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ABSTRACT

In this thesis an algorithm was created that, given a fullerene bond-graph, produces

planar precursor-molecules that can fold up through autoassembly to the polyhedral

molecule, so that it may contribute to the overarching ambition of synthesising

fullerene molecules in the lab. The molecules can be represented by unfoldings of

the polyhedral surface which can be generated recursively through combinatorial

means, using only the bond-graph as input. The possible number of unfoldings

using a single fullerene graph are astronomical. Therefore, the search space was

reduced by implementing physical and symmetry constraints as to find the most

interesting unfoldings. The resulting algorithm shows both high correctness and

modularity, but performance concerns of the current Python implementation will

have to be addressed in the future.

Keywords: CARMA; fullerene; precursor; molecule; unfolding; carbon; Python.
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SOFTWARE

The software created for this thesis can be found at the link below and contains the

following files:

• data

• C60_data

• C120_data

• C140_data

• C180_data

• C540_data

• C540-Ih.mol2 PyMol file containing 3D model of isomer

• C540Ih.py Contains dual_neighbours

• source/python

• common_functions.py Contains all functions used in recursive_unfold() function

• performance.ipynb Used to generate performance numbers

• plot_unfoldings.py Used to generate plots and GIFs

• plotting_functions.py Contains all plotting and GIF creation functions

• recursive_unfold.ipynb Contains main recursive unfolding algorithm

• single_unfold.ipynb Contains unfolding algorithm used for testing

https://github.com/fsd776/thesis-carbon-unfolding
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1 INTRODUCTION

Fullerenes are a class of molecules formed exclusively from pentagonal and hexagonal

rings that form a wide variety of polyhedral cage structures. Polyhedra are the group

three-dimensional shapes with flat polygonal faces, and fullerene polyhedra can

be built out of anything that forms hexagons and pentagons. The size and three-

dimensional shape of the molecule is dependent on the amount of atoms involved,

which can be as little as 20 but in theory could go up to an arbitrarily large number

of atoms.

Although fullerene structures can be formed from any material, carbon-type fullerenes

are of specific interest as they have shown promising properties such as extreme

electron mobility and tensile strength (Fischer et al., 1992). The applications for

fullerenes are therefore vast, and are apparent today in fields ranging of medicine

to electrical engineering (Bakry et al., 2007; Nimibofa et al., 2018). One example

given by Bakry et al. (2007) is that because fullerenes can be opened by changing one

pentagon into a hexagon, they make compelling candidates for delivery systems on

a molecular level. Another example listed in Nimibofa et al. (2018) is that due to the

fact that fullerenes have excellent electron accepting capacity, they are widely adop-

ted in photovoltaics in donor-acceptor dyads as well as in artificial photosynthesis

electronics.

Despite the clear interest in fullerene molecules, reliable production of most fullerenes

remains difficult in practice. Although the smaller fullerenes of less than one-

hundred atoms can be readily obtained in kilogram quantities, yields are impure

and do not allow for selectivity in the type of fullerenes produced. To understand the

scale of the problem, consider that there areO(N9) number of possible fullerene con-

figurations for any N > 20 carbon atom fullerene. For example, the C400 fullerene

1



INTRODUCTION 2

has 132,247,999,328 distinct molecular isomers, and current methods are inadequate

to cherry-pick the desired ones (Schwerdtfeger et al., 2015, p. 97).

To tackle the selective production of fullerenes, research was done on the chemical

rational synthesis of fullerenes. This formation process of a fullerene is comprised of

two stages: First, the formation of a precursor molecule which acts as the building

block. And second the autoassembly stage, in which the precursor molecule is

prompted by an energy impulse such as heat or light to fold into the desired fullerene

structure. Using this method, Scott et al. (2002) were able to successfully synthesise

C60-Ih. In the study, a method known as Flash Vacuum Pyrolysis (FVP) was used to

fold the precursor to the stable finalised fullerene molecule. The pyrolysis technique

involves intensely and briefly heating the precursor molecule, after which the

molecule should assemble to a predetermined structure (Wentrup, 2014). However,

the yields of the final product using FPV were as low as 0.1-1.0%, mainly due

to the harsh reaction conditions (Scott, 2004; Scott et al., 2002). In subsequent

years the method was vastly improved upon, first by Otero et al. (2008) using a

cyclodehydrogenated C60 precursor on a platinum surface who achieved a near

100% yield at the autoassembly stage; and later on by Kabdulov et al. (2010), where

fluorine was placed in key locations on the precursor molecule to help control the

folding process.

The promising results of fullerene synthesis so far has opened up a new avenue

for fullerene research, seeking to deepen the understanding of the autoassembly

process from precursor to final state. In physical terms this is a many body molecular

dynamics problem, and although there are simulation packages that can handle

the quantum chemistry involved current calculation methods are incredibly slow,

as even fullerenes with N ≤ 100 atoms can take weeks of computation time on

relatively large computer clusters (Heuser, 2020).

Enter the CARbon MAnifolds project, CARMA for short, that was set up over the

past few years by James Avery at the Niels Bohr Institute 1. CARMA aims to sidestep

1For more information please visit https://www.nbi.dk/~avery/CARMA/index.html

https://www.nbi.dk/~avery/CARMA/index.html


INTRODUCTION 3

the conventional week-long calculations completely by using intrinsic surface geo-

metries of fullerene structures to determine the molecular properties of the fullerenes.

The project is investigating the possibility to calculate the same molecular properties

quantum-chemical simulations would using nothing but discrete geometry (Avery,

2021). On the basis of the theoretical framework it should moreover be possible to

construct algorithms that can analyse fullerenes orders of magnitude faster than

is possible at the moment. In the end, the created methods should aid in finding

rational synthesis paths for any desired fullerene structure.

As part of the effort, this thesis aims to create algorithms that, given a fullerene bond

graph, produce planar precursor molecules that can fold up through autoassembly to

the polyhedral fullerene molecule. The molecules can be represented by unfoldings

of the polyhedral surface which can be generated recursively through combinatorial

means, using only the bond graph as input. The possible number of unfoldings

using a single fullerene graph are astronomical. Therefore, the search space must be

reduced by determining and implementing physical and symmetry constraints as

to find the most interesting unfoldings. This project thus aims to create fullerene

unfolding algorithms with high correctness and modularity, so that it may contribute

to the overarching ambition of synthesising fullerene molecules in the lab.



2 FULLERENE CONTEXT

2.1 A BRIEF HISTORY OF FULLERENES

Fullerenes are a class of polyhedral molecules consisting exclusively of rings of

atoms that form pentagons and hexagons. For several fullerene structures that

consist solely of carbon atoms, a wide range of useful applications in fields ranging

from engineering to bio-medicine have been found (Nimibofa et al., 2018). However,

even though carbon is the fourth most abundant element in the universe, carbon

fullerenes have not been found to be widespread in nature at all. In fact, they are

mainly discovered in minute amounts in the outflows of carbon stars in outer space,

which is possible due to fullerenes’ exceptional thermal stability and photochemical

properties (Becker et al., 2000; Woods, 2020). On Earth, discoveries have been limited

to fullerenes of the form C60, C70, C76 and C84, with CN implying N carbon atoms.

Natural occurring fullerenes were always found in minute quantities, formed either

by lightning discharges in the atmosphere, or hidden in soot and prehistoric rock

formations (Buseck et al., 1992; Buseck, 2002). Non-carbon fullerene structures are

also found in nature: the protein complexes that form the of the HIV virus are

pentameric and hexameric as well, for example. This knowledge is in turn being

used to develop countermeasures to the virus, as one study by Marchesan et al.

(2005) shows how fullerene derivatives can be used to inhibit replication abilities of

the virus.

Fullerenes are a particular arrangement, or allotrope, of carbon. More well-known

allotropes of carbon are diamond and the single-atom carbon sheets known as

graphene. The diamond and graphene atoms are sp3 and sp2 hybridised respectively,

meaning diamond atoms bond with four of their nearest neighbouring carbon atoms,

while graphene atoms does so with the nearest three. Fullerene atoms, like graphene,

4



2.1 A BRIEF HISTORY OF FULLERENES 5

also form sp2 orbital hybrids by bonding with their three nearest neighbours, which

is also referred to as being 3-connected. A variety of carbon fullerenes are shown in

Figure 2.1.

Figure 2.1: Illustration of a number of three dimensional fullerene structures, with
the C60-Ih Buckyball as a notable entry in fullerene history.

Early scientific literature on fullerenes is inextricably tied to the Buckminsterfullerene

C60-Ih. Informally known as the "Buckyball", this highly symmetric icosahedral

structure was originally theorised independently by both Õsawa (1970) and Stankevich

et al. (1984), later discovered experimentally by Kroto et al. (1985) using laser evapor-

ation techniques on graphite, and first synthesised in larger amounts by Krätschmer

et al. (1990). Buckminsterfullerene is named after the American architect Richard

Buckminster Fuller, because he was constructing geodesic polyhedral buildings

in the late forties as shown in Figure 2.2, because they showed extreme strength

compared to their size. Unknown to him at the time, the structure closely resembles

the C60-Ih fullerene. Eventually fullerenes became the definition of the class of

polyhedral 3-connected carbon structures.



2.2 FULLERENE PRODUCTION 6

Figure 2.2: The American architect Richard Buckminster Fuller in front of one of
his geodesic dome creations. From WIRED (2016).

2.2 FULLERENE PRODUCTION

Given the myriad of applications, there are clear reasons for wanting to produce

carbon fullerene molecules. Currently, the fullerenes that can be readily produced in

significant quantities are the C60-Ih buckeyball and C70-D5h fullerene, and to a lesser

extent C76, C78 and C84 (Langa & Nierengarten, 2007). The most important method

for the production of fullerenes is the Hufmann-Krätschmer method, which involves

vaporising two carbon rods in a reactor and extracting the fullerene molecules from

the resulting soot. The vaporisation is done by running a high current through

the two carbon electrode rods with a diameter of around 6mm in a helium filled

reactor chamber. With enough current, temperatures of at least 2000 °C form an

electrical arc between the electrodes which creates plasma. Over the course of 24

hours, the plasma melts off 100 g to 200 g of fullerene-containing soot (Langa &

Nierengarten, 2007, p. 3). The resulting carbon mixture can then be purified using

column chromatography, resulting in tens of grams of both C60 and C70.

tinyurl.com\/1fpk1g25
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Fullerene No. of isomers

C20 1

C60 1,812

C100 285,914

C200 214,127,742

C400 132,247,999,328

Table 2.1: There are O(N9) isomers for each N -atomic fullerne molecule, creating
an immense search space.

Clearly, the quantities obtained from a reactor through the arc discharge method

are not sufficient for the large scale production of fullerenes. A method that was

able to produce larger quantities of fullerenes was discovered as early as 1991 by

Howard et al. (1991). Howard and his co-workers proposed to combust benzene in

tanks of oxygen deficient environment to generate larger amounts of fullerene soot.

After years of development, the combustion method was employed in purpose-built

factories, which are each able to produce thousands of tons of fullerenes every

year (Chae et al., 2014).

2.3 FULLERENE SYNTHESIS

What is problematic about the macroscopic production methods of fullerenes is

that they are neither selective in terms of the different fullerene isomers, nor able to

generate higher-order fullerenes that consist upward of a hundred carbon atoms.

This is especially salient knowing that the space of fullerene isomers grows with the

number of fullerene atoms N asO(N9). This means there are already 1, 812 different

configurations of the C60 fullerene, and 285, 914 for C100, as listed in Table 2.1. In

other words, only an incredibly small number of fullerene isomers are currently

available to use for the incredible applications found. To gain access to the entire

space of fullerene isomers, more direct methods of chemical synthesis are required.

The first successful direct chemical synthesis of a fullerene was done by Scott et

al. (2002) who managed to create C60-Ih in isolated quantities, meaning no other
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fullerenes were formed in the process. The method starts with the stepwise creation

of a so called precursor-molecule, which can be best described as the assembly package

of a desired target-molecule, being the fullerene. For C60-Ih, the precursor-molecule

used by the researchers is of chemical formula (C60H27Cl3), whose formation process

is shown in Figure 2.3. The figure depicts how the production of three molecular

’arms’ are attached to a central hexagonal ring to create the precursor-molecule.

Cl

Cl

Cl

ClClCl

Cl
ClClCl

Br

CH3

OH

CH3

Br

CH3

CH3
NC O

Figure 2.3: The stepwise synthesis of the C60-Ih precursor-molecule by creating
molecular arms in parallel. Adapted from Scott (2004, p. 5004).

To autoassemble the precursor to the fullerene, Scott et al. fired a high powered

laser pulse at the precursor-molecule under vacuum. By doing so, the precursor is

intensely and briefly heated to 1100 °C which initiates a chain reaction that folds

the three arms of the precursor together. This technique is known as Flash Vacuum

Pyrolysis, FVP for short, and is a common technique in the synthesis of organic mo-

lecules (Wentrup, 2017). During the folding process, the molecule dehydrogenates

(i.e. loses its hydrogen atoms) whilst forming new carbon-carbon bonds. To ensure

the correct carbon atoms bond together, three chlorine atoms are placed in strategic

locations to guide the process. The result after FVP is the exclusive formation of

the C60-Ih fullerene with yields of 0.1-1.0%. The process is visualised in Figure 2.4,

where it can be noted that some of the hexa- and pentagonal faces of the 3D molecule
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(shown in orange and blue respectively) are not present in the precursor-molecule,

but rather are formed during autoassembly.

Cl

Cl

Cl

FVP at 1100 °C

-12 H2 ,3 HCl

Figure 2.4: Autoassembly of a icosahedral C60 precursor-molecule using Flash
Vacuum Pyrolysis and chlorine atoms placed in strategic locations. The bonds
formed during the process are indicated by the curved lines. Adapted from Scott
et al. (2002, p. 1501).

In chemistry, the production of a compound using a sequence of chemical reaction

steps is known as rational synthesis. The work by Scott et al. (2002) proved that

rational synthesis of fullerenes was both possible and selective, albeit with very

low yields. Years later, improvements on the method were made by both Otero

et al. (2008) and Kabdulov et al. (2010), resulting in yields of nearly 100% of the

desired C60-Ih fullerene. Despite the promising results for the rational synthesis of

fullerenes, non of the millions of larger fullerene isomers can be synthesised as of

yet. The biggest challenge lies in finding the right fullerene isomers that both have

valuable properties and are stable during and after autoassembly. What is more,

even if suitable candidates for autoassembly would be identified, the accompanying

precursor-molecule would also need to be determined. Thus, what is required are

methods to sift through the isomer space and determine interesting and viable target-

and precursor fullerene molecules for rational synthesis.
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The evaluation of fullerene isomers for their potential in rational synthesis is done

on the basis of their molecular properties. Using quantum-chemical simulations,

qualities such as thermal conductivity, magnetisability and compressive strength

can be determined by computing energy or waveform responses to system perturba-

tions (Jensen, 2017). Although the use of such computational methods yields highly

accurate results, calculations can take multiple weeks of computation time for a

single isomer, even when done on moderately sized computer clusters (Heuser,

2020). Therefore, faster alternative computational methods are needed to identify

stable synthesis candidate isomers for every possible N -atom fullerene isomer space.

2.4 THE CARMA PROJECT

To find a way to avoid the computationally expensive quantum-chemical simula-

tions, the CARbon MAnifolds (CARMA) project was established by James Avery at

the Niels Bohr Institute in Copenhagen over the past couple of years. The project

aims to investigate the possibility of calculating the molecular properties of fullerene

structures using nothing but their intrinsic surface geometries derived from their

bond-graphs, which will be elaborated upon in the following sections. Moreover,

it seeks to find out if the same formalism can be used to find pathways of rational

synthesis for fullerene isomers that are found to be of interest.

The search for rational synthesis pathways is referred to as Task R, which is short

for Computing Precursors and Recipes for Rational Synthesis of Fullerenes. Task R is

subdivided in tasks G, A and U, with the overarching goal to build software that

aids in finding plausible precursor-molecules for any given fullerene isomer. Task

G is titled Generating Precursor Molecules for Autoassembly, and is the subject of

this thesis. The primary objective of the task is to produce suitable precursor-

molecule candidates using nothing but the bond-graph that will autoassemble into

the polyhedral fullerene structure by means of Flash Vacuum Pyrolysis. Meanwhile,

tasks U and A are concerned with understanding, modelling, and simulating the

fullerene autoassembly process.



2.5 AUTOASSEMBLY SUCCESS 11

It should be noted that the task of this project comes into play after other algorithms

from other CARMA tasks have already identified fullerene isomers that are of

interest to rationally synthesise. Therefore, the intention of this project is to generate

precursor-molecule configurations that are likely to successfully autoassemble. After

a list of precursor-molecule candidates is generated, experimental chemists can

take over and attempt to synthesise and autoassemble the found precursors to the

intended fullerene molecule.

2.5 AUTOASSEMBLY SUCCESS

To be able to generate precursor-molecules that are likely to autoassemble, it is

important to consider what influences the success rate of the autoassembly process.

One lesson can be learned from the precursor-molecule from Scott et al. (2002), which

is a planar molecule, meaning it can be put on a flat surface without having to distort

the molecule by breaking any bonds. Planar precursors provide a number of benefits

for the folding process. For one, they are unlikely to form the wrong target molecules

spontaneously, making them reliable for autoassembly. Moreover, planar molecules

are simple to synthesise in a systematic way. For example, the three molecular ’arms’

of the precursor from Scott et al. (2002) that connect to the central hexagon can

be synthesised in parallel, which is convenient for its production. Lastly, planar

molecules are also simpler to work with computationally and mathematically, since

the description of the molecule can be limited to two dimensions instead of three.

That is not to say that the direct synthesis of non-planar (precursor) molecules is

impossible or unfeasible. In fact, research is being conducted on the direct synthesis

of curved (precursor) molecules as well, by Mojica et al. (2013) and Majewski and

Stępień (2018) for example. Notwithstanding, planar-precursors are chosen as the

direction of exploration in CARMA Task R and this project.

Another indicator for the stability of the fullerene is the way in which its pentagon

rings are arranged on the polyhedral surface. Specifically, Albertazzi et al. (1999)

have shown that the optimal geometries of fullerenes have a minimal adjacency

of their pentagonal faces. In other words, they found the most stable chemical
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geometry, and therefore the lowest total energy of the molecule, is achieved when

pentagons do not share a bond with any other pentagon. This happens to be the

case for the C60 buckeyball from Figure 2.4 as well. Moreover, the researchers found

that the total energy (and therefore instability) increases linearly with the number of

adjacent pentagons (Albertazzi et al., 1999). This phenomenon is called the Isolated

Pentagon Rule (IPR), and makes it of interest to minimise the number of neighbouring

pentagons in fullerene precursor-molecules.

It was already mentioned that it is helpful to be able to construct parts of precursor-

molecules in parallel, for example the three arms from the precursor by (Scott et al.,

2002). Another reason for wanting this is to increase the overall yield of precursor

production. To understand this, consider the precursor synthesis process from

Figure 2.3. In every step, it is impossible to successfully create 100% of the desired

partial molecule. Consequently, there is a multiplicative loss of the total yield that

grows with each additional synthesis step that is required. As such, it is more

efficient to minimise the number of compounds, and thereby synthesis steps, that

are needed to create the precursor-molecule.

Hence, it is beneficial for precursor-molecules to be maximally symmetric. Of

course, the separate parts of the precursor should always be connected together

before autoassembly through a method such as FVP. The reason for this is that FVP

requires a stationary and stable precursor-molecule that can sit around until it is

activated to fold by means of the intense heat pulse. If instead the precursor would

consist of a number of separate molecular compounds, it is highly likely they would

combine together in unpredictable ways. After all, there is no way of knowing

whether the compounds are arranged in a way that guarantees autoassembly to

the desired target fullerene. In summary, generated precursor-molecules should

ideally be planar, maximally symmetric and adhere to the Isolated Pentagon Rule,

to provide the highest chances for autoassembly success.



3 FULLERENE THEORY

In the CARMA project, it was found that the bond-graph of the fullerene contains all

the required information to find interesting isomers for synthesis, as well as possibly

find paths for rational synthesis. In this section, the graph theory of fullerenes is

discussed to identify what the available information is for the development of an

algorithm that can generate planar precursor-molecules.

3.1 POLYHEDRAL GRAPHS

In discrete mathematics, a graph is a pair G = (V, E) which describes a set of vertices

(also called nodes) V that are connected by a set of edges E , a simple example of

which is shown in Figure 3.1. Graphs describe relations between objects by means

of their connections with each other, represented as unordered and unique pairs

of vertices. If a graph can be drawn in a two-dimensional plane without having

edges that cross, it is called a planar graph. Moreover, any drawing of a graph in

space is called an embedding of the graph. Put differently, a graph is embedded when

each of its vertices is assigned a coordinate in two-dimensional real space as a map

V → R2. By this logic, a planar embedding is a drawing of a planar graph in the

two-dimensional plane without any crossing edges.

In general, the embedding of a planar graph is not unique, but there is an exception

to this rule. If a graph does not break into disconnected components whenever fewer

than three vertices are removed, it is a three-connected graph and its embedding is

essentially unique (Whitney, 1932). The graph shown in Figure 3.1 is an example of

a one-connected graph, because the removal of vertex B results in a disconnected

graph with two components.

13
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A B

C
D

E

F

A, B, C, D, E, F

[ ]

(A,B), (A,C), (B,D), (C,D), (B,E), (E,F )

[ ]
V =

E =

Figure 3.1: Illustration of a simple graph with six vertices and seven edges.

In planar embeddings, regions bound by a set of vertices and edges are known

as faces, and the complete set of faces is labelled as F . An example of a face is

(A,B,D,C) in the graph from Figure 3.1. Every planar embedding is also said

to have an outer face that is of infinite size and surrounds the graph. Given that

three-connected planar graphs are unique, they have a well-defined set of faces.

Therefore, a three-connected planar graph can be unambiguously referred to as

G = (V, E ,F) for convenience. An interesting property of planar graphs is that they

can be embedded onto the surface of a three-dimensional sphere without crossing

edges. What is more, if the embedded graph is three-connected it actually describes

a three-dimensional polyhedron. In fact, this is the case for all three-connected

planar graphs, which are therefore also known as polyhedral graphs.

Another property of graphs is the number of neighbours each of its vertices v has.

This number is known as the degree of the vertex, and can be written as deg(v) or k.

If each of the graphs vertices have the same degree k, the graph is called k-valent or

k-regular. In the specific case where k = 3 a graph is called cubic, meaning each of its

vertices is of deg(3).

