coarse intrinsic Delaunay
triangulation of surface.

2 Unfold triangles to Eisenstein plane.

3 "Rasterize” triangles to find degree-6
nodes in each triangle.

4 Compute coarse polyhedron from
Delaunay triangulation and surface
distances.
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Procedure
Given fullerene dual graph:

1 Compute coarse intrinsic Delaunay
triangulation of surface.

2 Unfold triangles to Eisenstein plane.

3 "Rasterize” triangles to find degree-6
nodes in each triangle.

4 Compute coarse polyhedron from
Delaunay triangulation and surface
distances.

5 Interpolate degree-6 node positions.
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6a

Procedure
Given fullerene dual graph:

Compute coarse intrinsic Delaunay

triangulation of surface.

Unfold triangles to Eisenstein plane.

“Rasterize” triangles to find degree-6 o
nodes in each triangle.
Compute coarse polyhedron from
Delaunay triangulation and surface
distances.

Interpolate degree-6 node positions.
For ideal deltahedron: relax using
force-field optimization.
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Procedure
Given fullerene dual graph:

1 Compute coarse intrinsic Delaunay
triangulation of surface.

2 Unfold triangles to Eisenstein plane.

3 "Rasterize” triangles to find degree-6
nodes in each triangle.

4 Compute coarse polyhedron from
Delaunay triangulation and surface
distances.

5 Interpolate degree-6 node positions.

6a For ideal deltahedron: relax using
force-field optimization.

6b For physical fullerene structure:
dualize and optimize.
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Results

Coarse Interpolated Optimized

Unfolding polyhedron deltahedron fullerene

Table: Result for T4-Ciqo.

Slide 16/22 — James Avery (avery@nbi.dk)



UNIVERSITY OF COPENHAGEN NBI, COPENHAGEN UNIV

Results

Coarse Interpolated Optimized

Unfolding polyhedron deltahedron fullerene

Table: Result for T4-Cos0g.
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Results

Coarse Interpolated Optimized

Unfolding polyhedron deltahedron fullerene

Table: Result for C5,-C714.
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Results

Coarse Interpolated Optimized

Unfolding polyhedron deltahedron fullerene

Table: Result for Dsg-Cips0-
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Results

Coarse Interpolated Optimized

Unfolding polyhedron deltahedron fullerene

Table: Result for Dgg-C3g00.
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Software

Fullerene: A software package for constructing and analyzing structures of
fullerenes.

Schwerdtfeger, Wirz, and Avery
http://tinyurl.com/fullerenes

Implements a huge variety of tools for geometric, topological, physical, and
chemical analysis of fullerenes.
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Gracias por su atencion!
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