3.2 FULLERENE BOND-GRAPHS

Fullerenes can also be described using graphs, specifically the graph that describes

their bond-structure, which is called the bond-graph. For the fullerene bond-graph,

each carbon atom is a vertex, each atomic bond an edge and each face either a
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pentagon or hexagon. Fullerene bond-graphs are both cubic, planar, and three-

connected, which makes them cubic polyhedral graphs. Because of these neat

properties, fullerene graphs have a lot of elegant mathematics surrounding them

that can be used to derive many properties about fullerene topology, spatial shape,

surface, and even indicators of their chemical behaviour (Schwerdtfeger et al.,

2015). One of the interesting properties of fullerene structures is that they always

exactly have twelve pentagonal faces, no more and no less, which comes as a

direct consequence of the nature of the bond-graph. This principle is called the ’12

Pentagon Theorem’, the proof of which starts with Euler’s polyhedron formula:

N − E + F = 2 (3.1)

Here, N = |V| is the total number of vertices and is called the order of the graph.

Similarly, E = |E| represents the number of edges, and F = |F| the number of faces.

Furthermore, the hand-shaking lemma from graph theory states:

N∑
i=1

deg(vi) = 2E (3.2)

Combined with the fact that deg(vi) = 3 for all vertices of a fullerene, one gets:

E =
3

2
N,F =

1

2
N + 2 =

1

3
E + 2, andE = 3F − 6 (3.3)

In addition, the total number of faces of a fullerene is the sum of all its pentagons

and hexagons as F = F5 + F6. From this, together with Equation (3.3) it can be

derived that:

E = 3F5 + 3F6 − 6andN = 2F5 + 2F6 − 4 (3.4)

Since every pentagon and hexagon have five and six edges respectively, another way

to define the total number of edges is to use the number of faces and the number of

edges per face as:

E =
5

2
F5 +

6

2
F6 (3.5)
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The division by two arises due to the face that every edge (bond) is shared between

two fullerene faces, and should therefore not be counted twice. Using eq. (3.4) and

eq. (3.5) together yields:

3F5 + 3F6 − 6 =
5

2
F5 +

6

2
F6

(3− 5

2
)F5 + (3− 3)F6 − 6 = 0

1

2
F5 = 6

F5 = 12

which is proof for the 12 Pentagon Theorem. Similarly, by also using eq. (3.1), the

number of hexagons is equal to:

F6 =
(N − 20)

2
(N ≥ 20) (3.6)

This makes C20 consisting of twelve pentagons the smallest possible fullerene, and

moreover gives the general formula for the number of atoms N as C20+2F6 .

3.2.1 Dual graphs

To be able to draw, generate, and transform the fullerene bond-graph, it is convenient

to work with a type of graph representation known as the dual graph (Schwerdtfeger

et al., 2015). In the dual graph G∗ of a planar connected graph G, there is a vertex

in G∗ for each face of G and an edge joining every pair of neighbouring faces of G

together. Mathematically, the operation from the cubic bond-graph to the triangular

dual graph is an involution, meaning (G∗)∗ = G. For the fullerene bond-graph,

The dual graph of a cubic polyhedral fullerene bond-graph is a triangulation that

has a vertex at the centre of each pentagonal and hexagonal face. In Figure 3.2,

example planar embeddings of fullerene bond-graphs, together with their dual

graphs and three-dimensional dual embeddings are shown. It can be observed that

each pentagon and hexagon give rise to dual vertices of degree 5 and 6 respectively,

with each dual edge connecting the faces perpendicular to the carbon bonds that

connect the atoms.
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(a) (b)

Figure 3.2: Planar embeddings of fullerene bond-graphs and their dual (in blue),
together with 3D embeddings of the dual graphs for both (a) C20-Ih and (b) C60-Ih.

Drawing planar embeddings of fullerene graphs as in Figure 3.2 can be imagined

as squishing the 3D polyhedral embedding (either cubic or dual) to the 2D plane

without breaking any bonds. There are many possible ways to do so, the choice of

which depends on the type of information that needs to be visualised, such as the

symmetry of the molecule or the shape of the surface. For more information on the

possible drawing methods and the one used in Figure 3.2, see Schwerdtfeger et al.

(2015, p. 100).

3.3 GENERATING BOND-GRAPHS

To be able to explore the large isomer space of fullerenes, it is important to have

a reliable yet exhaustive method of generating their bond-graphs. Developments

in efficient graph generation started with work done by Brinkmann et al. (1998),

who used a process of transforming an initial small fullerene graph into new and

larger ones. The process involved taking the C24 bond-graph as a start and adding

faces to it step by step, by which they were able to generate nearly every graph

up to C200. Further improvements on the method were done by Hasheminezhad

et al. (2008), who defined a set of growth operations that were able to produce every

possible graph starting from C20 systematically. In the following years, Brinkmann

et al. (2012) took the set of growth operations to create an algorithm able to generate

every fullerene isomer, which they used to generate a complete database up to C400.

To find fullerene isomers that would be interesting to synthesise, it is less relevant to

generate the incredibly large isomer lists using the methods from Brinkmann et al.
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(2012). Instead, a more selective algorithm is needed that is able to generate fullerene

graphs of isomers with desirable properties. This is one of the completed goals of the

CARMA project, which resulted in an algorithm that is part of the Fullerene software

package created to bundle parts of the research from the CARMA project. More

information on the software can be found by reading Schwerdtfeger et al. (2013),

and the development version of Program Fullerene can be found here: link.

The particular algorithm that is able to construct the bond-graph of specific isomers

of any size (e.g. C100,000 in a matter of seconds) uses a generalised spiral construction

method outlined in Wirz et al. (2018). In short, the method unwinds the fullerene

faces ’like an orange peel’ on the basis of the pentagon positions of the fullerene. This

results in a spiral representation of the fullerene molecule, which can be represented

as a list of so called face spiral pentagon indices (FSPI), denoted as {Sn|n = 1, ..., 12}.

The spiral is a string of length equal to the number of faces F , consisting of 12

fives and F − 12 sixes, for the pentagons and hexagons. There are 6N spirals per

fullerene bond-graph, because there are 6N possible ways to start the spiral. For

each possible fullerene isomer however, there is a unique FSPI, also known as the

canonical FSPI, when the indices are lexicographically ordered. Two examples are

shown in Figure 3.3, where the canonical spirals and FSPI of both C60-Ih and C100-Td

are shown. Every spiral produced with the generalised algorithm contains all the

required information of a fullerene bond-graph in only twelve numbers, and can be

used to construct the (dual) fullerene bond-graph in O(N) time.

3.4 PRECURSOR-UNFOLDINGS

At this point, the question becomes how to construct a representation of a precursor-

molecule from a generated bond-graph of a particular fullerene isomer. To provide

an answer, consider that a fullerene is formed by folding a precursor-molecule,

making the precursor simply an unfolded version of the fullerene. Unfolding a

fullerene molecule can be imagined as cutting carbon-carbon bonds with a pair of

scissors until the resulting molecule can be laid down onto a plane, as if the fullerene

was made of intricately folded paper. In other words, if the surface of a fullerene can

http://ctcp.massey.ac.nz/index.php?page=fullerenes
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Figure 3.3: The face spirals of the C60-Ih with FSPI
{1, 7, 9, 11, 13, 15, 18, 20, 22, 24, 26, 32} (top), and C100-Td with FSPI
{1, 4, 5, 26, 27, 31, 32, 40, 43, 47, 48, 52} (bottom) fullerenes. From Schwerdtfeger
et al. (2015) and Wirz et al. (2018).

be embedded onto a plane such that each of the atoms are placed once, the resulting

unfolding represents its precursor-molecule. Earlier work in the CARMA project

discovered that it is algebraically heavy handed to embed the cubic polyhedral

surface to a plane (Wirz, 2015, p. 20). The dual graph on the other hand, can be

conveniently unfolded to a plane of equilateral triangles known as the Eisenstein

plane. The grid points that form the triangular lattice of the Eisenstein plane are

formed by the countable infinite set of Eisenstein integers:

(a, b) = a+ bω with ω = ei
2π
6 (3.7)
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The coordinates in the Eisenstein plane are labelled as (i, j), which relate to Cartesian

coordinates (x, y) as:

(1i, 0j) = (1x, 0y)

(0i, 1j) = (cos(2π/6), sin(2π/6))

⇒ (x, y) = (i+ j · cos(2π/6), j · sin(2π/6)) (3.8)

Using the fact that ω2 = ω − 1, multiplication of Eisenstein integers can be used to

translate the coordinate (1, 0) into any of the other grid points:

(a, b) · (c, d) = ac+ (ad+ bc) ω + bdω2 = (ac− bd, bc+ (a+ b) d) (3.9)

It is important to understand the distinction between an unfolding of the cubic

polyhedral surface and that of the dual triangular surface. The first is an embedding

of all the polyhedral faces that make up the molecule, and can therefore be referred

to as a polyhedral unfolding, whilst the latter is an embedding of all the dual surface

triangles. Since every triangle is only embedded once, and represents a cubic

node which is an atom, the unfolding is one of the precursor molecule: a precursor-

unfolding.

To better understand the distinction, the unfoldings are visualised for a fictional box

molecule in Figure 3.4. For the polyhedral-unfolding, bonds are cut laterally, thereby

splitting the edges in two. Cubic nodes (atoms) need to be duplicated to keep the

faces (squares) intact. The result is that the periphery of the unfolding consists of

the split edges and duplicated nodes. To create a precursor-unfolding, the edges of

the dual graph are cut laterally. This results in the cubic graph edges (i.e. atomic

bonds) to be broken transversely, leaving half-bonds sticking out of the triangles

that lie on the periphery. Again, the dual nodes need to be duplicated to ensure the

triangles are embedded intact. However, because the atoms lie at the centroids of

the triangles, the atoms are unique in the dual representation.

Another important takeaway from the figure is that unfoldings are not the same as

planar embeddings of the bond-graph, because nodes and edges are not repeated
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in the planar embedding. Moreover, whereas the planar embedding of the cubic

bond-graph is unique, there are numerous ways to create unfoldings. All possible

isometries for the box molecule unfoldings are shown in Figure 3.5, illustrating the

fact that various precursor-molecule isomers that can fold up to the same target-

molecule isomer.
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Figure 3.4: A polyhedral box molecule is unfolded in its cubic (left) and dual (right)
graph form by cutting edges laterally. In contrast to a planar-embedding, this
requires duplication of peripheral edges and nodes.
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Figure 3.5: All possible box isometric unfoldings of both the cubic (square) and
dual (triangular) surfaces.
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3.4.1 Orientation

To make mathematics with the unfoldings more convenient, it is useful to define an

orientation of the graph. In such a directed-graph, each edge becomes bi-directional,

and each uni-directional split edge is called an arc. The arcs are ordered pairs of

nodes, with a source node and target node as the start and end point of the arc

respectively. To set the direction of the arcs, the graph is chosen to be oriented

either clockwise or counterclockwise. For this and other CARMA projects, clockwise

was chosen as the default direction. As a result, each dual triangle becomes a

unique set of arcs that are embedded in clockwise direction on the Eisenstein plane.

Moreover, the periphery of the precursor-unfolding follows a clockwise path on

the plane, as exemplified for a pentagon and hexagon in Figure 3.6. Moreover, it

can be seen in the figure how adjacent triangles share a bi-directional edge, even

though the two constituent arcs are only part of one unique triangle. For example,

edge (u,w) = (w, u) in the pentagon is part of triangles (u, v, w) and (u,w, q), but

arc (w, u) is only part of the first, and (u,w) only part of the latter triangle.
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Figure 3.6: An unfolding in the dual representation if formed by arcs that form
triangles defining a single carbon atom with three bonds (blue nodes). In turn,
triangles form pentagons and hexagons that create fullerene unfoldings.

The possible orientations an arc can have in the Eisenstein plane are given by the

Eisenstein ring, which is shown in Figure 3.7. The ring is the hexagon formed by

the vectors pointing in each of the unitary combinations of (i, j). Any given arc

orientation (iu, ju), (iv, jv) can be rotated into the other orientations by means of one

or more Eisenstein multiplications of the target node coordinates in either clockwise
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or counterclockwise direction using Equation 3.9. The corresponding Eisenstein

integers are (1,−1) for clockwise and (1, 0) for counterclockwise rotations in the

ring. In the figure, a single clockwise rotation of the target node v is shown as

(−1, 0) · (1,−1) = (−1, 1)

The result can be used to find the third node w of the clockwise oriented triangle

that is defined by the arc (u, v), which will be discussed further in the following

chapter.

v u

w

[1,0][-1,0]

[0,1][-1,1]

[1,-1][0,-1]

[0,0]

Figure 3.7: Eisenstein multiplication of the end node v : (−1, 0) path in clockwise
direction (1,−1) on the Eisenstein ring results in the new path with end node
w : (−1, 1).

A benefit of setting an orientation for the graph is that it makes it possible to identify

triangles and cubic faces by only one of its arcs. This is important because a valid

precursor-unfolding does not have duplicate atoms, meaning each triangle should

be identified and only embedded on the Eisenstein plane once. In the pentagon and

hexagon of Figure 3.6, arc (u, v) defines the triangle (u, v, w), while arc (u, r) defines

triangle (u, r, s), for example. The same goes for the whole cubic faces however,

as arc (u, v) is only part of the face that surrounds the dual node u. Even if the

faces were part of a larger molecule, they can be uniquely identified as the face with

node u at its center, that forms arcs with its neighbours (v, w, q, r, s, t), which in turn

define the five or six triangles that form the pentagon and hexagon faces.
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To gain better understanding of the directed-graph unfolding, a depiction of the box

precursor-unfolding with clockwise orientation is shown in Figure 3.8. In the figure,

arcs that share a node and are oppositely directed are part of the same edge, and will

therefore align during autoassembly. For example, arc (3, 0) will fold towards (0, 3)

to form a carbon bond between atoms b and c. In the same way, duplicate dual nodes

merge together during the folding process, recreating the 3D embedding that was

shown at the top right of Figure 3.4. It should be noted that singular, unconnected

arcs have no physical meaning in the unfolding, as only complete triangles represent

atoms. Hence, even though arcs uniquely define triangles, they should always be

embedded as part of full triangles on the Eisenstein plane.
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Figure 3.8: A box molecule precursor-unfolding set in clockwise orientation. Op-
positely directed arcs realign during autoassembly.

3.4.2 Adjacency matrices

To construct an algorithm that creates precursor-unfoldings, a useful way to repres-

ent the bond-graph as input data is needed; which moreover needs to be unique for

each fullerene isomer. Fortunately, a representation known as the sparse adjacency

matrix exactly meets the requirements. In general, an adjacency matrix Ai,j is a matrix

with entries equal to 1 if nodes i and j are connected and 0 otherwise. For the dual
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bond-graph G∗ the result is an n× n matrix with n the number of dual-graph nodes.

However, this matrix does not give information on the orientation of the graph and

is difficult to read. To make the matrix clearer, it can be made sparse by taking the

indices of the connected nodes that have a value Aij = 1 and storing them in a new

matrix in clockwise order.

Both the regular and sparse adjacency matrix for the box precursor-unfolding of

Figure 3.8 are shown in Figure 3.9. It can be seen in the figure that each row stores

the neighbours of the node with the same number as the row index, leading to row

0 of the sparse matrix to have entries [1, 4, 3, 5]. In general, the number of columns

in the sparse matrix is equal to the number of nodes that create a cubic face of the

molecule, which for the square faces of the box molecule is equal to four. It should be

noted that there is no meaningful way to define a ’starting neighbour’ of a face, i.e.

[1, 4, 3, 5] = [5, 1, 4, 3] = [3, 5, 1, 4] = [4, 3, 5, 1] since the clockwise order is preserved.

0 1 0 1 1 1

1 0 1 0 1 1

0 1 0 1 1 1

1 0 1 0 1 1

1 1 1 1 0 0

1 1 1 1 0 0




Adjacency matrix

1 4 3 5

0 4 2 5

1 5 3 4

0 4 2 5

0 1 2 3

0 3 2 1




Sparse adjacency matrix

Figure 3.9: The (sparse) adjacency matrix Aij for the box precursor-unfolding from
Figure 3.8, representing the dual-graph connectivity information.
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3.5 FULLERENES IN 3D: GEOMETRY

To better understand the connection between the precursor-unfolding and three-

dimensional target-isomer it autoassembles to, it is useful to discuss fullerene geo-

metry. Fullerenes are hollow polyhedral cages that can be described conveniently

by a quantity known as Gaussian curvature, denoted as K. Gaussian curvature is

an intrinsic property of a given surface and is therefore independent of how the

surface is embedded in space. The three cases of curvature are shown in Figure 3.10,

as K can be either negative, zero, or positive at any given point on the surface. If

the Gaussian curvature is negative in a point, it gives a saddle point and the surface

is shaped like a pringle. If instead the surface has zero curvature everywhere, it can

be compared to a sheet of paper that can lie flat in a plane. Lastly, a surface that has

positive Gaussian curvature bends uniformly in all possible directions, giving rise

to a spherical surface. On a closed surface with constant Gaussian curvature, the

three domains of K would yield the geometry of a hyperboloid, cylinder and sphere

respectively.

Figure 3.10: Examples of surfaces with negative (K < 0), zero (K = 0), and positive
(K > 0) Gaussian curvature around a point. From Avery (2020, p. 10).

Surfaces with negative Gaussian curvature cannot be embedded on a plane because

if one would try to squish the pringle-like surface, there would not be enough space

on the plane without creating folds and allowing parts to overlap. Meanwhile, zero

curvature surfaces can be easily embedded on a plane since they are a flat sheet.

Finally, a positive curvature surface can be unwrapped, but only when cuts are

made on the surface. For fullerenes, the surfaces are closed and have non-negative
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Gaussian curvature everywhere. In other words, at any point on the fullerene the

surface is either flat or curving like a sphere. Consequently, the fullerene surface

with K > 0 can only be embedded on a plane when cuts are made. Specifically,

for each of the pentagons one of the bond needs to be cut, while the hexagons can

remain intact when unfolding them onto the plane. The cut results in a triangular

wedge cutout as shown for a partial molecule in Figure 3.11. The cutout has an angle

of 2π/6 as part of the full 2π circle, drawn in grey in the figure. By the Bertrand-

Diquet-Puiseux theorem, the cutout angle is also the Gaussian curvature that is

induced by the pentagon after the split arcs are glued back together, as shown on

the right in the figure. Therefore, after all twelve pentagons of a fullerene are folded

together, the total Gaussian curvature equates to 4π. This is the same curvature

as a sphere, thereby confirming that the fullerene surface is closed at this point.

Consequently, the positions of the pentagons in the precursor-unfolding determine

how the surface of the fullerene bends and how strongly, which in turn gives rise to

the natural shape of the fullerene.
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Figure 3.11: Left: A pentagon is embedded as part of a molecule on the Eisenstein
plane by cutting out a triangular wedge of angle 2π/6. Right: After folding, the
pentagon forms an infinite cone that induces a Gaussian curvature of K = 2π/6
with the surrounding hexagons.
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3.6 FULLERENE SYMMETRY

As discussed in section 2.5, creating maximally symmetric precursor-molecules is

advantageous because symmetric parts can be produced in parallel. To this end, an

understanding of the symmetry of fullerenes and their unfoldings is required.

3.6.1 Abstract groups and point groups

The symmetry of an object is given by a collection of transformations, called symmetry

operations, under which the object is invariant, meaning the object before and after

the operation are indistinguishable from one another. Because mathematical objects

do not have to exist in Euclidean (3D) space, the transformations do not necessarily

have to take the geometry of the object into account either. Hence, the collection of

symmetry operations is referred to as the abstract group of the object, denoted G. For

a fullerene graph, the abstract group contains all the ways in which the labels of the

atoms can be shuffled under which the bond-graph is invariant.

Of course, fullerene molecules do exist in three-dimensional space. If the geometry

of the object is taken into account, the symmetry operations are limited to the

geometric transformations, which for a molecule are translation, rotation, reflection

and inversion. These transformations preserve the angles and distances between all

points (atoms and bonds) of the object (molecule), and are therefore called isometries.

If translation is excluded by fixing the object around a point in space such as the

origin, the group containing all the isometries is called the point group of the object.

The isometric symmetry operations in the point group are done about symmetry

elements, which can be axes of rotation, mirror planes of reflection or points of

inversion. For example, a uniform sphere can be rotated around its central axis by

any number of degrees, yet an observer would not be able to distinguish the sphere

before and after the rotation. The number of possible symmetry operations that can

be done for a given object is known as the order |G| of the object, and can be seen

as a quantisation of ’how symmetric’ an object is, where a higher order equates to

higher symmetry.
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Symmetry element Notation

Identity E

Rotation axis C

Reflection plane σ

Inversion center i

Rotation-reflection axis S

Table 3.1: Symmetry elements are denoted using Schönflies notation.

The primary notation method for symmetry elements is called Schönflies notation,

and is shown in Table 3.1. First in the list is the identity element E, which applies to

every object because it leaves the object completely unchanged. Second, symmetric

rotations known as proper rotations are done around an axis C, which can be accom-

panied by a subscript n as Cn to indicate the possible 360◦/n rotations. In the case

that an object has multiple such axes, the one with the largest value of n is called the

principal axis. Next, planes in which the object can be mirrored symmetrically are

denoted by σ. If the plane includes the axis of symmetry of the object (which divides

the object in two equal halves) it is called a vertical mirror plane and labelled σv.

Meanwhile, a plane perpendicular to the axis of symmetry is known as a horizontal

mirror plane σh. In the specific case that a vertical mirror plane passes between two

C2 axes it is called a dihedral (or diagonal) mirror plane and is labelled σd. Moreover,

the inversion center i defines a point in the object through which all points of the

object can be reflected into one another. It is therefore a center of symmetry that

leaves the object invariant under inversion. Lastly, rotation-reflection operations

consist of a rotation by 360◦/n, followed by a reflection in a plane perpendicular to

the rotation axis. This operation is also called improper rotation, and is denoted by Sn.

To understand the distinction between the abstract and point groups, it is useful

to consider the group table of a simple group. A group table is nothing more than a

unique representation of all the possible symmetry operations of an object. Example

tables for an object with abstract group Z/3 with corresponding point group C3 is
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⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

× 1 r r2

1 1 r r2

r r r2 1

r2 r2 1 r

Table 3.2: The difference between the abstract group Z/3 (left) and point group C3

(right) is a matter of notation. The point group provides geometric meaning to the
transformations as rotations in space.

shown in Table 3.2. As can be seen in the table the difference between the abstract

and point groups of an object are a matter of notation and geometric significance.

For example, the abstract cyclic group Z/3 additive table is the equivalent of point

group C3 multiplicative table, but the point group has more information. Namely, C3

realises the group table as isometric transformations of space, specifically rotations

denoted R, or R2 for two sequential rotations of 360◦/3 = 120 degrees. That is why

you can have several different point groups that realise the same abstract group.

For example, D6, C6v, D3d and D3h are all exactly the same abstract group, but

represent different point groups. This is due to the fact that point groups also carry

information on how the object isometries transform space, while the abstract group

is the group of operations that leave the system invariant.

Conveniently, it is possible to visualise all symmetry elements using the point group

of an isolated fullerene hexagonal ring, which contains each symmetry element as

shown in Figure 3.12. Naturally, the complexity of point groups quickly increases

as molecules get larger and larger. In fact, in three dimensions there are an infinite

number of point groups, but for all polyhedral objects they can all be classified by

a handful of families which are shown in Table 3.3. The largest possible group is

the icosahedral group Ih, which is the maximal symmetry a polyhedron can achieve.

For fullerenes, the C60 Buckeyball is an example of a molecule with the Ih point

group, making it maximally symmetric. Therefore, the point group of a fullerene

isomer will always be either Ih or a subgroup thereof. In total, it can be shown that

there are 28 possible point groups for fullerenes (Deza et al., 2009), which are sorted

according to their order in Table 3.4.



3.6 FULLERENE SYMMETRY 33

It should be noted that there are infinitely many fullerenes with Ih symmetry, but

only one for each N -atom fullerene isomer space, if it exists in the space. Every such

isomer of Ih or I symmetry can be found by repeatedly applying operations known

as Goldberg-Coxeter transforms to a C20-Ih fullerene (Goldberg, 1937), more on which

can be read about in Schwerdtfeger et al. (2015, pp. 105–111).

The relation between the geometry and symmetry of the icosahedron can be best

understood by going through all the symmetry elements about which the operations

in the point group are done. Starting, it has a center of inversion because of its

spherical nature. Moreover, there are 6 C5 proper rotation axes that pass through

the centers of the six pairs of opposite pentagonal faces, leading to 6 × 4 = 24 C5

symmetry operations in the point group. Similarly, there are 10 C3 axes for the pairs

of hexagons, 15 C2 passing through pairs of the carbon-carbon bonds, 15σ mirror

planes that stretch between the 30/2 edge pairs, 6S10 improper rotation axes through

pairs of co-planar pentagons that are oriented at 36◦ from each other, and lastly 10

S6 axes for the pairs of hexagons as well.

Name Notation Order Symmetry operations

Dihedral group Dn 2n E,Cn, nC2

Dnh 4n Dn, σh, nσv

Dnd 4n Dn, nσd

Tetrahedral group T 12 E, 3C2, 8C3

Td 24 T, 6S4, 6σd

Th 24 T, i, 8S6, 3σh

Octahedral group O 24 E, 6C4, 8C3, 9C2

Oh 48 O, i, 8S6, 6S4, 3σh, 6σd

Icosahedral group I 60 E, 24C5, 20C3, 15C2

Ih 120 I, i, 24S10, 20S6, 15σ

Table 3.3: The various point groups of polyhedrons with their respective symmetry
elements.
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Proper 
rotation axes

Planes of 
reflection

Center of
Inversion

Improper 
rotation axes

C6 6C2

3𝜎𝑣𝜎ℎ 3𝜎𝑑

𝑖 𝑆6, 𝑆3

Figure 3.12: The symmetry group of the fullerene hexagon ring contains all types
of symmetry elements.

Order Point Groups Order Point Groups Order Point Groups

120 Ih 12 T,D6, D3h, D3d 4 D2, S4, C2h, C2v

60 I 10 D5 3 C3

24 Td, Th, D6h, D6d 8 D2h, D2d 2 C2, CS , Ci

20 D5h, D5d 6 D3, S6, C3h, C3v 1 C1

Table 3.4: The 28 possible point groups for fullerenes sorted according to their
order |G| of the group G. From Schwerdtfeger et al. (2015, p. 109).
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3.6.2 Precursor-unfolding symmetry

Perhaps unsurprisingly, the point group of a planar precursor-unfolding is a planar

subgroup of the point group of the target fullerene. Therefore, the highest possible

symmetry a precursor-unfolding can have is the a planar subgroup of Ih, which are

the D6 or C6 point groups of order 6 and 12. The difference between the two types

is depicted using simple planar objects in Figure 3.13. As can be seen, the planar

C60-Ih precursor molecule from earlier has C3 symmetry, while the point group of

the planar hexagonal fullerene ring of Figure 3.12 is D6. There are no reflections

through the horizontal plane possible in planar symmetry, but a dihedral group

does introduce nσv mirror planes.
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Figure 3.13: A dihedral group Dn has an n reflection symmetries in addition to the
n cyclic rotation symmetries the Cn group has.

If the target fullerene exhibits one of the other 28 possible subgroups of Ih, the

planar subgroup for the precursor does but not necessarily need to be a subgroup

of D6 as well, because Dn and Cn with n = 2, 3 or 5 are also valid possibilities.

Moreover, D6 symmetry is not limited to fullerene isomers that have the Ih point

group, as the hexagonal ring with point group D6h and planar subgroup D6 shows.

In other words, a maximally symmetric unfolding does not necessarily fold up to a

maximally symmetric fullerene.
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3.7 COMPUTING SYMMETRY

To generate maximally symmetric precursor-unfoldings, the point group of the

target fullerene isomer needs to determined first, as the planar subgroup of the

unfolding can be derived from it. For general graphs, automatically determining the

point group without referring to spatial coordinates, i.e. without having to create

a 3D polyhedral embedding of the bond-graph first, is difficult to do. However, a

remarkable theory by Mani (1971) states that any polyhedral graph can be embedded

as a convex polyhedron in 3D space such that the abstract group of the graph (also

called the graph automorphisms, i.e., renaming of vertices) are realised on the 3D

polyhedron as point group operations, which, in 3D are the isometries: rotations,

reflections, and inversions. The fact that all the abstract operations for the cubic

polyhedral bond-graphs of fullerenes are conceivable as point group operations is

non-trivial, but allows for efficient and relatively simple calculation of the point

group of any target isomer.

As it turns out, the generalised spiral algorithm from Wirz et al. (2018) is also able to

compute the abstract group G of a fullerene isomer given its dual bond-graph G∗. It

does so by making clever use of the fact that all the graph automorphisms can be

found by seeing which spiral starts, consisting of three faces (f1, f2, f3), unwind G∗

to the complete spiral S. Each of the possible spiral starts that do so is a symmetry

operation from the abstract group, making the number of possible starts the order

|G| of the abstract group. From this, the algorithm is able to build the group table by

composing all pairs of operations together.

Once the algorithm has created a representation for the abstract group, it is able

to use the collection of graph automorphisms from the group to identify the point

group of the given fullerene molecule. It does so by looking at all the possible

permutations (i.e. vertex shuffling operations) of the so called symmetry points. For a

fullerene, the symmetry points of interest are the vertices, midpoints of edges, as

well as the barycenters of the polygonal faces. The algorithm then considers all the

possible symmetry operations it can do at each of the symmetry points, which can



3.7 COMPUTING SYMMETRY 37

be grouped in so called site-symmetry groups. Then, by identifying and counting the

number of sites k that belong to each of the site-symmetry groups, it is possible to

get a signature that is unique for each possible point group. The signature consists

of a sum of permutation counts for each type of site-symmetry:

ms(k) = mF (k) +mE(k) +mV (k) (3.10)

where mF stands for the count of the face site-symmetries, similarly mE for the

edge midpoints, and mV for the vertices. As a last step, the total count ms(k) can

be fed to the decision tree structure found by Fowler (2006), shown in Figure 3.14.

Using the tree, the point group for any fullerene isomer can be determined using

the site-symmetry count. Further details on the generalised spiral algorithm that is

able to determine the point groups can be found in Wirz et al. (2018).

Figure 3.14: The decision tree for determining the point group of any fullerene
from the group order and orbit counts. From Schwerdtfeger et al. (2015, p. 111).



4 THE ALGORITHM

This chapter explains how the theory established in the previous chapters is used to

develop algorithms able to produce planar precursor molecules. After the research

problem is defined, the following section elaborates on the design of the algorithm.

Here it becomes clear what computational steps are required to generate a planar

precursor molecule, and what considerations are needed in each of them. The last

section deals with the Python implementation of the designed algorithm, and will

discuss the code to explain the inner workings of the algorithm in detail.

4.1 PROBLEM STATEMENT

The core focus of this project is to develop algorithms that can successfully and

reliably generate planar precursor-molecules that lie at the basis of the autoassembly

process. Therefore, the main goal of the project is to write new software that:

P.1 Generates unfoldings

(a) Generates a carbon fullerene precursor molecule unfolding from nothing

but the fullerene bond-graph.

(b) Generates all possible unfoldings for any N -atom fullerene isomer given

enough computation time.

P.2 Encodes generation constraints

(a) Generates unfoldings that are comprised of full cubic faces, meaning

hexagons and pentagons.

(b) Generates unfoldings with (maximal) planar symmetry.

38



4.2 ALGORITHM DESIGN 39

4.2 ALGORITHM DESIGN

This section discusses the required algorithm components that build a solution to

the problem statements and elaborates on design decisions along the way. First, the

mechanism behind the generation of a single unfolding is discussed, considering

what the available data (input) and the desired results (output) are. In this case, the

input is exclusively the fullerene bond-graph, and the output a precursor-molecule

unfolding on the Eisenstein plane. Moreover, it is required to establish a method of

getting from the input to the desired output that takes into account any necessary

constraints needed to make a valid precursor-molecule. Afterwards, the algorithm

can be expanded to generate all unfoldings as per P.1b, and encode generation

constraints to solve for P.2. A simplified version of the general idea behind the

algorithm is shown in Figure 4.1.

Figure 4.1: Diagram of the general algorithm design, with steps to design the input,
output, and method to get from one to the other. Subsequently, functionality to
generate all unfoldings and encode generation constraints can be developed.

4.2.1 Designing P.1a: Input

The objective of the project is to exclusively use the fullerene bond-graph to produce

precursor-molecule in the form of unfoldings. The main requirement for valid

molecules is to have all the atoms placed exactly once on the Eisenstein plane.

Because of this, it was chosen to represent the input data as a sparse adjacency

matrix, since it both describes all the atoms from all the faces of the molecule and

defines the clockwise oriented surface. A simple way to represent all the faces from
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the precursor-unfolding in the same matrix is to store the twelve pentagons at the

top rows with a dummy value in its sixth column, while the remaining rows contain

the hexagons with all six columns filled. Define the dual-neighbours array as the

described data structure that stores the bond-graph in a Nf × 6 array with Nf the

number of faces in the precursor-molecule. The array is illustrated in Figure 4.2,

with the pentagons stored in the top rows and the Nf − 12 hexagons thereafter.

Compared to the full adjacency matrix, the sparse matrix saves in both required

storage and computation time. Storage space is saved as there are fewer elements

in the array, and thus fewer to store in memory. There is moreover a reduction is

computation time as any function that has to looks up elements in the array has a

smaller number of elements to sift through.

Having figured out the desired representation, the choice remains to either use cubic-

or dual-graph data as the input for the algorithm. The fullerene dual was chosen as

it offers several advantages over the cubic graph. First of all, because the dual graph

and the Eisenstein plane allow for the use of exact integers which greatly simplifies

the algorithm. This is in contrast to the less intuitive numerics that would have to

be used for the cubic graph.

dual-neighbours
(Nf×6)

=

n0,0 n0,1 n0,2 n0,3 n0,4 ↑
n1,0 n1,1 · · · 12

...
. . . ↓

n12,0 · · · · n12,5

...
. . .

...
nNf ,0 · · · · nNf ,5




Figure 4.2: The input is designed as aNf×6 sparse adjacency matrix with each row
containing the dual neighbours of the index node 0 to Nf . The twelve pentagons
are stored in the top rows with a dummy value in the last column.
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4.2.2 Designing P.1a: Output

Given the dual-neighbours array as input, the desired output becomes a dual-graph

unfolding of the precursor-molecule onto the Eisenstein plane, whose equilateral

triangles indirectly describe the locations of the atoms at each triangle centroid. This

creates two options for storing the unfolding: either the coordinates of the atoms

are directly stored in an array, or they are stored indirectly by instead putting the

triangle coordinates in the array. The first option, albeit clear and direct, does not

show the orientation of the surface, obscuring information about which atoms will

form bonds during autoassembly. Moreover, although the locations of the atoms can

be obtained from the triangles, the triangle information cannot be retrieved from

the coordinates of the atoms. In other words, representing an unfolding in terms of

atoms instead of the dual graph nodes and edges causes a clear loss in information.

Knowing that the unfolding is best stored as the dual-graph triangles, the question

becomes how to represent them in a storage array. A first intuition might be to

simply store all the node coordinates from all the triangles. However, this would

again obscure knowledge on which arcs align during autoassembly. Moreover,

knowing the orientation of the precursor-molecule surface makes everything much

easier. Therefore, arcs need to be stored as they both give the location of the nodes

as well as the direction between them.

At this point the question becomes whether to store full triangles or single arcs in

the storage array. A triangle element would be of the form:

[[u, v, w], [iu, ju], [iv, jv], [iw, jw]] ,

while the same triangle would take three elements in terms of single arcs:


[u, v], [iu, ju], [iv, jv]

[v, w], [iv, jv], [iw, jw]

[w, u], [iw, jw], [iu, ju]


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Although storing triangles saves space, it does make it more difficult to find the

arcs that align during autoassembly, i.e. [u, v] and [v, u]. After all, with a single arc

[u, v] its corresponding reverse could be found by going through the array once

and looking for [v, u], whilst per triangle there are now three sub-arrays to look for:

[u, v, w], [v, w, u] and [w, u, v] from which the arcs need to be extracted. Finding the

arcs that glue together is an important feature for the ease of autoassembly, and was

therefore prioritised over the reduction in storage space. Additionally, the triangles

can always be formed from the collection of arcs, since each arc is part of a unique

triangle.

One way to store all the arcs would be to make an array of Narcs× 1 where every arc

has a unique location in the array. Another would be to instead create a Ntriangles×3

array where each row contains the three arcs that make up a triangle. However, a

more sophisticated structure can be made that used the shape of the input as aNf×6

array in which each arc is an element with a unique location in the array. Defining

this structure as the arc-array, it has the added benefit that the nodes don’t have to

be stored explicitly anymore. To understand this, consider how each row of the

arc-array corresponds to a face of the precursor-molecule. Moreover, consider that

each entry in the row represents a unique arc, which in turn defines a triangle that is

part of the face. As such, the dual node 0 represents the cubic face 0, which means

its dual graph triangles can be stored in the top row of the array. Similarly, every

triangle that is part of face 19 with dual node 19 at its centre can be stored in the

19th row. The final data structure with example storage of a pentagon and hexagon

is shown in Figure 4.3. Moreover, the other considered structures are shown in

Figure 4.4 for visual reference.
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a = 0
u = 19

arc-array
(Nf×6)

=

[a, b] [a, c] [a, d] [a, f ] [a, g] ↑
...

...
...

...
... 12

...
...

...
...

... ↓
...

...
...

...
...

...
[u, v] [u,w] [u, q] [u, r] [u, s] [u, t]

...
...

...
...

...
...

...
...

...
...

...
...





face a = 0

face u = 19

face Nf

Figure 4.3: The arc storage array is designed as a Nf × 6 array with arcs [a, b] =
[ia, ja], [ib, jb] as array elements and the arc nodes implicit in the array structure.
The example pentagon a and hexagon u are shown together with their storage in
the arc-array for the case where a = 0 and u = 19.
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atom0,1 · · · atom0,5 ↑
...

...
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...

... ↓
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...

...
...

...
atomNf ,1 · · · · · · atomNf ,6




(a) (b) (c)

Figure 4.4: The considered designs for the output by storing either arcs (a), tri-
angles (b) or atoms (c). (a) was chosen because of its ease of use and possible
transformation into (b). (c) was rejected because of the loss in surface orientation
information.
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4.2.3 Designing P.1a: Unfolding updates

With the input and output defined, the question becomes how to get from the dual

bond-graph to a filled array of unfolding arc coordinates. First, it is important to

note that arcs in and of themselves have no physical significance, as only complete

triangles represent an atom. Because of this, the method for creating an unfolding

should be to place triangles one after another on the Eisenstein plane until all

triangles, and therefore all arcs in the output array, are accounted for.

There are several things to consider in going about initialising the placement process

and in handling subsequent placement steps. The first is that triangles cannot

simply be placed in random locations on the grid after one another. This is due to

the fact that, as was discussed before, triangles are not allowed to be disconnected

from one another on the grid as it would lead to unpredictable reactions during

autoassembly. Therefore, new triangles should always be appended to the part

of the precursor-unfolding that is already placed. This has two implications: the

first being that a root-triangle needs to be defined, whereupon further triangles

can be appended. Although the choice of root-triangle does influence the isomer

you generate, it does not affect the generality of the unfolding algorithm when

generating all possible unfoldings, because all possibilities of triangle configurations

will be created. Therefore, the triangle that is placed first is inconsequential so long

as some triangle is placed to start with.

The second implication is that new triangles can only be formed from arcs that share

nodes with the triangles that are already placed. In other words, new triangles need

to be formed from reverse arcs of the existing triangles so as to attach them to the

periphery of the existing incomplete unfolding. This is exemplified in Figure 4.5

for a handful of triangles, where it is shown how only a specific set of triangles

(represented by dotted arcs) is eligible for placement at this stage of the unfolding

process. The algorithm will also need to be able to determine the unknown nodes

and arcs of a new triangle when given a peripheral arc.
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Figure 4.5: The only possible triangles that can be placed at any point in the
unfolding process are those defined by the arcs on the periphery (blue) of the
incomplete unfolding (black). The unknown nodes marked by question marks can
be determined from the dual bond-graph.

An important design aspect that follows from the second implication is that there

is a need for a data structure that contains the set of reverse arcs that lie on the

periphery of the existing molecule able to initiate the placement of new triangles.

To this end, a workset can be defined that is a queue of arcs, where the algorithm

can take a work-arc from the top of the queue at each placement step to grow the

precursor-unfolding, and append newly found work-arcs on the periphery of the

triangle to the bottom of the queue. In this way, starting from the root-triangle, arcs

are assigned Eisenstein coordinates, reversed, added to the set and so on. A diagram

of the placement cycle of a triangle is shown in Figure 4.6.

An accompanying visualisation of triangle placement is shown in Figure 4.7. The

placement starts with an arbitrary work-arc [u, v] taken from the workset with

Eisenstein coordinates [iu, ju], [iv, jv]. Then, the third triangle node w has to be

found together with its coordinates. Because of the way the dual-neighbours array

is structured, the node is found in row u as the next node at depth v. After all, a

particular row in the array is a clockwise cycle of neighbours to a centre node, such
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Figure 4.6: Diagram of the design of the unfolding method, where triangles are
placed, reversed, and a set of arcs is maintained to continue the process.

as u in the figure. In this way, the node next to v in the row is the next clockwise

neighbour of u on the face. After the node is determined, the coordinates can be

found as depicted in Figure 4.7. First, the current direction of the arc is determined

by translating it onto the Eisenstein ring, which can be done by subtracting the

coordinates from end node v from those of the starting node u. Second, the current

direction should be Eisenstein multiplied according to Equation (3.9) in clockwise

direction to find the new direction. This marks the coordinates of w on the Eisenstein

ring relative to the starting node u. Lastly, the Eisenstein ring coordinates are

summed with the original coordinates of the triangle nodes, which translates them

back to the intended placement location in the precursor-unfolding. Mathematically,

the three steps result in the following equation:

[wi, wj ] = [ui, uj ] + ([vi, vj ]− [ui, uj ]) · [1,−1], (4.1)

where the dot represents Eisenstein multiplication with [1,−1] the clockwise direc-

tion.

To visualise how the workset is updated and an unfolding can be created, consider

Figure 4.8. In the figure, first a root-triangle is placed and its reverse arcs are added to

the workset, where each element of the queue is an arc together with its coordinates.
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v u

v u [1,0][-1,0]
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[1,-1][0,-1]

[0,0]
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[8,8]
[7,8]

[8,8]
[7,8]

[7,9]

i

j

Figure 4.7: (a) A work-arc is taken from the workset queue; (b) uses Eisenstein
multiplication to find the third node of the triangle and form the arcs; (c) returns
the full triangle for placement on the Eisenstein plane.

After three cycles using those initial work-arcs, three new triangles are created which

each add two work-arcs to the workset. At this point the root-triangle work-arcs are

no longer in the set. Lastly, after six more placement steps it can be seen how single

triangles start forming faces, for example the pentagon centred by node b. As can be

confirmed by the reader the hexagons centred by nodes a and c can be formed in

future placement steps.



4.2 ALGORITHM DESIGN 48

1

a

c

b

(a)

1

24

f

3

a

c

b

d

e

(b)

1

24

3

b

d

8

10

7

5

9 6

g

f

a

c

ek

m b

d

g

l h

(c)

[c, b] [ic, jc] [ib, jb]

[b, a] [ib, jb] [ia, ja]

[a, c] [ia, ja] [ic, jc]




[d, b] [id, jd] [ib, jb]

[c, d] [ic, jc] [id, jd]

[e, a] [ie, je] [ia, ja]

[b, e] [ib, jb] [ie, je]

[f, c] [if , jf ] [ic, jc]

[a, f ] [ia, ja] [if , jf ]





[d, g] [id, jd] [ig, jg]

...
...
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...

[a,m] [ia, ja] [im, jm]




Figure 4.8: (a) The workset is updated with the reverse arcs (grey) of the root-
triangle [a, b, c]. (b) The resulting triangles are again reversed and peripheral arcs
added to the workset. (c) A pentagon is formed at the cutout wedge (red) and
more triangles are placed. The triangle atoms are numbered in order of placement.

4.2.4 Designing P.1a: Unfolding constraints

It is important to evaluate the unfolding process from Figure 4.6 and see at which

points it might produce placement steps that are in conflict with the production

of a valid unfolding. Again, the key requirement for the process to produce valid

molecules is that each unique atom and therefore triangle can only be placed once.

For this reason, another design requirement is to keep track of which atoms, and

therefore arcs, are placed at any point in the process. This can be done conveniently

thanks to the shape of the output array, as a boolean array can be created that has the

same shape as the output array by which each arc in the output corresponds directly
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to its boolean value in the placed array. Thus, there is a need to define a placed-array

of shape Nf × 6 that keeps track of the placement status of each arc in the unfolding.

The array should be initialised with all its values set to False, implying no arcs are

placed on the grid yet. During the unfolding process, the values in the array can be

switched to True when the corresponding arc is assigned Eisenstein coordinates and

placed on the grid.

A second constraint is that triangles are not allowed to overlap in the unfolding. It

might not be immediately obvious when this could occur, since triangles are only

formed at the periphery of the incomplete unfolding. An example of such a collision

between triangles is depicted in Figure 4.9, where [l, n] is taken from the top of

the workset and the triangle [l, n, o] is considered for placement. However, node o

cannot be placed since node g is already occupying the coordinates on the plane. Of

course, in the case that nodes l and n actually were the neighbours of g as listed in

the dual-neighbours array, there would be no problem in placing triangle [l, n, g].

h

a

c d

b f

e

h

k o

n

l

m

Figure 4.9: An example of how placement steps can result in collision on the
Eisenstein grid, necessitating a way to keep track of occupied grid points in the
algorithm.

Thus, the algorithm needs to keep track of the occupied grid points on the Eisenstein

plane, so that any intended placement coordinates from new arcs can be checked

against them. If the grid point is occupied by a different node than the intended
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one, the arc (and therefore the whole triangle) has to be rejected. Of course, the arc-

array already keeps track of the placed nodes and their coordinates on the grid, but

cross-referencing new coordinates with it would take a long time. After all, it would

require checking each Nf × 6 elements in the arc-array consisting of two coordinates

[i, j] for the source and target of each arc. Instead, defining an associative array

called collision-grid is more useful. Also known as a dictionary, this data structure is

a collection of [key:value] pairs where each key is only allowed to appear once in

the collection. In the case of the precursor-unfolding, the key is a specific Eisenstein

coordinate [i, j] which may only be occupied once, while the corresponding value is

the node placed at that location.

Using the collision-grid, new triangles can be checked node for node to see if their

intended placement locations are occupied by other nodes. Moreover, new nodes n

from newly placed triangles can be added to the collision grid as

[key : value] = [[in, jn] : n]

It should be remarked that new triangles only add one node to the collision-grid

when placed, for example the nodes marked by a question mark in Figure 4.5.

Apart from the convenience that the dictionary data-type cannot have duplicates,

finding values in dictionaries is faster than finding them in a list or array. The reason

for this is that dictionaries use a hash lookup that has average on O(1). This is in

contrast to the linear lookup runtime of O(N) using the other data types, where one

has to search element by element until the result is found 2. Especially for bigger

fullerenes with hundreds of atoms, the hash lookup will be faster as it remains near

constant with O(N) in the worst case. Meanwhile, the search in lists and arrays

will keep growing linearly with the number of occupied grid points as shown in

Figure 4.10.

2Information on time complexity is available at the official Python Wiki.

https://wiki.python.org/moin/TimeComplexity
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Figure 4.10: The lookup time of a dictionary type is near constant at larger sizes,
while the lookup in lists and arrays keeps growing linearly.

It should be noted that the algorithm should never allow the placement of triangles

that are already placed, even if there is no collision with the existing molecule as

it would result in a re-placement of an atom. Illustrated in Figure 4.11, it is shown

how arc [c, b] enters the workset from triangle 1 : [a, b, c] as the reverse arc of [b, c].

However, due to the order of the workset queue the precursor-molecule grows

upwards until [c, b] is placed as part of triangle 7 : [g, c, b] with work-arc [g, c]. When

[c, b] from triangle 1 becomes next in line, the arc would be marked as placed but

show no collision on the Eisenstein grid. If the arc would be allowed the resulting

placement step would re-place triangle [c, b, g] = [g, c, b] at the other end of the

unfolding and overwrite the existing arc-data in the arc-array.

The algorithm is terminated in one of three cases. First, if the unfolding is completed,

meaning all triangles are placed on the grid. Second, if there are no more valid

placement steps left in the workset, either because it is empty, or because the work-

arcs that are left cause a collision or are already placed. Taking the termination

conditions and the newly found placement constraints into account, an updated

design of the algorithm that can create a single unfolding is shown in Figure 4.12.

In it, four phases of creating an unfolding can be identified: to initialise, constrain,

update, and terminate the algorithm. For future reference, the state of the unfolding

can be defined as the current status of the arc-array, placed-array, workset, and
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Figure 4.11: An example of an erroneous re-placement of a triangle [c, b, g] which
necessitates to check whether a work-arc is exists on the Eisenstein plane before
placing its triangle.

collision-grid. The initial state comprises empty output arrays and a workset that

contains the root-arc to start the unfolding process, and the final state is a completed

precursor-molecule with all arcs stored in the arc-array and the workset empty.
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Figure 4.12: Diagram of the processes involved in generating a single unfolding.
Four distinct phases in the algorithm can be identified which are to initialise,
update, constrain, and terminate the unfolding process.
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4.2.5 Designing P.1b: Generating all unfoldings

The next step of the algorithm design is to find a way to generate all possible

precursor-unfoldings of any given N -atom fullerene isomer. To this end, note that

what influences the configuration of an unfolding is the order in which triangles

are placed, and thereby the order in which work-arcs are taken from the workset.

Therefore, generating multiple configurations of an unfolding equates going through

all possible orderings of work-arcs in the workset queue. However, this has to

happen every time the workset is updated with new arcs. In other words, every

possible placement option has to be evaluated at every possible placement step.

Fortunately, there is a well known type of process known as recursion that should be

able to exhaustively search through the space of all possible unfolding.

To better understand recursion, consider the metaphor of a squirrel that lives at the

root of a recursion tree. One day, the squirrel decides it wants to gather all the nuts

that grow at the leafs of the tree and bring them back to its home. With an empty

bag in hand and starting from the root, the squirrel first climbs as far as possible up

the far left branch of the tree. It does so one knot at a time, until it reaches the first

leaf at the top of the tree. There, it either finds a nut, finds no nut, or discovers a cut

off branch. If the top branch can be reached, the squirrel takes the nut if it is there,

puts it in its bag, and climbs back down one knot. Then, its goes on to pick up any

existing surrounding nuts from all branches that stem from the knot its standing on.

After that, it goes back down another knot, and repeats the process of nut-gathering

and backtracking until it has visited all knots and collected all nuts in its bag. In the

end the squirrel returns home to the root, carrying with it a bag filled with every

nut the tree had on it.

In more formal terms, the squirrel nut-gathering process is called a depth-first search

on the recursion tree, and is visualised in Figure 4.13. The knots of the tree are

known as the nodes of the tree, and the depth at which the node lies is called the

recursion level or depth. Moreover, there is distinct nomenclature for the relationships

between nodes on the tree. For example, in Figure 4.13, nodes B and C are known
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as siblings, making A their parent as it lies higher in the hierarchy, and D their uncle

as it is the sibling of parent A. The root-node is the node connected to all child nodes

and is also known as the ancestor, where all nodes at greater depth are descendants of

the ancestor. Note that siblings have to be part of the same parent branch, meaning

node pairs (A,C) and (E,F ) do not share this relationship. Lastly, the nodes at

the end of the highest-level branches are called leaf nodes as was the case with the

metaphor.

C

R

A D

B E F

level 0

level 1

level 2

level 3

= nut = no nut = cut branch

1 2 3 4 5 6

Figure 4.13: From the root R, a depth-first recursion tree squirrel (partial path
shown in blue) traverses the tree from node to node until all nodes are visited and
all leafs are collected.

Regarding the generation precursor-unfoldings, each node in the tree is analogous

to an intermediate state of the unfolding and each nut at a leaf node to a completed

unfolding. In this way, each edge between tree nodes represents a placement cycle

as per Figure 4.6. Thus, the generation of a single N -atomic unfolding a linear path

down the tree from the root-node to an arbitrary leaf node, whereas all possible

unfoldings are created by travelling from node to node up and down the tree until all

nuts are collected back at the root. Extending the analogy, the root-node corresponds

to the placement of the root-triangle, and every child node to the placement of a new

triangle that is attached to the existing body of the precursor unfolding. Similarly,

a leaf node with a nut marks the placement of the final triangle and therefore the

completion of the unfolding.
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Exploring all possible unfoldings of the isomer hence implies creating and traversing

all possible branches in the recursion tree. The process is visualised for the first two

placement steps of an example precursor-molecule in Figure 4.14. What is important

to see is how the tree branches represent the creation of unfolding configurations that

differ by a single triangle, and that creating all possible branches at each placement

step will eventually exhaustively search the entire space of possible unfoldings.

If the vertical traversal of the recursion tree is a result of placing triangles, sibling

nodes branching from the same parent are created by trying every periphery work-

arc in the workset for placement at each state. To elaborate, consider how the

root-triangle adds three work-arcs from its periphery to the workset, creating three

branches. In subsequent placement steps, the number of child branches from each

parent node is dependent on the length of the workset at that specific state of the

unfolding. When placing single triangles one after another, each triangle can at most

generate two branches to the tree, since one of the triangle arcs is always attached to

an existing periphery arc of the unfolding. This can be seen in Figure 4.14 as well,

where each triangle has two periphery arcs that are added to the workset in the

order of the numbers next to them. Naturally, the recursive process in the figure can

continue onward from the second level, which would create five new branches with

child nodes for each of the four states shown at level two.

In terms of computer science, a recursive function is a function that calls itself. It

corresponds to mathematical induction, and in the same way can be broken into base

cases and recursive cases. If a base case is reached the function is at a leaf node, where

it would subsequently collect the nut if it exists and backtrack to the parent node.

In contrast, a recursive case occurs for all intermediate states before the base case is

reached. To continue the search the function would call itself so that it traverses

down a level in the recursion tree and can again evaluate its position in the tree

to see if a nut is found. A diagram of the general recursive method is depicted in

Figure 4.15. In the figure, a recursion step to deeper levels is called winding-up, while

a return back to previous calls corresponds to the unwinding of the algorithm that

occurs once the base case is reached. The unwinding takes place until the function
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returns to the very first call and stops. Of course, any statements programmed before

heading down a recursion level are executed prior to each call, while any statements

set after any recursion step are left pending until the function unwinds back to that

particular step. Remark how all wind-up and unwind steps combined represent

searching through the whole tree in the same way that the squirrel traverses it in

Figure 4.13.

In terms of the unfolding algorithm, a base case is reached (i.e. true) when an

unfolding is completed and the nut is ready to be collected. To identify the base

case, one can define a variable tri-count as the integer number of placed triangles

at a given state, so that leaf nodes with a nut can be identified as a state where

the tri-count is equal to N . Meanwhile, the base case is false for every recursive

case as the unfolding is incomplete with tri-count smaller than N . The base case is

thus a basic validity check for generated precursor-molecules to see if all atoms are

accounted for.

To create an algorithm that can exhaustively generate all possible unfoldings, the

recursion process should thus encapsulate the method from Figure 4.12 by including

a base- and recursive case. A renewed diagram of the algorithm that incorporates

recursion is shown in Figure 4.16. As can be seen the phases of the single unfolding

algorithm: initialise, constrain, update and terminate are the program statements

that happen before recursion. Moreover, when the algorithm unwinds back to a

previous state, it returns to check if the workset is empty. If there are more placement

options (i.e. tree branches) to be explored it starts another path down to a potential

leaf node, and does so upon return for all the possible work-arcs in the workset at

every node. Should the algorithm terminate at an intermediate state, implying the

workset is empty but not all atoms are placed yet, that particular recursion branch

will simply not add anything to the list of unfoldings and unwind. This is how

branches are ’cut’ from the tree, by simply not having an impact on the current

collection of nuts and traversing to the parent node in the tree.
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Figure 4.14: Example of how recursion creates different configurations of unfold-
ings by traversing different branches in the tree.
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Figure 4.15: Diagram of the general recursion function algorithm, a base case is
set, and the function calls itself recursively until it is reached, unwinding in the
process.
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Figure 4.16: Diagram of the complete recursion algorithm that is able to generate
all valid possible unfoldings for any given N -atom fullerene by collecting them in
a list recursively.
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4.2.6 Designing P.2a: Placing faces

With a design in place that is able to generate all possible unfoldings, the next step

is to create ways to control the shape of the unfolding that could possibly increase

the autoassembly success chance of the generated precursor-molecules and reduce

the search space. As theorised in the previous chapter, making the molecule consist

solely of full hexagonal and pentagonal faces is one way to potentially increase

autoassembly stability. Faces, meaning pentagons and hexagons, consist of one

unique triangle per atom. Each adjacent triangle shares an edge, but the oppositely

directed arcs that make the edge are only part of one of the two adjacent triangles.

As such, any collection of atoms embedded on the Eisenstein plane is always a

collection of triangles, no matter their configuration. To this end, it becomes useful to

define a placement object as a specific collection of triangles considered for placement.

In this way the smallest placement object is a triangle, followed by pentagonal

and hexagonal faces with five or six triangles, and the subsequent multi-triangle

symmetry groups consisting of larger number of triangles that will be discussed

later on.

Since every placement object is a collection of triangles, an extension of the existing

placement cycle design from Figure 4.6 can be made. Therefore, any function placing

an object has to be able to take a single work-arc from the workset and subsequently

determine and place all the object’s triangles. This can be achieved using the

existing logic for the placement of single triangles, and using it on a generated set of

dependent arcs from the work-arc that uniquely define all of the object’s triangles. In

this way, the dependent arcs (which can be viewed as work-arcs themselves) can be

passed through the placement cycle of from Figure 4.12 one by one. For a hexagonal

face, this implies five face-work-arcs are generated in addition to the original work-

arc taken from the workset as. The process is illustrated in illustrated in Figure 4.17.

Starting from the initial work-arc [u, v], each subsequent face-work-arc can be found

by cyclically using clockwise Eisenstein multiplication. First by multiplication on

the work-arc, then on the arc found after the first multiplication, then the second,

and so on until all arcs are found. Afterwards, the collection of face-work-arcs can
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be passed to the triangle placement function and placed as in Figure 4.17 one at a

time. The arc-array, placed-array, workset and state variables are updated per set of

triangle arcs, but now for five or six sets at a time in a single placement step of the

unfolding.
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Figure 4.17: A face can be placed by (a) taking a work-arc [u, v] from the workset
and (b) determining all corresponding face-work-arcs (blue). (c) Each face-work-
arc can then be used to determine and place all triangles that make up the face one
by one.

After a first face is placed, the question becomes how new faces can be attached to

the periphery. There appear to be two physically valid options, which are shown in

Figure 4.18. As per the figure, The first option is to take the example work-arc [b, g],

find the third triangle node h and create a face with h at its centre. The new face

consists entirely of new atoms and is connected by a single bond on the periphery

with the existing molecule. The second option is to take the work-arc and build

the new face around b instead. The result is that the two faces a and b share the
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cubic edge [1, 6], which can be seen as a ’hinge connection’ between the existing

precursor-molecule and the newly placed face. The reason for this nomenclature is

that the work from Heuser et al. (2021) revealed that for the autoassembly process

precursor-molecules can be conveniently modelled as rigid faces that are allowed to

move at the hinges. Notwithstanding, since both options are physically valid the

algorithm should allow for both ways of connecting faces.
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Figure 4.18: Possibilities for placing the face with work-arc [b, g] using either a
loose bond (a) or hinge (b) connection to the existing precursor-molecule.

When it comes to connecting faces with hinges, a caveat that arises is that the hinge

triangles are part of two faces and overlap. The original constraint test would

detect a collision between the occupied grid points on the plane and the intended
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placement coordinates of the hinge triangles, disallowing the placement of the face.

However, the overlapping triangles are completely identical in terms of their nodes

and coordinates, and their placement would only overwrite existing data in the

arc-array with the exact same information. As such, any overlapping identical

triangles, call them duplicate triangles, should not stop the algorithm from placing

the face.

One way to achieve this would be to explicitly identify and allow duplicate triangles

to be placed, but this would clearly result in a repetition of process steps such as

storing the same arcs in the arc-array again, checking their reverse for addition to

the workset even though they are duplicate, and so on. A better solution would

be to identify the face-work-arcs that produce the duplicate triangles and exclude

them from the subsequent placement cycle of face triangles of Figure 4.17.c. One

way to do so is to check for each of the face-work-arcs if the source node from the

placed arc is the same as the source node from the face-work-arc and is placed in

the same location. If this is the case, the face-work-arc should be excluded from

the placement cycle. The adjusted process for placing faces is shown in Figure 4.19,

where duplicate triangles are excluded from placement.

Naturally, if any overlapping triangle is not a duplicate and its arcs differ from

the intended triangle, the collision check would still reject the placement of the

face. In other words, the final constraint-function should be able to identify what

obstructions are and are not part of the current placement object. If the intended

placement object collides with existing objects that are not part of itself, nothing of

the intended object should be placed. However, if the object collides with anything

that is part of itself such as the two hinge triangles when placing faces, the object

can be placed.

As it turns out, duplicate work-arcs can also make their way into the workset

when singular triangles are placed and form pentagons. As an example, consider

pentagon centred by node b in Figure 4.20.a with the red wedge cut-out. As part of

the pentagonal face, triangle 5 : [d, b, g] is placed earlier than 7 : [b, e, g], since [d, b] is

queued before [b, e] in the workset. After 5 : [d, b, g] is placed, note that [g, b] actually
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Figure 4.19: A face can be placed with a hinge connection by (a) taking a work-
arc, (b) determining all corresponding face-work-arcs (blue) and excluding any
duplicate triangle face-work-arcs (red). Each face-work-arc can then be used to
determine and place all triangles that make up the face as seen in (c) and (d)
respectively.
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is added to the workset, with intended placement location in opposite direction of

[b, g]. However, before the workset reaches the work-arc [g, b], it is already placed

as part of 7 : [b, e, g] using work-arc [b, e]. Note also how [b, g] as a reverse arc from

triangle 7 is not added to the workset because it already exists as part of triangle

5. At this point, [g, b] is a duplicate arc in the workset and should not be placed.

Because of this, every work-arc should first and foremost be checked against the

placed-array to see if the triangle exists on the Eisenstein grid already, and reject the

arc’s placement object for placement if this is the case. As an additional efficiency

step, reverse-arcs that are formed at each placement cycle should also be checked

against the placed-array before they are added to the workset. By doing so, duplicate

work-arcs are not unnecessarily considered for placement and rejected when they

are taken from the workset in future placement steps.
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Figure 4.20: The location of the pentagon cutout is dependent on the order in
which triangles are placed. (a) triangle 7 : [b, e, g] is placed, resulting in the cutout
at node g. (b) triangle 7 : [g, b, e] is placed, the cutout is now at node e.

Another point to make on the placement of pentagons is that the location of the

wedge cut-out is not fixed. In Figure 4.20, the cut-out is seen at different locations of

pentagon b, depending on the order in which the triangles are placed. In case (b) in

the figure, where 7 : [g, b, e] is placed instead of 7 : [b, e, g] in (a), it is shown how the

wedge cut-out has shifted in position, and the node e is doubled instead of node g.
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With regards to recursion, the counting of triangles has to be adjusted as each

placement step now needs to increment the tri-count by the number of new triangles

that the newly placed face added to the unfolding. Moreover, traversing down a

recursion level should update the state with the information of every placed triangle

of the face, which as mentioned can simply be done for each triangle in the face

separately one after the other. On a final note, the base case does not change, as a

valid molecule consisting only of faces still needs to have a tri-count equal to the

number of fullerene atoms N .

4.2.7 Designing P.2b: Placing symmetry groups

The second way to reduce the search space of unfoldings that was discussed it

to create symmetric unfoldings. This would require a way to identify and place

symmetry equivalent objects at each placement step in line with the given point

group of the isomer. The planar subgroup of the full point group therefore needs

to be known beforehand to allow for this identification step. This planar subgroup

can be determined by computing what the largest Dn or Cn axes acting on a given

root-object are, which can be done by once again using the spiral algorithm from

Wirz et al. (2018) to find all the possible graph isomorphisms such that each of the

applied symmetry operations (e.g. rotations and reflections) take the graph into an

isomorphic graph. This means first the canonical face spiral needs to be computed,

after which it can be compared to the spiral that forms from the given root-object. If

they are the same spiral, the symmetry operation was an isometry and is part of the

point group of the precursor-unfolding. For a central triangle, D3 will be the largest

possible group, while D5 and D6 are possible for a central pentagon and hexagon

respectively.

Given the planar point group of the fullerene isomer, the next step is to find the

symmetry equivalent arcs at each placement step. The symmetry arcs form a

subset of dependent arcs, whose objects all need to be placed (if able) in the same

placement step. Because the Eisenstein plane is a hexagonal mesh with six unit

vectors in the Eisenstein ring, arcs that are Cn equivalent around a central root-face
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are related by 6/n Eisenstein multiplications. In this way, C2 arcs are oriented at three

multiplications from each other and C6 arcs at a single multiplication around the

rotation axis at the barycenter of the root-object, i.e. the origin. This is exemplified for

the first placement step of a C3 isomer precursor-unfolding in Figure 4.21, where two

Eisenstein multiplications repeated two times yield the symmetry equivalent arcs

(g, b) ≡ (f, e) ≡ (d, c). Since the periphery is chosen to be in clockwise orientation,

the work-arc and its symmetry equivalent arcs are found through counterclockwise

multiplication using the Eisenstein integers (0, 1).
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Figure 4.21: (a)C3 symmetry equivalent arcs are found by Eisenstein multiplication
of the work-arc 6

n times in counterclockwise direction (1, 0), done n− 1 times for
n = 3. (b) After placement, new sets (orange or green) of symmetry arcs can be
found.

Because of the six directional symmetry of the Eisenstein plane, symmetry equivalent

faces can only be placed if all of them are either pentagons or hexagons, as is

depicted in Figure 4.22. It can be seen in the figure that the wedge cut-out of the

pentagon breaks rotational symmetry if the other faces are hexagons. If all the

faces are pentagons, the wedge cut-outs need to be oriented the same relative to

the symmetry arcs as shown in the figure. If the point group moreover is of Dn and

therefore includes n×σv reflection axes, the placement objects need to lie symmetric

about them. Moreover, the pentagon cut-out wedges need to be oriented either

perpendicular or in line with the reflection axes, as shown in Figure 4.23.
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Figure 4.22: (a) Symmetry equivalent faces can only be placed if they are all either
pentagons or hexagons. (b) If all faces are pentagons they can be placed if the
cutouts have the same orientation relative to their symmetry equivalent arc.
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Figure 4.23: The pentagon cutouts of an isomer with point group Dn need to align
with the σv reflection axes of the central hexagon.

An intuitive approach to finding the Dn symmetry arcs is to take the work-arc,

find its rotations, and then reflect each of the Cn rotation arcs in their respective

reflection axis. Or alternatively, to first reflect the work-arc in the n reflection axes,
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and subsequently rotating each reflected arc exactly once. The problem with this

method is that it requires a general definition of a reflection in the Eisenstein plane.

In the Cartesian plane, a vector (arc) reflection across a line is given as:

Refl(v) = 2Projl(v)− v (4.2)

where v is the reflected vector, l the line across which is reflected, and Projl(v) the

projection of v on the line l. However, this does not translate well to the Eisenstein

plane for the reflection axes that do not align with the i and j Eisenstein axes. To

circumvent this problem, it was found that it is possible to make a single reflection of

the work-arc in an arbitrary reflection axis to get all the symmetry arcs. The reason

for this is that all the reflected arcs are simply Cn rotations of any reflection of the

work-arc. As such, a work-arc and its reflection can both be rotated n − 1 times

using the same procedure as for Cn symmetry, resulting in 2n symmetric arcs that

define a single Dn placement step.

The simplest axes to reflect in are the horizontal and vertical line that can be drawn

through the Eisenstein plane. The horizontal reflection axis aligns with the Eisenstein

direction from (0, 0) to (1, 0), while the vertical axis is perpendicular to that direction.

In these axes, reflections can be found as:

Ref(1,0)((i, j)) = (−(i+ j), j) (4.3)

Ref⊥(1,0)((i, j)) = (i+ j,−j) (4.4)

where (1, 0) is the horizontal axis and ⊥ (1, 0) the vertical. It was discovered that

both axes are needed to be able to get all possible symmetric unfoldings. This is

visualised in Figure 4.24 for an example starting face u with D3 symmetry. The

first row depicts the difference between the axes for hinge-connected faces, where

the horizontal results in three, and the vertical in six distinct faces. This difference
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occurs due to the fact that the arcs in the horizontal axis have the same source nodes

as their reflected counterparts, which for hinges define the same face. In the vertical

axis reflections the source nodes are not the same, and therefore each arc defines a

separate hinge-connected face.

For single bond connections on the other hand, the faces are found by creating the

triangle of a given work-arc. This can be seen in the figure for arc (v, w) for example,

which creates triangle (v, w, u), defining face u. Therefore, any reflected arcs that lie

clockwise on the periphery of the unfolding define bond-connected faces that are

already placed. In the figure, both the horizontal and vertical axis reflections would

therefore have three arcs that define new faces, and three arcs that define the already

placed centre face u. Therefore, to ensure bond-connected faces can also be placed

six at a time, the reflected arcs need to be reversed as (v, w)→ (w, v). The result can

be seen in the bottom two depictions of the figure, where six faces can be formed

using the horizontal reflection axis, and three with the vertical axis.

Because symmetry arcs can define the same face or one that is already placed, it is

necessary to make sure the generated symmetry arcs all define unique and placeable

faces. To this end code will need to be written that can identify and filter out any

arcs that are duplicate or already placed prior to evaluating the faces for placement

as would be done for non-symmetric unfoldings.

There are several things of note regarding symmetric precursor-unfoldings. The

first is that for symmetric unfoldings, the choice of root-object impacts what the

possible unfoldings found in the recursion space will be. The reason for this is

that the symmetry group of the precursor-unfolding is dependent on the chosen

root-object. A hexagon with root-node 13 may have C3 symmetry, while hexagon

67 can yield an unfolding with D6 symmetry, for example. This is in contrast with

non-symmetric unfoldings, which will generate every possible configuration given

enough computation time, making the choice of root-object arbitrary. Moreover, root-

objects can be symmetry equivalent, meaning the precursor-unfolding will be the

exact same regardless of the root-object. For example, for both C20-Ih and C60-Ih all

hexagons and all atoms are symmetry equivalent. The Fullerene software package



4.2 ALGORITHM DESIGN 72

is able to identify the symmetry inequivalent starting faces that yield different

unfoldings, meaning the algorithm can disregard symmetry equivalent hexagons as

root-objects.

The second thing to note is that, if the root-object of an unfolding is a face, it must

always be a hexagon. This is due to the fact that 5 is a prime number, meaning

pentagons can either have at least C5 symmetry or only C1. However, a pentagon

with 5 surrounding faces will make a cone with Gaussian curvature 2π/6, making

the unfolding non-planar, which goes against the goals of the algorithm. If the faces

are moreover placed using the hinge method as per Figure 4.18.(b), the maximal

possible symmetry is of n = 3, because with sixfold symmetry the faces surrounding

the central hexagon would collide and not be accepted for placement.

Lastly, is is important to realise that apart from faces, there are two more types of

symmetry sites: triangles (atoms) and edges. Each can lead to a different symmetric

unfolding, as both the rotation and reflection axes shift their positions, as for a

root-triangle the rotation axis would lie at its centroid where the atom lies. In this

project however, it was chosen to focus on face-symmetric unfoldings, since they are

theorised to have higher chances of auto-assembly success. As such the algorithm

presented in this project exhaustively searches all unfoldings with face-symmetry,

but for completeness the other symmetry sites should be implemented in future

work.

What is possible however, is to use the methods of creating face symmetric unfold-

ings and placing single symmetry equivalent triangles instead. In this way, the

rotation and reflection operations for triangle arcs are the same as for those of faces,

and allows the algorithm to algorithm to produce hybrid face/triangle unfoldings

as well. What this means is that faces can be placed recursively until the workset in a

recursion step runs empty, which would normally mean the branch in the recursion

tree gets cut if the unfolding is incomplete. However, if upon unwinding to the

parent node a switch would be made to placing symmetric triangles using the same

workset, the unfolding might still be completed.
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Figure 4.24: (Top) A work-arc can be reflected in the horizontal (left) of vertical
(right) reflection axis. Depending on the chosen axis, the symmetry arcs that are
found result in n or 2n faces, as exemplified for D3 and hinge- (middle) and bond-
connected (bottom) faces in the figure. For bond-connections, the reflected arcs are
reversed to make sure faces can be placed six at a time as well.
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4.3 IMPLEMENTATION

This section discusses how the algorithm components are implemented in terms of

function definitions and variables in Python. The reason why python was chosen as

the programming language due to its ease of use and readability, which are useful

properties when developing a novel algorithm on a subject that has little to no

reference on the matter. Moreover, the parallel masters projects from others working

on CARMA related tasks are also written in Python, making it preferable to program

the unfolding algorithm of this project in Python as well.

4.3.1 Implementing P.1a: Input

Starting with the input, the sparse adjacency matrix of the precursor-molecule bond-

graph was implemented as a numpy array named dual_neighbours . In line

with the design, the array is of sizeNf×6 with its rows representing theNf faces and

the pentagons stored in the top twelve rows. Since Python only accepts rectangular

arrays, the final element of each pentagonal row is assigned a dummy value −1.

For example, the neighbours of face 0 centred by dual-node 0 of the C60-Ih fullerene

are represented in the first row of its dual-neighbour array as [16, 15, 14, 13, 12,−1],

which is a pentagon. The dummy value −1 was chosen because the generation of

the dual-neighbour arrays are only allowed positive nodes, making it easy for any

post-processing to deal with the dummy values. It is moreover preferable to have an

integer dummy value because the nodes are integers as well, and single-type arrays

are faster to modify and store than mixed-type arrays.

4.3.2 Implementing P.1a: Output

The output array that stores all the dual arcs with their Eisenstein coordinates was

created as a Nf × 6 × 2 × 2 array and was named arc_array . As explained in

the design, it is important to realise that nodes are not stored explicitly in the array.

Instead, they are implicit in the unique storage location of each arc in the array.

Moreover, the 2× 2 dimensions of the array are necessary to accommodate storing a
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full arc with source and target coordinates as [isource, jsource], [itarget, jtarget] in each

element. Similar to dual_neighbours there are twelve dummy elements to

represent the absent arcs in the pentagons, which in this case are not single integers

but 2× 2 sub-arrays.

The placed-array was created as a Nf × 6 boolean array named placed_array to

keep track of the placement status of all of the arcs in the unfolding. To keep this

array of a single data-type as well the pentagon dummy values in the top twelve

rows were set to False instead of -1. Lastly, the workset queue of unplaced arcs

was constructed as a Nwork_arcs × 3× 2 array named workset , with Nwork_arcs the

number of work_arcs in queue for placement. The additional 3× 2 dimensions

store both the work-arc nodes as well as their coordinates. As discussed, this is

important since the workset does not have implicit information regarding the nodes

in its array structure like the arc_array has. It is simply a queue of arcs and

moreover of variable length, so the work-arc information in each entry needs to be

complete:

(u, v) = [[u, v], [iu, ju], [iv, jv]]

4.3.3 Implementing P.1a: Initialisation

In addition to the dual-neighbours array, a few other variables need to be defined to

start the algorithm as shown in Code 4.1. First, the place_objects variable is a

list of strings of the possible placement-objects. Currently, when a selection is made

the unfolding will only consist of the chosen object. However, the implementation

could be easily extended to allow for a variation of placement-objects at different in-

termediate states should the need arise. Then, if a planar point group is provided un-

foldings will be generated according to it, with either triangles or faces as placement

objects. If no point group is given (i.e. point_group = 0 ), all possible unfold-

ings in the recursion space will be generated. Next, the constraint_function

is passed as an argument such that different generation constraints can be applied to

the same unfolding process. Lastly, to limit the computation time of the algorithm

a max_unfolds variable can be set that restricts the number of valid unfoldings
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that are returned. Note that the dual-neighbours array is taken from a data-file

containing dual-graph information of the chosen isomer, in this case the C60-Ih

fullerene.

1 dual_neighbours = C60ih.dual_neighbours

2 root_nodes = cf.get_root_nodes(dual_neighbours)

3 place_objects = ['triangle', 'face']

4 point_group = 'C3'

5 max_unfolds = 1

6

7 outputs = generate_unfoldings(dual_neighbours, root_nodes,

place_objects[1], point_group, max_unfolds, cf)↪→

Code 4.1: Variable initialisation and function call that start the recursive unfolding
process.

Once a fullerene isomer and the unfolding parameters are defined, the function

generate_unfoldings() takes care of producing all possible precursor-unfoldings

for all possible root-objects according to the specified placement object and point

group as shown in Code 4.2. For each root-node, initialise_state() cre-

ates the initial state and state variables, and places the root hexagon if a point

group is specified. Moreover, the number of valid unfolding created is counted by

unfolding_count , which is a variable shared between the recursion trees of each

possible root hexagon. When the number of unfoldings is equal to max_unfolds ,

the recursion stops and the list of outputs is returned. The individual recursion

trees are traversed by the recursive_unfold() function. On a side note, cf

(short for common functions) is a file that contains all the subroutines created for

generate_unfoldings() and recursive_unfold .

The initialise_state() function is listed in Code 4.4 and initialises both the

empty arc-, placed-, and workset arrays that define a state, as well as the state-

variables tri_count and path . The path variable is a list that stores the work-

arcs of placed objects in the order that they were placed. Using the variable, the

path in the recursion tree can be played back for debugging purposes, should any

placement steps ever reveal unwanted behaviour. To allow for this, an accompanying
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1 def generate_unfoldings(dual_neighbours, root_nodes, place_obj,

point_group, constraint_function, max_unfolds, cf):↪→

2

3 N_atoms = int((len(dual_neighbours.flatten()>=0)-12)/3)

4 outputs = []

5

6 for root_node in root_nodes:

7 # Keep shared unfolding count between trees

8 no_unfoldings = len(outputs)

9

10 # Initialise tree, place root-object if point group

11 init_state, init_state_vars =

cf.initialise_state(dual_neighbours, root_node,

point_group)

↪→

↪→

12

13 # Traverse current root-object recursion tree and add

valid unfoldings to list↪→

14 outputs += recursive_unfold(init_state,

init_state_vars,...)↪→

15

16 print(f'{len(outputs)} valid unfolding(s) found.')

17

18 return outputs

Code 4.2: Function that can generate all possible precursor-unfoldings given the
dual-neighbours array of any fullerene isomer by traversing all recursion trees for
all given root-nodes. Valid unfoldings are returned in a list named outputs .

function play_path() was also written that is able to recreate all the placement

steps in the recursion tree in order. It can moreover stop at any chosen intermediate

state for closer inspection.

Coming back to initialise_state() , the first lines of code define the required

shape variables for the state arrays, as well as the source and target coordinates of

the root-arc which defines the object that is placed first. The chosen origin and initial

direction of the root-arc are arbitrary, provided that they both lie on the Eisenstein

ring in relation to each other. For clarity, the origin was put at [i, j] = [0, 0] with initial

direction [i, j] = [1, 0]. Next, the function constructs the root-arc with its source the

provided root-node by generate_unfoldings() . The target node of the root-

arc is the first neighbour found in the data row dual_neighbours[source]
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1 def play_path(state, state_vars, place_obj, point_group, cf):

2 ''' Plays back a recorded recursion path'''

3 outputs = []

4 path = state_vars[1]

5

6 for path_index, work_arc in enumerate(path):

7 state, state_vars = cf.update_state(...)

8 outputs += [[copy.deepcopy(state),

copy.deepcopy(state_vars)]]↪→

9

10 return outputs

Code 4.3: The play_path() function is able to playback the traversal steps
through the recursion tree.

which contains the neighbours of the face centred by the root-node. The coordinates

of the source are set equal to the origin, and the target coordinates to the initial

direction. Then, the pair of nodes and coordinates are packed together to create the

root-arc.

After the root-arc is created, the state arrays are initialised. First, the arc_array

as the Nf × 6 × 2 × 2 array filled with np.nan values as discussed in its design.

Following, the placed_array is initialised as a boolean array with the shape of

the dual-neighbours array, being Nf × 6, which is the number of total arcs that have

to be placed. Then, the root-arc is put into the initial workset that will be used in the

first placement cycle. Then, the collision_grid dictionary variable is initalised

with the root-arc Eisenstein coordinates. Moving on, the state variables are stored in

a separate list from the state arrays for clarity. Naturally, the number of triangles is

an integer that starts counting from zero and is named tri_count . Moreover, the

path starts off as an empty list to which the placed work-arcs can be added while

traversing the recursion tree. As a last step, the state arrays and state variables are

packed in lists to make it easier to pass them as to other functions. If a point group

is specified however, the root hexagon needs to be placed manually before starting

the recursion process. This is due to the fact that the symmetry equivalent arcs to

the root-arc are undefined, as no other arcs are placed on the plane yet. Therefore,
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initialise_state() takes care of the initial placement step if a point group is

specified.

1 def initialise_state(dual_neighbours, root_node, point_group):

2 Nf, n_hex = dual_neighbours.shape[0], 6

3 origin, init_direction = np.array([0,0]), np.array([1,0])

4

5 # Construct root-arc

6 u = root_node

7 v = get_root_nbour(dual_neighbours, u)

8 c_u, c_v = origin, init_direction

9 root_arc = np.array([[u, v], c_u, c_v], dtype=int)

10

11 # Initialise state arrays

12 init_arc_array = np.full((Nf, n_hex, 2, 2),

fill_value=np.nan)↪→

13 init_placed_array = np.zeros_like(dual_neighbours,

dtype=bool)↪→

14 init_workset = np.array([root_arc])

15 init_collision_grid = {tuple(c_u) : u, tuple(c_v) : v}

16

17 # Initialise state variables

18 tri_count = 0

19 path = []

20

21 state = [init_arc_array, init_placed_array, init_workset,

init_collision_grid]↪→

22 state_vars = [tri_count, path]

23

24 # Place root symmetry hexagon if point group is given

25 # If no symmetry recursive_unfold() places root-object

26 if point_group:

27 work_arc, state[2] = state[2][0], state[2][1:]

28 fd_arcs = get_face(work_arc, dual_neighbours)

29

30 state, state_vars = update_state(fd_arcs, state,

state_vars, 'face', 0, dual_neighbours)↪→

31 path += [work_arc]

32

33 return state, state_vars

Code 4.4: The initialise_state() function creates the required output ar-
rays and state variables for a precursor-unfolding.
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4.3.4 Implementing P.1b: Generating all unfoldings

The main function that systematically explores the recursion tree for any given

fullerene bond-graph was named recursive_unfold() , whose simplified code

is shown in Code 4.5. First the list outputs is created which will contain all

the collected nuts at the leaf nodes. Then the base case is evaluated, where valid

unfoldings are appended and invalid ones discarded if it is True. If a leaf node is not

reached yet, the recursive case traverses the recursion tree. Using the termination

constraints, horizontal branches are created until either the workset is empty or the

set maximum number of unfoldings is reached. For each branch, the creation of a

new state (child node) starts by taking a work-arc from the workset and determining

if and which triangles of the object corresponding to the work-arc can be placed. This

is done using the passed constraint_function() , which returns a place

boolean and all (if any) valid work-arcs. If the object can be placed, the new state and

state variables are updated by update_state() : a function that places the object

and updates the state arrays and tri-count. After placement the path is updated

with the original work-arc, which is done outside of the state update since it should

only add the original work-arc and not all valid ones. If the object can instead not

be placed, the algorithm loops back to the termination constraint to take the next

work-arc from the current workset of the state.

As can be seen in the code, the next step is to recursively call the same function

that traverses the tree vertically from a level L to a level L + 1 in the recursion

tree. This is done by appending the result of the function call to the list of out-

puts. In this way, if a base case is reached and returns either a valid unfolding as

[[state, state_vars]] or an empty list [] , this is returned to the previous

recursion call at level L, carrying with it the appended unfolding in the ’bag’ of

outputs. If the termination constraints are reached before a base case is (i.e. the

branch is cut), the function simply returns the same bag of outputs to its parent call

using the last line return outputs . Lastly, when the algorithm is completely

unwound back to the first function call and has explored all branches, the final list

of outputs is returned.
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It should be remarked that each recursion step is done using a copy of the ori-

ginal state. The reason for copying the original state is that Python uses call

by reference rather than call by value. What this means is that any changes the

update_state() function makes to a passed state are reflected outside of the

function scope as well. As a consequence, if no copy would be made and the

algorithm would unwind back from level L + 1 to the same node at level L, the

algorithm would wrongly start creating new branches on the basis of the updated

state with a new placement object present. Therefore, the original state at level L

needs to be preserved, which is thus achieved by copying it before it is changed by

the state update function.

To provide additional insight on the matter, note how a new_state is constructed

in level L and then passed to level L + 1 recursively. Since Python uses call by

reference, level L+ 1 mutates new_state (called state in level L+ 1). Therefore,

on return to level L its new_state contains the updated state. When the algorithm

at some point returns to the parent node at level L− 1 from there, the new_state

of level L no longer exists, as it is deallocated from memory when its scope at

the function call of level L is exited. However, if the workset is not empty yet in

level L (i.e. more children can be created), the new_state is overwritten with

a new new_state object and passed to the next sibling at level L + 1. At this

point, the old new_state object is marked for garbage collection in memory and

is automatically deallocated. In short, new_state is allocated inside the function

body of any recursive_unfold() call and its scope is the function body. While

it is passed down with another recursion call and winding up it exists, and as the

algorithm unwinds and returns it is removed from existence.
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1 def recursive_unfold(state, state_vars, N_atoms, place_obj,

point_group, constraint_function, max_unfolds,

dual_neighbours, cf):

↪→

↪→

2 outputs = [] # List of valid unfoldings

3

4 ## BASE CASE

5 if tri_count == N_atoms:

6 if is_valid_unfolding(state):

7 # Collect valid leaf nodes in outputs

8 return [[state, state_vars]]

9 else:

10 # Discard invalid leaf nodes

11 return []

12

13 ## RECURSIVE CASE

14 else:

15 # Horizontal branch creation

16 while workset != empty and len(outputs) < max_unfolds:

17 # Take work-arc from workset

18 work_arc, state[2] = state[2][0], state[2][1:]

19

20 # Determine which arcs/triangles can be placed

21 # valid_arcs can be multiple, singular or none

22 place, valid_arcs = constraint_function(work_arc,

...)↪→

23

24 if place:

25 # deepcopy the state for recursion because Python

passes by reference↪→

26 new_state, new_state_vars =

cf.update_state(valid_arcs,

copy.deepcopy(state, state_vars), ...)

↪→

↪→

27 # Record path

28 path += [work_arc]

29 # Vertically traverse the tree (wind-up)

30 outputs += recursive_unfold(new_state,

new_state_vars, ...)↪→

31

32 return outputs

Code 4.5: Simplified code for the main function that recursively generates all valid
unfoldings.
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4.3.5 Implementing P.1a: Unfolding constraints

To determine whether an object can be placed the is_placeable() function was

created, which is the function that is currently passed as the constraint function to

recursive_unfold() . The function takes a work-arc and state as arguments

and returns a place boolean together with all the valid object-work-arcs. To see

how the function works, consider the code from Code 4.6. First, it is checked whether

the work-arc is stored in the arc-array and therefore placed on the Eisenstein plane

already. To this end a sub-function is_placed() finds the truth value of the arc

in the placed-array and returns it. Shown in Code 4.7, the function get_pos()

determines the storage location as [row, column] of the arc in the placed-array. It

does so by the method illustrated in Figure 4.25 for the example arc [0, 13] of the

C60-Ih fullerene. Remember that the dual-neighbours array is of shape Nf × 6 where

each row represents the face that is centred by the node whose number is equal

to the index of the row. As seen the figure, row 0 stores the neighbours of node 0

that together form the arcs defining face 0 of the precursor-molecule. Subsequently,

since the arc [0, 13] is found at found at row 0, column 3 of dual-neighbours, its

corresponding truth value is also found at row 0, column 3 of the placed-array,

which is_placed() returns. If the work-arc exists on the Eisenstein plane the

function returns a boolean of 0 and no valid arcs to reject the placement object. If the

work-arc does not exist yet, the function triggers the execution of the appropriate

constraint function specific for each placement object.
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1 def is_placeable(arc, state, place_obj, dual_neighbours):

2 if is_placed(arc, state[1], dual_neighbours):

3 return 0, [] # don't place, no valid_arcs

4 else:

5 if place_obj == 'triangle':

6 return tri_is_placeable(arc, state, dual_neighbours)

7

8 elif place_obj == 'face':

9 return face_is_placeable(arc, state, dual_neighbours)

10

11 elif place_obj == 'symmetry_group':

12 return symmetry_group_is_placeable(arc, state,

dual_neighbours)↪→

Code 4.6: The triangle placement constraint function returns all valid work-arcs
together with a boolean that indicates whether the object can be placed.

1 def is_placed(arc, placed_array, dual_neighbours):

2 pos = get_pos(arc[0,0], arc[0,1], dual_neighbours)

3 return placed_array[pos[0]][pos[1]] # True or False

Code 4.7: Function that finds the location of an arc boolean in the placed-array and
returns its placement status.
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Figure 4.25: The row and column of an arc in the arc_array are determined by
get_pos() .
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4.3.6 Implementing P.1a: Triangle constraints

If the passed placement object is a single triangle, tri_is_placeable() takes

a work-arc, determines the triangle using the get_tri() function shown in

Code 4.8, and sees if the triangle shows any collision with the existing precursor-

molecule. A collision is detected if any of the intended triangle coordinates are in

the collision-grid and correspond to a node that is different from the intended one.

If there is no collision that means either the placement location is completely free, or

that any nodes that do exist are part of the intended triangle as well. Notwithstand-

ing, this does not allow for duplicate triangles since any duplicate arcs are rejected at

the initial is_placed() check, before any particular constraint-function is called.

The code for the triangle constraint and collision check functions is listed in Code 4.9

and Code 4.10 respectively. Again, what is returned by is_placeable() is a

boolean of 1 together with triangle work-arc, or a value of 0 and no work-arc.

1 def get_tri(arc, dual_neighbours):

2 u, v, cs_u, cs_v = arc[0,0], arc[0,1], arc[1], arc[2]

3 w = tri_next_node(u,v,dual_neighbours)

4 cs_w = tri_next_cs(cs_u, cs_v)

5

6 return np.array([u,v,w]), np.array([cs_u, cs_v, cs_w])

Code 4.8: Function that retrieves the third triangle node with its coordinates and
returns the full triangle.

1 def is_collision(arc, collision_grid, dual_neighbours):

2 nodes, coords = get_tri(arc, dual_neighbours)

3

4 return any([tuple(coord) in collision_grid and

collision_grid.get(tuple(coord))!=node for node, coord in

zip(nodes, coords)])

↪→

↪→

Code 4.9: Check for collisions of a triangle intended for placement with the occu-
pied Eisenstein grid points
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1 def tri_is_placeable(arc, state, dual_neighbours):

2 placed_array, collision_grid = state[1], state[3]

3

4 return (not is_placed(arc, placed_array , dual_neighbours)

and not is_collision(arc, collision_grid,

dual_neighbours)), arc

↪→

↪→

Code 4.10: Function that determines whether a triangle can be placed.

4.3.7 Implementing P.1a: Face constraints

Moving on to constraining the placement of faces, the face_is_placeable()

function was developed to determine the set of face-work-arcs that can be placed

and is listed in Code 4.12. As discussed in the design, any work-arcs that would

form duplicate triangles on the Eisenstein plane are excluded from the array of

valid arcs. Before this is done, the get_face() function finds all face-work-arcs

cyclically using the passed work-arc and the dual-neighbours array. Because this

process is non-trivial, pseudo-code instead of the full code of the function is listed in

Code 4.11. Essentially, the method entails looping through the row of neighbours of

the source node of the given work-arc in the dual-neighbours array, determining

their coordinates using cyclical Eisenstein multiplication, and making sure the data

structure of the the face-work-arcs is correct for further processing. This results in

an array of arcs with each element [[u, v], [iu, ju], [iv, jv]].

From the array of all face-work-arcs, the exclusion of duplicate triangle work-arcs

is done by first checking if any of the face-work-arcs are already placed. If the

face-work-arc exists on the plane already, it is subsequently checked whether the

coordinates of the source node from the placed-arc are the same as the source

coordinates from the face-work-arc. In this way, if the coordinates are the same the

face-work-arc would produce a duplicate triangle and is thus marked for exclusion

from the array of face-work-arcs. After all face-work-arcs are gone through, the

arcs marked for exclusion are deleted. Following, the remaining face-work-arcs are

evaluated for placement as ordinary triangles using tri_is_placeable() . As

such, if any of the remaining face-work-arcs would place a triangle that is either
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already placed or would yield a collision, the entire face is rejected. If not, the valid

face-work-arcs are returned together with the boolean 1 that states the face can be

placed.

1 def get_face(arc, dual_neighbours):

2 # Start with face center node = work-arc source node

3

4 ## Form all node pairs as

5 # [center node, neighbour 1], [center node, neighbour 2] ...

etc.↪→

6 # Creates e.g. [[0,16],[0,15],[0,14],[0,13],[0,12]] for first

pentagon of C60-ih↪→

7

8 ## Form all coordinate pairs

9 # Starting with the given work-arc, find all coordinate pairs

10 # [center node [i,j], neighbour 1 [i,j]] etc..

11

12 # Reshape into work-arc structure: [[n1,n2],[i_n1,

j_n1],[i_n2,j_n2]] for all arcs↪→

13

14 return face_work_arcs

Code 4.11: Simplified code for the function that finds all face-work-arcs of a
pentagonal or hexagonal face given a single work-arc.
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1 def face_is_placeable(arc, state, dual_neighbours):

2 fwas = get_face(arc, dual_neighbours) # face_work_arcs

3

4 del_indices = []

5

6 for index, fwa in enumerate(fwas):

7

8 if is_placed(fwa, placed_array, dual_neighbours):

9 pos = get_pos(fwa[0,0], fwa[0,1], dual_neighbours)

10

11 pa_source_coords = arc_array[pos[0]][pos[1]][0]

12 fwa_source_coords = fwa[1]

13

14 if np.array_equal(fwa_source_coords,

pa_source_coords):↪→

15 del_indices.append(index)

16

17 fwas = np.delete(fwas, del_indices, axis=0)

18

19 place = all([tri_is_placeable(fwa, placed_array,

collision_grid, dual_neighbours)[0] for fwa in fwas])↪→

20

21 return place, fwas

Code 4.12: Constraint function for faces that removes duplicate triangles from the
placement cycle and returns whether to place the face together with the remaining
valid face-work-arcs.

4.3.8 Implementing P.1a: Symmetry group constraints

Symmetry equivalent arcs can only be placed if all their corresponding place-

ment objects can be placed simultaneously. Moreover, if the placement objects

are faces all of them have to be either pentagons or hexagons. To this end, the

sym_is_placeable() function was created to find the symmetry equivalent

arcs of a given work-arc and determine whether they can be placed on the Eisenstein

plane. The code is listed in Code 4.16, and starts by obtaining all the symmetry

equivalent arcs to the work-arc using get_sym() as shown in Code 4.13.

The get_sym() function finds the arcs by considering what the point group and

placement object are, and executing the appropriate code. As shown in Code 4.14,
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for Cn symmetrical faces the n− 1 symmetry arcs are found by using 6/n counter-

clockwise Eisenstein multiplication steps of the work-arc to find the coordinates.

Then, the nodes can be found by making use of the fact that their reverses are already

placed on the Eisenstein plane. As such, its nodes are stored in the collision-grid and

correspond to the nodes of the symmetry arc as well. If the given point group is Dn

instead as shown in Code 4.15, the work-arc is reflected using easy_reflect() ,

which uses equations Equation (4.3) and Equation (4.4) to determine the coordinates

of the reflection, and the collision-grid to find the nodes. The work-arc and reflected

arc are then rotated n− 1 times using the same code as for Cn symmetry, yielding

2n symmetry arcs that are ready to be evaluated for placement.

1 def get_sym(arc, collision_grid, dual_neighbours, place_obj,

face_con, point_group, ref_axis):↪→

2 clockwise = [1,-1]

3 counterclockwise = [0,1]

4

5 group = point_group[0]

6 n = int(point_group[1])

7 mult_steps = int(6/n)

8

9 if group == 'C':

10 # See Cn part of get_sym() code snippet

11

12 elif group == 'D':

13 # See Dn part of get_sym() code snippet

14

15 return sym_arcs

Code 4.13: Simplified code for the function that finds all symmetry equivalent arcs
given a work-arc and planar point group of the precursor-unfolding.

Once the symmetry arcs are found, the function sym_is_placeable() was

created to determine all the dependent arcs of the objects corresponding to the

symmetry arcs, and see if they can all be placed. The structure of the function is

shown in Code 4.16, with separate snippets for Cn and Dn faces listed in Code 4.17

and Code 4.19 respectively.
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1 '''Cn part of the get_sym() function'''

2 # Initialise sym_arcs with work_arc

3 sym_arcs = [arc]

4

5 mult_steps = int(6/n)

6

7 if place_obj == 'face':

8 source, target = arc[0][0], arc[0][1]

9 source_cs, target_cs = arc[1], arc[2]

10

11 # Because there are n-1 new rotationally equivalent sym_arcs

to determine↪→

12 for i in range(n-1):

13 # Do 6/n Eisenstein multiplications to get to next

rotation sym_arc↪→

14 for i in range(mult_steps):

15 next_source_cs = eis_mult(source_cs,

counterclockwise)↪→

16 next_target_cs = eis_mult(target_cs,

counterclockwise)↪→

17 source_cs = next_source_cs

18 target_cs = next_target_cs

19

20 next_source = collision_grid.get(tuple(next_source_cs))

21 next_target = collision_grid.get(tuple(next_target_cs))

22

23 next_rotation_arc = [[next_source, next_target],

next_source_cs, next_target_cs]↪→

24 sym_arcs += [next_rotation_arc]

25

26 return sym_arcs

Code 4.14: Snippet of code that finds all Cn equivalent symmetry arcs.

For symmetrically equivalent faces there are several more constraints and edge-cases

that show up. First of all, the faces corresponding to the symmetry arcs can only

be placed if they are either all pentagons or all hexagons. To this end the total

number of arcs that will be considered is made by running get_face() on all

the symmetry arcs. If the number of arcs for each face of each symmetry arc is

the same, that implies the faces are all pentagons or hexagons, and the function

can proceed. Next, the dependent arcs are found for each of the symmetry faces

using face_is_placeable() , which removes the dependent arcs that form
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1 '''Dn part of the get_sym() function'''

2 # Reverse needed to ensure 'bond' can place 6 faces at a time

3 # If reverse would be False for 'bond' then reflection can get

invalid [None, node] arcs.↪→

4 if (face_con == 'bond'):

5 reverse=True

6 else:

7 reverse=False

8

9 # Reflect work_arc and initialise sym_arcs with the work_arc and

its reflection↪→

10 reflection = easy_reflect(...)

11 reflect_arcs = [arc, reflection]

12 sym_arcs = copy.copy(reflect_arcs)

13

14 if place_obj == 'face':

15 # Get all rotations for the work_arc and its reflection

16 for ref_arc in reflect_arcs:

17 source, target = ref_arc[0][0], ref_arc[0][1]

18 source_cs, target_cs = ref_arc[1], ref_arc[2]

19

20 # Get all n-1 rotation sym_arcs

21 # Same as Cn, see Cn_get_sym

22 ...

23

24 return sym_arcs

Code 4.15: Snippet of code that finds all Dn equivalent symmetry arcs.

the hinge and evaluates each of the triangles of the face-dependent-arcs using

tri_is_placeable() .

There are several edge cases that can occur, the one that is shared between Cn and

Dn is that symmetry faces can ’steal’ triangles from one another. For example, if two

symmetry faces a and b share triangles but are placed in separate locations, the arcs of

the shared triangles will only be placed as part of whichever face is placed last. The

reason for this is that face_is_placeable() evaluates each of the symmetry

faces in a vacuum, without considering the placement of the other symmetry faces.

Therefore, the function is_interim_placed() was created, which takes the

generated dependent arcs and runs them through an interim placement cycle. The

function returns True if the placement of any of the triangles corresponding to the
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dependent arcs interfere with the placement of any of the other triangles. In this

way, it is prevented that triangles are re-placed in different locations when they are

’stolen’ from another object. Together with face_is_placeable() , it was found

that these constraints are enough to yield valid Cn unfoldings.

1 def sym_is_placeable(arc, state, state_vars, dual_neighbours,

place_obj, face_con, point_group, ref_axis):↪→

2 # Get arcs that define the symmetry equivalent objects

3 sym_arcs = get_sym(...)

4

5 # For triangles, the dependent dep_arcs are equivalent to the

sym_arcs↪→

6 if place_obj == 'triangle':

7 return all(tri_is_placeable(...), sym_arcs

8

9 # For faces, the dep_arcs can be found using

face_is_placeable for each sym_arc↪→

10 elif place_obj == 'face':

11

12 if group == 'C':

13 # See Cn part of sym_is_placeable() code snippet

14

15 elif group == 'D':

16 # See Dn part of sym_is_placeable() code snippet

17

18 return place, dep_arcs

Code 4.16: Simplified code for function that takes a work-arc and determines if the
objects formed by all symmetry equivalent arcs can be placed and returns all their
dependent arcs.

For Dn unfoldings, there are several more considerations to be made. As was shown

previous in Figure 4.24, reflected arcs are already placed when they lie clockwise

on the periphery, or duplicate if the (reversed) reflection is the same arc as its coun-

terpart. For this reason, a function filter_sym_arcs() was created to filter out

any unwanted arcs that should not be evaluated for placement. After all, should they

be kept, both is_interim_placed() and face_is_placeable() could po-

tentially flag the whole placement step as invalid for the wrong reasons. The code

is shown in Code 4.20, and shows that arcs are removed if they share a face-center

(source node) or are duplicates (placed and in exact location of the symmetry arc).
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1 '''Cn part of the sym_is_placeable() function'''

2 # If sym faces are all pentagons or all hexagons

3 for arc in sym_arcs:

4 total_arcs += len(get_face(arc, dual_neighbours, face_con))

5

6 arcs_per_face = (total_arcs/len(sym_arcs))

7

8 if arcs_per_face == 5 or arcs_per_face == 6:

9 # Find all face dependent arcs of all symmetric faces

10 for sym_arc in sym_arcs:

11 dep_arcs += face_is_placeable(...)[1]

12

13 # 1. All faces have to be placeable.

14 # 2. is_interim_placed() returns True if sym_faces are

'stealing' triangles from each other↪→

15 # By checking if every dep_arc triangle can be placed ...

16 # ...with knowledge of the other triangles being placed

17 if all(face_is_placeable(...)[0] for arc in sym_arcs) and not

is_interim_placed(...):↪→

18 return 1, dep_arcs

19 else:

20 return 0, []

21

22 # If not all faces are pentagons or hexagons

23 else:

24 return 0, []

Code 4.17: Snippet of code that finds and evaluates all Cn equivalent dependent
arcs for placement.

1 def is_interim_placed(dep_arcs, state, state_vars,

dual_neighbours):↪→

2 s, sv = copy.deepcopy(state), copy.deepcopy(state_vars)

3 for dep_arc in dep_arcs:

4 if tri_is_placeable(dep_arc, s, dual_neighbours)[0]:

5 s, sv = place_tri(dep_arc, s, sv, dual_neighbours)

6 else:

7 return 1

8 return 0

Code 4.18: Function that evaluates symmetry objects by means of an interim
placement cycle. If any of the dependent arcs of an object would render the
placement of any of the other objects invalid, the symmetry objects cannot be
placed.
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Moreover, any arcs that occur more than once in the list are removed as well by

remove_double_arcs() , to ensure faces are not placed twice, which result in

the wrongful double counting of new triangles.

Coming back to Code 4.19, there are additional considerations to be made if the faces

are pentagons. For one, pentagons cannot be placed Dn symmetric in groups of ≤ 3

for hinge-connections. This is due to the fact that it is impossible to align three or

less hinge-connected pentagon cut-outs along Dn axes, which was also visualised in

Figure 4.22.b and Figure 4.23. It is possible to do so if the faces are placed with bond-

connections instead, but only if the pentagon cut-outs are shifted to align with the

axes. Therefore a function shift_cutout(dep_arcs, n=2) was created that

changes the order of the dependent arcs generated by face_is_placeable()

as shown in Figure 4.26. In the standard case on the left of the figure, the pentagon

cut-out is always made after the last dependent arc as generated by get_face() .

Therefore, by shifting arcs 2 and 3 in clockwise direction on the Eisenstein ring,

the cut-out will be right before the nth dependent arc which correctly aligns it with

the reflection axis. If any number of pentagons ≥ 3 with either hinge- or bond-

connections are placed, the location of the cutout is arbitrary, as its reflection will

always point in the opposite direction of the axis ensuring correct Dn symmetry.
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Figure 4.26: For Dn symmetric unfoldings that try to place ≤ 3 pentagons in a
placement step, the pentagon cutout needs to be shift to align with the reflection
axes by rotating arcs n and n+ 1 on the Eisenstein ring using a single Eisenstein
multiplication in clockwise direction.
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For symmetric triangles, the logic for finding the symmetry arcs is exactly the same

as for faces, again using n − 1 times 6/n Eisenstein rotations for Cn, and creating

their reflections for Dn in the horizontal and vertical axes. When it comes to the

constrains for placement, the only difference is that for triangles, the symmetry

arcs already are the dependent arcs, and can therefore be directly evaluated using

tri_is_placeable() . Similarly, for Dn symmetry the arcs are filtered using

filter_sym_arcs() and run through is_interim_placed() to ensure no

triangles are allowed to be re-placed.
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1 '''Dn part of the sym_is_placeable() function'''

2 # make_unique_sym_arcs() removes any sym_arcs that define the

same face ...↪→

3 # ... to prevent that placement get blocked by

is_interim_placed()↪→

4 sym_arcs = make_unique_sym_arcs(...)

5

6 for arc in sym_arcs:

7 total_arcs += len(get_face(...))

8

9 arcs_per_face = (total_arcs/len(sym_arcs))

10

11 # Sym faces need to be either all pentagons or all hexagons

12 if arcs_per_face == 5 or arcs_per_face == 6:

13 if arcs_per_face == 5:

14 # Hinge pentagons can only be placed 6 at a time...

15 # ...as the cutouts of <= 3 pentagons cannot be Dn

16 if len(sym_arcs) <= 3:

17 if face_con == 'hinge':

18 return 0, []

19

20 # Bond pentagons can be placed in threes but only if

you shift the cutout↪→

21 elif face_con == 'bond':

22 for sym_arc in sym_arcs:

23 face_dep_arcs = face_is_placeable(...)[1]

24 face_dep_arcs = shift_cutout(face_dep_arcs)

25 dep_arcs += face_dep_arcs

26

27 # Otherwise, cutout location is arbitrary

28 else:

29 for sym_arc in sym_arcs:

30 dep_arcs += face_is_placeable(sym_arc, state,

state_vars, dual_neighbours, face_con)[1]↪→

31

32 # 1. All faces have to be placeable.

33 # 2. is_interim_placed() returns True if sym_faces are

'stealing' triangles from each other↪→

34 # By checking if every dep_arc triangle can be placed ...

35 # ...with knowledge of the other triangles being placed

36 if all(face_is_placeable(...)[0] for arc in sym_arcs) and not

is_interim_placed(dep_arcs, state, state_vars,

dual_neighbours):

↪→

↪→

37 return 1, dep_arcs

38 else:

39 return 0, []

40

41 # If not all faces are pentagons or hexagons

42 else:

43 return 0, []

Code 4.19: Snippet of code that finds and evaluates all Dn equivalent dependent
arcs for placement.
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1 def filter_sym_arcs(dual_neighbours, sym_arcs, state, place_obj,

face_con):↪→

2 arc_array, placed_array = state[0], state[1]

3 unique_sym_arcs = []

4

5 if place_obj == 'face':

6 face_centers=[]

7

8 for sym_arc in sym_arcs:

9 face_center = sym_arc[0][0]

10

11 if face_center not in face_centers and not

is_duplicate(dual_neighbours, sym_arc, arc_array,

place_obj):

↪→

↪→

12 unique_sym_arcs += [sym_arc]

13 face_centers += [face_center]

14

15 elif place_obj == 'triangle':

16 for sym_arc in sym_arcs:

17 if not is_duplicate(dual_neighbours, sym_arc,

arc_array, place_obj):↪→

18 unique_sym_arcs += [sym_arc]

19

20 # Double arcs are unplaced sym_arcs that occur twice in the

generated list of sym_arcs↪→

21 # Double arcs are blocked by interim triangle placement and

therefore have to be removed beforehand↪→

22 unique_sym_arcs = remove_double_arcs(unique_sym_arcs)

23

24 return unique_sym_arcs

Code 4.20: Function used in sym_is_placeable() to remove symmetry arcs
from the list that would result in invalid an placement step or the needless con-
straining thereof.
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4.3.9 Implementing P.1a: Hybrid unfoldings

To create (symmetric) hybrid face-triangle unfoldings, an extension was written

to the recursive_unfold() function as listed in Code 4.21. The code switches

to triangles as placement objects once a dead end in the recursion tree is reached,

which is the case when no objects were placed at a recursion level, meaning no

children nodes were created from a certain parent node. This is checked by setting a

boolean dead_end to True upon entry to a recursive step, and switching it to false

if any placement steps are made while the workset is not empty. Once all workset

options are exhausted and nothing is placed, dead_end will remain True, at which

point the algorithm will try to close out the unfolding with (symmetric) triangles

recursively. An additional parameter threshold was defined as a percentage of

completeness unfoldings must have before they are hybridised. What this means

is that by setting a threshold of 0.9, only unfoldings that are at least 90% complete

are finished with triangles, while a threshold of 0 means every dead end is pursued

with hybridisation.

Since it is possible that arcs were removed from the workset due to the fact that

its face(s) were unplaceable, the workset needs to be replenished with the entire

unplaced periphery of the unfolding at the dead end. The reason for this is that

invalid arcs for face placement are not necessarily invalid for triangles as well. To

this end, a function get_periphery() was created as shown in Code 4.22. The

function takes the current output unfolding, finds all the arcs that are unplaced

using a function get_unplaced_arcs() from the placed-array, and cross-checks

them with the arc-array to see if its reversed counterpart exists. If so, the unplaced

arc is added to the list of periphery arcs which will be used as the new workset for

the hybrid recursive calls.

Because it is possible to reach dead ends after switching placement object as well,

a safeguard was implemented to make sure the algorithm would not attempt to

recurse further after all the options for triangle placement are exhausted. This
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was done by introducing a list variable called place_priorities , which con-

tains the placement objects in the order that they should be tried. In this way, if

the placement priorities are ['face', 'triangle'] , the algorithm will place

faces until a dead end is reached, at which point it will switch to triangles as

they are next in the list by removing the current placement object and passing

place_priorities[1:] to the recursive function. As such, placement priorities

that contain a single object such as ['face'] will not attempt to create hybrid un-

foldings, but only allow the placement of full faces. Using the strategy of placement

priorities should also make it easier to extend the possible placement objects in the

future, should the need arise.

1 '''Hybrid unfoldings in recursive_unfold()'''

2 # Creates hybrid unfoldings if the algorithm is having trouble

closing out unfoldings with only faces↪→

3 # Reconstruct the periphery to use as workset, since unplaceable

work-arcs for faces might be placeable for triangles↪→

4 if dead_end and len(place_priorities) > 1:

5 workset = cf.get_periphery(dual_neighbours, [state,

state_vars])↪→

6

7 if threshold:

8 if tri_count >= int(threshold*N_atoms):

9 tree_outputs += recursive_unfold(...)

10 else:

11 tree_outputs += recursive_unfold(...)

12

13 return tree_outputs

Code 4.21: To ensure face-symmetric unfoldings can be completed, an ex-
tension was created for recursive_unfold that continues recursively with
place_obj = 'triangle' once a dead end is reached in the tree, with the

possibility to set a threshold to govern how complete unfoldings must be before
they are hybridised.
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1 def get_periphery(dual_neighbours, output):

2 state = output[0]

3 arc_array = state[0]

4 placed_array = state[1]

5 periphery = []

6

7 unplaced_arcs = get_unplaced_arcs(dual_neighbours,

placed_array)↪→

8

9 for arc in unplaced_arcs:

10 pos = get_pos(dual_neighbours, arc[1], arc[0])

11 source_coords = arc_array[pos[0]][pos[1]][0].tolist()

12 target_coords = arc_array[pos[0]][pos[1]][1].tolist()

13

14 if not any(np.isnan(source_coords)):

15 periphery += [[arc, [int(x) for x in target_coords],

[int(x) for x in source_coords]]]↪→

16

17 return periphery

Code 4.22: Function that gets the periphery arcs of an unfolding by finding
unplaced arcs and comparing them to their reverses in the arc-array. Used by
recursive_unfold() to replenish the workset when a dead end is reached

and hybrid unfoldings are allowed.

4.3.10 Implementing P.1a: Updating the unfolding

Once it is determined that an object can be placed, the update_state() function

was created to take care of placing the object and updating the state arrays and

variables accordingly. The function code is shown in Code 4.23, where it can

be seen that the all work-arcs valid for placement determined by the constraint-

function are passed directly to the function. Similar to the constraint-function

is_placeable() , update_state() is essentially implemented as a switch

that triggers different placing methods depending on the passed placement object.

In this way, when the placement object string ’triangle’ is passed a single triangle is

placed and the tri_count is incremented by one, whilst the string ’face’ would

place five or six triangles and update the count with five or six as well. All placement

functions called by update_state() return the state arrays that now contain the

new placement-object information, as well as the incremented tri-count.
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1 def update_state(valid_arcs, state, state_vars, place_obj,

dual_neighbours):↪→

2 if place_obj == 'triangle':

3 return place_tri(valid_arcs, state, state_vars,

dual_neighbours)↪→

4

5 elif place_obj == 'face':

6 return place_face(valid_arcs, state, state_vars,

dual_neighbours)↪→

7

8 elif place_obj == 'symmetry_group':

9 return place_symmetry_group(valid_arcs, state,

state_vars, dual_neighbours)↪→

Code 4.23: The update_state() function stores new data in the state arrays
and updates the tri-count.

4.3.11 Implementing P.1a: Placing triangles

First on the list of possible objects is the triangle. To place triangles the place_tri()

function was created, which takes a work-arc and updates all the state arrays with

the triangle arcs, placement status, and any newly found work-arcs. Shown in

Code 4.24, the method starts by determining the nodes and coordinates that form the

triangle using get_tri() which was discussed before and is shown in Code 4.8.

The two main operations that follow are to place the triangle on the Eisenstein plane

and to update the workset with any newly found peripheral work-arcs. First, the

triangle is reversed:

[[a, b, c], [[ai, aj ], [bi, bj ], [ci, cj ]]]⇒ [[c, b, a], [[ci, cj ], [bi, bj ], [ai, aj ]]] , (4.5)

which is done outside the loop because the reversing array operation can be easily

done using [:: −1]. Then, the function loops through the three nodes and coordinates

of the determined triangle. In this way, each pair of arc coordinates is first stored in

their unique location in the arc-array, which is found using get_pos() . Then, the

placement status of the arc is switched to True in the placed-array. Afterwards, its

reverse-arc [u, v] is formed and checked against the placed_array to determine
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whether it is already placed. The placement status of each arc can once again be

found using get_pos() to find the location in the placed-array. If the value is

True, the arc is already placed and hence discarded, while a value of False means

the reverse-arc isn’t placed yet and needs to be added to the workset. The process

is then repeated for the remaining two triangle arcs, storing their coordinates and

potentially adding their reverse to the workset.

In the last part of the function, the (coordinate : node) pair of the newly found

third triangle node is added to the collision-grid as it now occupies a grid-point

on the Eisenstein plane. Moreover, the tri-count is incremented by one to reflect

the placement of the new triangle, after which the state is packed up again and

returned back to the recursive_unfold() function as the new_state and

new_state_vars .

It was chosen to combine updating the workset and placing the triangle in a single

function because the workset is always updated after a triangle is placed, with no

exceptions. Therefore, separation of the two would serve no purpose and only

introduce room for error should one be unintentionally executed without the other.
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1 def place_tri(arc, state, state_vars, dual_neighbours):

2 # Unpack state for readability

3 arc_array, placed_array, workset, collision_grid = state

4

5 nodes, coords = get_tri(arc, dual_neighbours)

6

7 # Add third triangle node to collision_grid

8 collision_grid[tuple(coords[-1])] = nodes[-1]

9 state_vars[0] += 1 # tri_count += 1

10

11 # Get reverse triangle for workset update

12 rev_nodes = nodes[::-1]

13 rev_coords = coords[::-1]

14

15 for i in range(3):

16 # Place triangle

17 pos = get_pos(nodes[i], nodes[(i+1) % 3],

dual_neighbours)↪→

18 arc_array[pos[0]][pos[1]] = [coords[i], coords[(i+1) %

3]]↪→

19 placed_array[pos[0]][pos[1]] = True

20

21 # Update workset

22 u, v = rev_nodes[i], rev_nodes[(i+1) % 3]

23 cs_u, cs_v = rev_coords[i], rev_coords[(i+1) % 3]

24 r_pos = get_pos(u, v, dual_neighbours)

25

26 # If not placed add reverse-arc to workset

27 if (placed_array[r_pos[0]][r_pos[1]] == False):

28 work_arc = np.array([[[u, v], cs_u, cs_v]])

29 workset = np.concatenate((workset, work_arc))

30

31 # Pack up and return

32 state = [arc_array, placed_array, workset, collision_grid]

33 return state, state_vars

Code 4.24: Function that places single triangles by updating the state arrays and
state variable tri-count.

4.3.12 Implementing P.2a: Placing faces

Using the existing logic of the place_tri() function, placing faces is straight-

forward. The code is shown in Code 4.25, where it can be seen that each of

the face-work-arcs determined by face_is_placeable() are simply passed
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to place_tri() until all valid face triangles are placed. Doing so does intro-

duce several duplicate work-arcs to the workset, namely a copy of each of the

face-work-arcs. The reason for this is that when a triangle is placed as part of the

face, place_tri() does not have placement information on all the triangles that

will follow. In this way, each face-work-arc places a triangle with one of its arcs the

reverse of the next face-work-arc in the queue. And of course, when place_tri()

then reverses this reverse of the face-work-arc, it sees it is not placed and ends up

adding an exact copy of the face-work-arc to the workset. Because a placement

check is done for each work-arc in the is_placeable() function however, these

duplicates are automatically rejected. In terms of efficiency, it was therefore not

deemed worthwhile to prevent their addition to the workset.

Placing faces naturally updates more elements in the state arrays and increments the

tri-count for each new triangle that is placed as part of the face. Note for example

how a whole hexagonal face stores 18 unique arcs, with 15 arcs for the pentagon,

and changes an equal amount of values to True in the placed_array . Moreover,

the workset is updated with any unplaced reverse arcs from the face periphery as

well. Moreover, a group of face-work-arcs fills up a whole row of the arc_array ,

as they are all the neighbour arcs stemming from the source centre node of the face.

1 def place_face(face_work_arcs, state, state_vars,

dual_neighbours):↪→

2 # face_is_placeable() has determined all valid face_work_arcs

for placement↪→

3 # And whether face is placeable at all

4 for face_work_arc in face_work_arcs:

5 state, state_vars = place_tri(face_work_arc, state,

state_vars, dual_neighbours)↪→

6

7 return state, state_vars

Code 4.25: A face is placed by placing the triangles corresponding to its valid
face-work-arcs one by one using the triangle placement function.
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4.3.13 Implementing P.2b: Placing symmetry groups

Similar to place_face() , symmetry equivalent objects can be placed by simply

looping over all of the symmetry equivalent and possibly face dependent arcs and

passing them to place_tri() one by one. In practice, the created place_sym()

function has the same code functionality as place_face() . Notwithstanding,

the two are separated for clarity of the functioning of the algorithm.

1 def place_sym(dep_arcs, state, state_vars, dual_neighbours):

2 for arc in dep_arcs:

3 state, state_vars = place_tri(arc, state, state_vars,

dual_neighbours)↪→

4

5 return state, state_vars

Code 4.26: Place all symmetry dependent arc triangles and update the state and
state_vars accordingly.

4.3.14 Plotting unfoldings on the Eisenstein plane

The completed algorithm returns a list of valid precursor-unfoldings, where each is

unfolded according to the specified object and symmetry parameters. Practically,

the unfoldings are arc-arrays containing all the coordinate information of each of

the unfolding arcs. To plot the dual arcs and cubic atoms on the Eisenstein plane,

the plotting function plot_unfolding() was created. The code is shown in

Code 4.27, where the function takes an arc-array and plots the dual graph arcs, cubic

graph atom nodes, and equilateral Eisenstein plane. Since negative coordinates

can be assigned to arcs during placement, the dummy values in the arc-array are

np.nan instead of −1, as they can be filtered out using NumPy’s np.isnan() .

The Eisenstein integer coordinates can be plotted in Cartesian space by using a

conversion matrix M as written in line 7 of Code 4.27. The converted coordinates

can then be plotted using ax.plot(xs,ys) , where xs and ys are the x and

y coordinates for the source and target node of the arc respectively, which is then

repeated for each arc in the array. Since each row of the arc-array stores a face of
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the unfolding, the row indices can be used to determine the node number to be

plotted. In this way, going through the first row plots the arcs between node 0

and its five or six neighbours, and numbers the center node 0 using ax.text() .

While ax.plot() draws the edges between the nodes, the directional arrows

are plotted on the midpoint of the edge using ax.quiver() . Then, the atom is

plotted together with its half bond perpendicular to the plotted arc in clockwise

direction, meaning the atom is plotted ’inward’ at the center of the triangle. The

result of plotting a single entry and an entire row in the arc-array is shown on the left

and right of Figure 4.27 respectively. After all arcs, atoms, and bonds are embedded

on the plane, the triangular grid is drawn using ax.triplot() . Lastly, the x

and y axis ticks and are converted to Eisenstein integers, and adjusted dynamically

based on the size of the unfolding to ensure it fits.

b r

w

v

q

s t

u u

Figure 4.27: A single unfolding plotting step embeds an arc together with its
orthogonal half bond and atom (left). Plotting an entire row of the arc-array results
in six face arcs whose triangles will be completed by the neighbouring faces.
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1 def plot_unfolding(arc_array, fig, ax, plot_scale=1, title='',

legend=True, lims=[]):↪→

2 ## Eisenstein to Cartesian conversion matrix

3 M = np.array([[1, np.cos((2*np.pi)/6)], [0,

np.sin((2*np.pi)/6)]])↪→

4

5 ## Plot all arcs

6 for face_num, face in enumerate(arc_array):

7 for arc_cs in face:

8 # Don't plot nan valued arcs from arc_array

9 if np.isnan(arc_cs).any():

10 pass

11 else:

12 # Convert Eisenstein to Cartesian

13 start, end = M.dot(arc_cs.T).T

14

15 # Plot edge i.e. two connected nodes

16 ax.plot(xs, ys, ...)

17

18 # Plot node number on node that numbers face

19 ax.text(xs[0], ys[0], ...)

20

21 # Plot edge direction to make it an arc

22 ax.quiver(pos_x, pos_y, dx/norm, dy/norm, ...)

23

24 # Plot cubic graph atom and half bond clockwise

normal to the arc: nxs, nys↪→

25 ax.plot(nxs, nys, ...) # bond

26 ax.plot(nxs[1], nys[1], ...) # atom at source of

bond↪→

27

28 ## FIGURE STYLING

29 # Find smallest and largest values of i, j in the arc_array

to use as limits↪→

30 # Ticks are at converted Eisenstein to Cartesian values

31 # Set labels to Eisenstein integers, not Cartesian

32

33 ## Plot Eisenstein grid

34 # Create box to triangulate using the calculated limits

35 # Create grid points and triangulate them

36 grid_tris = triplt.Triangulation(grid_x, grid_y)

37 ax.triplot(grid_tris, ...)

Code 4.27: Simplified code for the plot_unfolding() function, which embeds
an arc-array of a completed unfolding onto a drawn Eisenstein plane.



5 RESULTS AND DISCUSSION

5.1 RESULTS

5.1.1 Unfoldings

The constructed algorithm generates precursor-unfoldings according to a set of

specified parameters: the isomer, (planar) point group, placement priorities, face

connection type (hinge or bond), reflection axis (horizontal or vertical), and sym-

metry inequivalent root-node (starting hexagon). Because the purpose of this project

is to create a correct and functional algorithm, a selection of seven isomers of varying

sizes and point groups were chosen. The parameters are listed in Table 5.1, and

make for a total of 28× nroot combinations, where nroot is the number of root-nodes

for a particular isomer. Therefore, the total number of recursion trees that were

generated is equal to 28×25 = 700. Three dimensional models of the chosen isomers

were generated using the PyMol software package, and are shown in Figure 5.1 for

visual reference.

Isomers C60-Ih C120-D6 C120-D6d C120-Td C140-Ih C180-Ih C540-Ih

No. root-nodes 1 5 5 5 1 3 5

Place objects face, triangle, hybrid

Face connections hinge, bond

Point groups C1, C2, C3, C6, D2, D3, D6

Table 5.1: The parameters used to generate unfoldings with the algorithm accord-
ing to all possible combinations.

108
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To evaluate the algorithm, three distinct runs were made: First, the algorithm was

given thirty minutes to generate non-hybrid unfoldings with either faces or triangles,

which was done in combination with each of the other possible parameters. The run

went on until the time limit was reached or a single valid unfolding was found. For

the second run, the placement priority was set to ['face', 'triangle'] with

a threshold of 0.65 (65% complete) to create hybrid unfoldings for all combinations

that did not yield a valid unfolding within the time limit of 30 minutes with a new

time limit of 10 minutes. The third run was made to evaluate the variety of unfolding

paths the algorithm generates by running two distinct parameter combinations with

max_unfolds = 150 of the C540-Ih isomer. The three runs will hereof be referred

to as the ’discovery run’, the ’hybrid run’, and the ’variety run’.

C60 – Ih

C120 – D6 C120 – D6d C120 – Td

C140 – Ih C180 – Ih C540 – Ih

Figure 5.1: The isomers for which unfoldings were generated in this project as
visualised using the PyMol software package.
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The results of the discovery and hybrid runs are tabulated in Table 5.3 for face and

hybrid placement, and Table 5.2 for triangle placement. In the tables, a value of ’1’

indicates a valid unfolding was found, ’y’ a valid hybrid unfolding, ’-’ if neither

was found within the time limit, and ’0’ if the search space was exhausted before

the time limit was reached. Starting with Table 5.3, it should be noted that the

root-node at which the valid unfolding was found is not listed, as the purpose of the

discovery run was to find any valid unfolding for the isomer given the symmetry

and placement object constraints. Out of the 119 combinations, 10 non-hybrid and

24 hybrid solutions were found, the time limit was reached in 45 cases, and for

the remaining 40 cases the search space was exhausted. It can be seen that valid

non-symmetric C1 unfoldings were found for all isomers hinge-connected and bond-

connected faces, as well as for C3 hinge-connected faces. Moreover, no valid D6 face

unfoldings were found for any isomer with the exception of C540-Ih , where the time

limit was reached in three out of the four D6 cases.

The valid unfoldings of each parameter combination were written to python files

together with all the information and parameters of the run and shall be called the

’output file’. A second file that was continuously updated with the unfolding output

that has the highest number of placed triangles was moreover created, and will be

referred to as the ’dump file’. By creating a dump file, it is possible to inspect how

far the algorithm was able to complete the unfolding, as well as inspect the recursion

path to that unfolding.

In the figures on the following pages, collections of plotted unfoldings are presented

for three of the seven isomers, namely the small C60-Ih , the medium-sized C120-D6 ,

and the large C540-Ih . The unfoldings are ordered by their point group (row) and

face connection type (column) if applicable. Unfoldings were marked with a ’y’

if it is a hybrid, and also denote the number of triangles that were placed. If the

threshold of 65% was not reached for a parameter combination, the deepest level of

the first recursion path was taken to plot for further inspection. The collections of

unfoldings are followed by a close-up of two valid and two invalid unfoldings to be
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able to assess the validity of the unfoldings in greater detail. Additional unfoldings

for each of the remaining isomers are shown in Appendix A for completeness.

Moving on to the variety run, 150 unfoldings with a threshold of 60% were generated

for each of the five root-nodes of C540-Ih using non-hybrid C2 bond-connected faces.

The objective of this run is to compare the influence of the starting hexagon on

the shape of the unfolding as well as examine the variety in unfolding paths the

algorithm takes. Secondly, a D2 run was done for each root-node using triangles and

hybrid hinge- and bond-connected faces. This second run was made to identify if

the influence on the shape of the unfolding by the root-node can is shared across the

different placement objects. The isomers and parameter combinations chosen for the

variety run were done based on the notion that the larger C540-Ih fullerene should

have a wider variety of unfolding paths, making it more likely to get an interesting

divergence between them.

From each of the 150 unfoldings four unfoldings were selected and plotted, as can

be seen in Figure 5.10. The figure lists the root-nodes on the left-most column, and

the unfolding number in the top row. For the second run, the results are depicted in

Figure 5.11 and ordered for each of the root-nodes and placement objects.
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C1 C2 C3 C6 D2 D3 D6

Isomer h v h v h v

C60-Ih 1 - 1 - - - - 0 0 0

C120-D6 1 1 1 1 1 - - - - -

C120-D6d 1 1 1 1 - - - - - -

C120-Td 1 1 1 - - - - - - -

C140-Ih 1 1 1 - - - - - - -

C180-Ih 1 1 1 - - - - - - -

C540-Ih 1 1 1 - - - - - - -

Table 5.2: Results of the discovery run for triangle unfoldings, with a value 1 if
valid unfoldings were found, 0 if not, and ’-’ if none were found within the time
limit. The abbreviations h and v denote the horizontal and vertical reflection axes
respectively.

C1 C2 C3 C6 D2 D3 D6

Isomer g b g b g b g b gh gv bh bv gh gv bh bv gh gv bh bv

C60-Ih 1 y 0 - 1 h 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C120-D6 1 y y y 1 y y y - - - - 0 - - - 0 0 0 0

C120-D6d 1 y y y 1 y 1 0 - - - - 0 0 0 0 0 0 0 0

C120-Td 1 y y y y y y 0 - - - - 0 0 - - 0 0 0 0

C140-Ih 1 y - 0 - - - - 0 0 - - 0 0 0 0 0 0 0 0

C180-Ih 1 y - - - - 0 0 0 0 - - 0 0 0 0 0 0 0 0

C540-Ih 1 y - - y - - - - - - - - - - - - - - 0

Table 5.3: Results of the discovery run for face and hybrid unfoldings together
with 3D-models of the isomers. The entries have a value of 1 if valid unfoldings
were found, 0 if not, ’y’ for a hybrid unfolding, and ’-’ if none were found within
the time limit. The parameter abbreviations are hinge (g), bond (b), and subscripts
h and v to indicate the horizontal and vertical reflection axes respectively.
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Figure 5.2: Collection of Cn unfoldings generated in the discovery run for C60-Ih ,
marked with a ’y’ for hybrid unfoldings and the number of triangles placed.
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Figure 5.3: Collection of Dn unfoldings generated in the discovery run for C60-Ih ,
marked with a ’y’ for hybrid unfoldings and the number of triangles placed.
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Figure 5.4: Collection of Cn unfoldings generated in the discovery run for C120-D6 ,
marked with a ’y’ for hybrid unfoldings and the number of triangles placed.
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Figure 5.5: Collection of Dn unfoldings generated in the discovery run for C120-D6 ,
marked with a ’y’ for hybrid unfoldings and the number of triangles placed.
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Figure 5.6: Collection of Cn unfoldings generated in the discovery run for C540-Ih ,
marked with a ’y’ for hybrid unfoldings and the number of triangles placed.
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Figure 5.7: Collection of Cn unfoldings generated in the discovery run for C540-Ih ,
marked with a ’y’ for hybrid unfoldings and the number of triangles placed.
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C60-Ih C3 face hinge rn1, 60

C120-D6 C6 face hinge rn9, 120

Figure 5.8: A showcase of valid generated unfoldings in the discovery run.
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C180-Ih C2 face bond rn59, 126

C540-Ih D3-h face bond rn18, 366

Figure 5.9: A showcase of invalid generated unfoldings in the discovery run.
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1

C540-Ih / C2 / bond / 60%
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#1 #50 #100 #150

Figure 5.10: Collection of C2, hinge-connected face unfoldings generated in the
variety run for C540-Ih . A distinct unfolding pattern appears to emerge for each of
the root-nodes.
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Figure 5.11: Collection of D2 unfoldings generated in the variety run for
C540-Ih with the different placement objects.
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5.1.2 Performance

Each run of the algorithm was performed on a single core of an Intel i7-8650U CPU

which is rated at an internal clock speed 1.90-2.11GHz. To be able to evaluate the

performance of the algorithm, the time taken and number of recursion (placement)

steps were recorded for each parameter combination of the discovery run. Using

these values, Tables 5.4 and 5.5 were created. The first lists the time it took for the

algorithm to generate a valid C3 hinge-connected face unfolding, since this is the

symmetric category for which a valid unfolding was found for the highest number

of isomers. In the second table the average recursion steps per second was calculated

for each of the point groups across all isomers.

Isomer C60-Ih C120-D6 C120-D6d C120-Td C140-Ih C180-Ih C540-Ih

Time taken (s) 0.088 0.223 0.251 0.288 - - 4.029

Recursion steps 7 32 11 11 38133 46559 711

Table 5.4: List of the time taken for each of the isomers to find its first valid C3

hinge-connected unfolding in seconds. For C140-Ih and C180-Ih , no unfolding was
found within the time limit.

Point group C1 C2 C3 C6 D2 D3 D6

Steps/s 450 55 51 51 34 29 11

Table 5.5: Average values for the recursion steps per second across all isomers for
the different point groups.

From the first performance data in Table 5.4, it can be seen that for the small isomers

a valid unfolding is found within milliseconds and very few recursion steps, while

for the larger C540-Ih isomer the time taken increases twenty-fold to around four

seconds. Since the number of atoms does not increase twenty times as well, it can

be concluded that for this combination of parameters, the time and steps it takes to

find a valid unfolding does not increase linearly with the number of atoms. This

may be due to the fact that the search space of unfoldings does not grow linearly

with the number of atoms either, but more research would be required on a much

wider range of different sized fullerenes before any definitive claims can be made.
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Continuing to Table 5.5, it can be seen that the number of steps per second declines

as the complexity of the point group increases. This is expected since the complexity

of the code also increases, and more symmetry arcs have to be evaluated when n

in Cn and Dn increases. When furthermore considering the data from Tables 5.2

and 5.3, it can be noted that the results for both Cn and Dn symmetry are consistent

for the isomers up to C140-Ih , at which point the number of atoms grows too large

and the algorithm is unable to search enough of the recursion tree in the given time

to find a valid unfolding. In other words, the limitations of the discovery run appear

to be performance related and not to any incorrect functioning of the algorithm.

5.2 DISCUSSION

5.2.1 Unfoldings

In the discovery run, the algorithm was able to generate valid unfoldings using

nothing but the fullerene bond-graph for at least one parameter combination for

each isomer. The validity of the unfoldings can be confirmed upon closer inspection

of the figures. Starting with Figure 5.8, for each arc on the periphery, there is a

reversed counterpart with which it will align during autoassembly. Moreover, there

are no disconnected parts in the unfoldings, as all atoms are bound. The twelve

pentagons are also present, with the doubled nodes of the wedge cutouts as expected.

Another thing to note is that the Cn symmetries are correct as well, with each of the

molecular arms oriented in the same manner. For the C60-Ih Buckeyball unfolding,

he result closely resembles the precursor molecule that was synthesised by Scott et al.

(2002), with three equivalent arms of atoms attached to the central hexagon via three

pentagons. It is highly likely an exact match to the synthesised precursor-molecule

exists in the generated unfoldings, although such a statement could as of yet only

be confirmed visually.

Moving on to the incomplete unfoldings of Figure 5.9, it can be seen in the figure

that there are only bond-connected faces present as per the constraints. The unfold-

ings were taken from a single recursion path of the discovery run of the depicted



5.2 DISCUSSION 125

isomers to exemplify the validity of intermediate unfolding states. The intermediate

unfoldings also adhere to the point groups that were set, with clear C2 rotational

symmetry for the C180-Ih unfolding, and three reflection planes for the D3 symmetric

unfolding of C540-Ih . An interesting feature of the latter is the presence of three

distinct hexagon shaped holes, which were formed by six bond-connected faces

creating ’bridges’ of atoms between the arms. It is unclear at this time whether such

an unfolding would fold up to a valid fullerene cage. For this reason, a quantum

chemical study could be made to see if precursors such as these, where curvature is

induced by closing the hexagonal holes, can be autoassembled. In case it is found

that this is not the case, the algorithm could be modified to detect whenever holes

are introduced, and cut off the recursion branch if this the case. This could be done

by identifying when faces ’glue’ together as they form the bridges that create the

holes, and disallowing this type of collision as well, for example. Regardless, it is

possible holes in the unfolding are a new way to initiate the curvature in unfoldings.

Holes in the unfolding are not exclusive to the larger fullerenes either, nor are they

always hexagon shaped, as can be seen in the unfoldings (C60-Ih , C3, bond) of

Figure 5.2, (C120-D6 , D6v, triangle) of Figure 5.5, and (C540-Ih , D2, bond, root-node

1) of Figure 5.11.

An interesting observation from comparing Table 5.3 with Table 5.2 is that triangle

unfoldings were able to succeed in finding a valid unfolding with parameter com-

binations where hybrid unfoldings were not. An example of this is seen in Figure 5.6

between the unfoldings (C2, triangle) and (C2, bond) which placed 540 and 490

triangles respectively. Although it is possible the bond-connected unfolding would

be completed given more time, since bond unfoldings are also shown to have placed

more triangles than there exclusive triangle counterparts in Figure 5.7 for D2h and

D2v for example. In fact, this discrepancy might be simply due to the fact that the

symmetric triangle unfolding has yet to reach a better solution which is more in line

with the shape of the more successful bond-unfolding.

With regards to symmetry, the algorithm was able to successfully create valid Cn

symmetry unfoldings for each isomer, and near complete unfoldings for all Dn point
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groups. As is shown in Figure 5.4, for C120-D6 a valid unfolding for each type of Cn

symmetry was found. The unfoldings clearly differ in shape based upon the chosen

placement object, but all appear to adhere to a structure of a central compact core,

with arms of atoms for each rotation. It can moreover be seen that the C3, bond

unfolding formed two sets of three arms, but because of the twists in the outer parts

of the arms does not reach C6 symmetry. In the figure, unfoldings with triangles as

placement objects form a distinct triangular core, whilst unfoldings with faces form

diamond or hexagonal structures, even when the unfolding is hybridised. Although

this may seem unsurprising, it visually indicates the face unfoldings were able to

reach between 70%-90% completion before triangles were needed to finish it.

Of note is the case of D6 symmetry, for which none valid unfoldings were found and

the search space was exhausted for most isomers. Starting with C60-Ih in Figure 5.3, it

can be seen that each of the possible parameter combinations yields twelve triangles,

six appended to the starting hexagon. The reason for this is that the hexagon is

surrounded by six hinge-connected pentagons. This eliminates further possibilities

for D6 for all cases since the next placement step would block the wedge cut-outs

of the pentagons. The only alternative is to break D6 symmetry and continue with

C6 symmetry instead. This can be confirmed by examining the results for C6 in

Figure 5.2 and seeing how the six arms are separated by the six cut-outs. It is notable

that the C6 face unfoldings get stuck at the same 12 triangles as for D6, but the

hybridisation of the unfolding is able to create partial arms until the options run

out at 48 triangles. A similar occurrence can be seen for D6 symmetry of C120-D6 in

Figure 5.5, where progress is halted at 36 triangles as it reaches a ring of pentagons

that surround the core. The fact that these unfoldings were not found does not

necessarily indicate that the unfoldings do not exist, but it does indicate that they

are impossible to create with faces as symmetry sites. Therefore, future work should

try to implement other site-symmetries as well, being triangles (atoms) and edges

(arcs), to evaluate the effect upon the possible unfolding paths for the various planar

point groups Cn and Dn.
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One way to progress the unfoldings that appear unable to ’break out’ of the core

structure would be to create flexibility in the placement constraints similar to the

placement priorities that were created to have flexibility in the chosen placement-

object depending on the state of the unfolding. In this way, a list of point group

priorities could also be created, which would allow the algorithm to break out of a

dead-end using the Cn equivalent of the given Dn symmetry. An additional step

would be to be able to switch back to maximal symmetry again after valid placement

steps are made, to try and create Dn unfoldings that will in the worst case end up as

Cn instead.

Differing combinations of parameters appear to be an effective way to direct the

shape of the unfolding. This is exemplified well for the bigger C540-Ih isomer shown

in Figures 5.6 and 5.7. The higher n is in terms of symmetry, the more strict and

clear cut the periphery has to become. Although this rule appears to be broken

by the C3 hybrid bond unfolding, a closer look reveals there are in fact two sets

of three symmetric arms instead of six identical ones. There also appears to be a

greater level of homogenisation of the final result as the level of symmetry increases.

This could be simply due to the fact that there are less possibilities for placement

at each recursion level, thereby narrowing the possible results. However, given

the relatively small recursion space the algorithm has searched, it can also be a

byproduct of the fact that the solutions lie close to each other in terms of recursion

steps, meaning it is possible they share a significant portion of intermediate states

(parent and ancestor nodes) before diverging.

When it comes to variety Figure 5.10 however, Figure 5.11 make it clear that the al-

gorithm does traverse a wide variety of paths that that lead to unique (intermediate)

unfoldings. An interesting observation that can be made from Figure 5.10 is that the

unfoldings generated for the same root-node appear to shape themselves along a

pattern. In its current implementation, the algorithm seems to start by extending

outward as far as possible from the central core, while clustering atoms along the

arms whenever possible as well. The results range from the ’orange peel’ type

unfoldings as in column #1, to the bar like structures of rows 128 and 256, as well



5.2 DISCUSSION 128

as interesting two-armed shapes with only a single central hexagon as per rows 1

and 257 from #50 and up.

Another point of note is that some of the unfoldings appear to be rotations or reflec-

tions of one another. It is almost certain then that the algorithm in its current form

generates stereoisomeric precursor-molecules: which means they have identical

molecular formulas as well as arrangements of atoms. They differ from each other

only in the spatial orientation of groups in the molecule. In this way, (18,#100)

and (18,#150) of Figure 5.10 appear to be stereoisomers, for example. Since is there

is no functional difference between stereoisomers, future work on the algorithm

could exclude them, either by filtering them out after the generation of unfoldings

is complete, or by identifying them in intermediate recursion steps and cutting

the branch if the stereoisomer already exists in the list of outputs. This could be

done as follows: when an object is placed, after its recursion tree is exhausted and

the algorithm unwinds back to the node where the object was placed, the object

work-arc is removed from the workset, thereby making it unavailable for the other

recursion paths to place the object of the work-arc in the same location again in

this particular configuration. In theory, that should remove most of the numberous

stereoisomeric duplicate unfoldings the algorithm generates.

Between placement objects, the pattern of unfolding silhouettes that emerged for the

root-nodes is less apparent, as can be seen in Figure 5.11. What can be stated is that

(D2) hinge-connected face unfoldings are more similar to triangle unfoldings than

bond-connected face unfoldings are to either. This makes sense, as the faces with

hinge connections for D2 grow outward with a maximum of Nfaces × 4 triangles

for hexagons (3 for pentagons) due to the overlapping hinge triangles, while this

number is Nfaces × 6 for bond-connected hexagons (5 for pentagons). As such,

the more compact structure of hinge-connected face unfoldings appears to be in

line with triangle unfoldings more closely, while bond-connections more elongated

structures, as was also the case in Figure 5.10.

In terms of the predicted autoassembly success of the generated unfoldings, it can be

seen from the figures that the unfoldings that are the most complete are compact, and
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will attempt to tile the Eisenstein plane with triangles until either the pentagon cut-

outs or symmetry constraints force space between different parts of the unfolding.

The resulting molecular arms mimic those of the synthesised precursor by Scott

et al. (2002), and promise the possibility of creating parts of the unfolding in parallel.

The second indicator of autoassembly success was the minimal adjacency rule for

pentagons, which states that the most stable chemical geometry is achieved when

pentagons do not share a bond with any other pentagon. Considering the collections

of unfoldings shown, it is unclear what the precise effects of the parameters are on

this. However, what can be said is that if the core of the unfolding is large enough

as to separate the pentagons with at least one hexagon, and subsequently creating

as many arms as possible from each of the points where the pentagons are, this rule

is adhered to the most. From this, it can be speculated that it might be preferable to

create as many arms as possible given the size of the core of the unfolding, thereby

placing the maximum possible number of pentagons separated by hexagons for the

unfolding.

5.2.2 Performance

There are two points to address when it comes to explaining the speed and per-

formance of the algorithm. The first is the programming language, as Python is

considered slow in general, as well as notoriously bad at recursion. The reason for

this is that Python has an overhead on each function call, which the recursion used in

the algorithm can potentially generate tens if not hundreds at a time of. The reason

for this is that Python is a dynamically typed language, which means the types

variables have (e.g. integer, string) are checked by the interpreter at runtime, and are

moreover allowed to change over the course of the runtime, which causes additional

runtime latency. In general then, the performance of the recursive algorithm in its

Python implementation is slow, with a total average of 41 steps per second across

all isomers and point group combinations.

Notwithstanding, there are also parts of the algorithm itself that result in sub-optimal

performance. The main source of redundancy lies in the constraints, specifically
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the symmetry constraints used in sym_is_placeable() . It is possible that the

purpose of functions such as is_interim_placed() , filter_sym_arcs()

as well as the hinge dependent arc removal done by face_is_placeable() can

be combined in ways so as to avoid having to go through the list of symmetry arcs

multiple times. It could be interesting to re-think the required constraints for the

arcs, and see if any overlap exists in the current way edge-cases are handled by the

constraint functions.

What is more, in the ideal situation the symmetry of placement objects is not de-

termined by means of their Eisenstein coordinates, but instead only by their abstract

symmetry information. This would require more extensive knowledge on the cal-

culation of abstract groups however, and was as such outside of the scope of this

project. A starting point could be a more detailed study of the spiral algorithm by

Wirz2018, to see how the graph information could be used during the unfolding

process to identify symmetry equivalent objects efficiently. There are also separate

checks in all of the major functions to identify the placement object and point group

of the run. This could be integrated better by perhaps creating an unfolding class

that shares the variables of the run as to avoid any unnecessary checks. On the other

hand, the current implementation of the code was made to be as clear as possible,

and to that end does serve as a useful template for future work.

5.3 FUTURE WORK

5.3.1 Unfoldings

In terms of increasing the chances of autoassembly success, the first step for future

work is to make use of the study done by Heuser et al. (2021) that explored the

fold up method for a C60-Ih precursor-molecule using quantum chemical simula-

tions. Unfoldings of varying shapes and parameter combinations generated by the

algorithm presented here should be used as input for the autoassembly simulations.

This would allow for the validation of the unfoldings in terms of autoassembly,

as well as possibly uncover shape characteristics that contribute to the chance of
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success of autoassembling the precursor-molecule. Any discoveries made could sub-

sequently be implemented in the is_valid_unfolding() function presented

here, to provide more control on the recursion paths and thereby unfoldings that

are produced.

The collaboration would start a feedback loop of evaluating the autoassembly of

generated unfoldings, identifying point of improvement and desirable characterist-

ics of the unfolding, implementing the improvements, and trying the unfoldings

for autoassembly again. A possible result is that unfoldings are preferred to have

only completely equal molecular arms for example, instead of two sets of different

arms as was the case for many of the n = 2, 3 symmetric unfoldings such as those

in Figure 5.5. The algorithm should therefore allow for more control of the final

shape of the generated unfoldings, possible by computing shape variables of the

polygon such as interior angles or the second moment of area to assess the width

or elongation of the unfolding, for example. With even more work, the discovery

of the optimal locations for placement of the halogens (i.e. the ’glue’ atoms) in the

precursor-unfoldings should be implemented as well, possibly on the basis of the

shape characteristics of valid unfoldings that were mentioned before.

Practically, when generating unfoldings the shape characteristics that are used

as generation constraints can be influenced by choosing between (sets of) valid

work-arcs at each placement step, and instead of always placing a valid set of

arcs, only place arcs that are in line with the desired shape characteristics. To this

end, work-arcs would need to be assigned properties that inform the algorithm

of the effect the corresponding placement object has on the shape. For example,

a work-arc may place a face in a specific Eisenstein direction that elongates the

profile of the unfolding, while another choice may create a more compact precursor-

molecule instead on the basis of its calculated moment or distance to the centre of

the unfolding and any surrounding placement objects.

Regarding recursion, the generation constraints should impact which unfoldings

are collected and which are discarded. Hence, the current validity check in the

recursion algorithm should be expanded to be used as a tool to define and implement
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generation constraints that can cull the large search space of possible precursor-

unfoldings. Put differently, apart from control on the micro level of single placement

objects, another level of control comes by deciding which recursion branches to cut

in the tree and which to traverse down further. If a particular direction in the tree

leads to unwanted shape characteristics no further effort should be put into the

possible unfoldings that form at that branch.

5.3.2 Performance

In terms of performance, the first step of action should be to do a one-to-one trans-

lation of the algorithm into C++ , which should yield an improvement on the

performance between 2× and 400×. The step after that would be to look at elimin-

ating the many new memory allocations and copies made of recursion states and

state variables, by changing the state in place before recursing downwards and then

’repairing’ upon return to the parent node by undoing the placement step, before

continuing to the next work-arc and creating additional child nodes in the recursion

tree, combined with the C++ implementation this could increase the speedup factor

to 1000×. After that is done, the next step would be to detect dead ends in the

recursion tree earlier and cut off branches without solutions as high up as possible,

thereby culling the search space. The last point of improvement would be to paral-

lelise the code to make better use of the available number of cores in the hardware

that is used, but should be the last step to implement.



6 CONCLUSION

In this thesis, a recursive algorithm was created with the objective of generating all

possible planar fullerene precursor-molecules using nothing but intrinsic geometry

in the form of the dual bond-graph for any fullerene isomer given enough time.

The algorithm was run on a single core of an Intel Core i7 CPU with a clockspeed

of 1.9-2.11GHz for 30 minutes or until the search space was exhausted for seven

distinct fullerene isomers of varying sizes and symmetries. This resulted in a total

of 700 parameter combinations including root-nodes that were run to discover

valid unfoldings. A second run with a time limit of 10 minutes was done which

introduced placement priorities to create hybrid unfoldings by starting with the

placement of faces until a dead end was reached for unfoldings that were at least

65% complete, at which point the algorithm switched to triangles to try and close out

the unfoldings. A third run was done by generating 150 unfoldings with a threshold

of 60% for each possible root-node of the C540-Ih isomer to explore the variety of

unfolding paths and confirm the algorithm recurses through the full search space of

precursor-molecules given enough runtime.

With the combined results of the first and second run, the algorithm was able to suc-

cessfully create valid precursor-unfoldings of the isomers. Specifically, valid unfold-

ings were found for non-symmetric triangle unfoldings, as well as hinge-connected

and bond-connected face unfoldings. Moreover, valid symmetric unfoldings were

found for at least one of the isomers given all planar Cn and Dn point groups with

n = 2, 3, 6, given that they existed in the search space of the parameter combination.

For the selected isomers with more than 120 atoms, the algorithm was unable to

find valid unfoldings for all possible Cn symmetries due to the time limit being

reached. What is more, no valid Dn symmetry unfoldings were found as either
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the search space was exhausted due to the pentagon configuration of the isomer

blocking further placement steps.

From the collections of unfoldings generated in the third run, it could be visually

confirmed that the algorithm traverses a wide range of unfolding paths while

searching for valid unfoldings. Moreover, unfolding shapes were found to vary

based upon the chosen placement object and root-node as expected. In terms of the

ability of the algorithm to produce all possible unfoldings, there are no signs that

the algorithm would not be able to recurse through all possible paths and produce

all possible unfoldings for any N -atomic fullerene isomer if they exist, given enough

runtime.

Returning now to the problem statement:

P.1 Generates unfoldings

(a) Generates a carbon fullerene precursor molecule unfolding from nothing

but the fullerene bond-graph.

(b) Generates all possible unfoldings for any N -atom fullerene isomer given

enough computation time.

P.2 Encodes generation constraints

(a) Generates unfoldings that are comprised of full cubic faces, meaning

hexagons and pentagons.

(b) Generates unfoldings with (maximal) planar symmetry.

It can be concluded that all items of the problem statement were successfully reached,

although there is a lot of room for improvement regarding P.1b. The limiting

factor for the current implementation of the algorithm is its performance, with an

average of 41 recursion steps per second taken across all isomers and all point group

combinations. As a result, out of the 119 combinations only 10 non-hybrid and 24

hybrid valid solutions were found, whereas the time limit was reached in 45 cases,

and for the remaining 40 cases the search space was exhausted. Notwithstanding,
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upon investigation of the intermediate results it was confirmed that the partial

unfoldings were valid. For this reason it can be stipulated that the algorithm would

be able to find valid unfoldings given faster hardware and more runtime. The largest

boost in performance can be achieved by implementing the algorithm in C++ instead

of Python, which should yield an increase in speed of a factor between 2 and 400, or

possibly 1000 with additional optimisations of the algorithm itself. Notwithstanding,

the results presented in this thesis are in line with the objective of the project, which

aimed to create a correct, understandable, and functional algorithm which produces

valid precursor-unfoldings under a variety of generation constraint parameters.

Future work on the algorithm should start by addressing the performance issues

with a direct translation of the algorithm into C++ to be able to generate more

valid unfoldings for more isomers, in much less time. Moreover, optimisations in

the algorithm can be made by repairing recursion states upon unwinding instead

of copying them to memory, as well as streamline the placement constraints by

identifying commonalities between the edge-cases that the constraints solve for.

Further work includes the determination of symmetric placement object on the basis

of their abstract group information, as well as culling the search space by identifying

stereoisomeric unfoldings and implementing new validity constraints on the basis

of possible shape characteristics calculated in intermediate recursion states. Lastly, a

collaboration with the work from Heuser et al. (2021) should be started to discover

new rules of thumb that can increase the autoassembly success of the generated

unfoldings, and implement any constraints found this way.



BIBLIOGRAPHY

1. Albertazzi, E., Domene, C., Fowler, P. W., Heine, T., Seifert, G., Alsenoy, C. V. &

Zerbetto, F. (1999). Pentagon adjacency as a determinant of fullerene stability.

Physical Chemistry Chemical Physics, 1(12), 2913–2918. https://doi.org/10.1039/

a901600g

2. Avery, J. (2020). Folding carbon: A calculus for molecular origami [Seminar slides].

3. Avery, J. (2021). Carbon manifolds: Computing precursors and recipes for rational

synthesis of fullerenes. Retrieved January 2, 2021, from https://www.nbi.dk/

~avery/CARMA/Task-R/

4. Bakry, R., Vallant, R. M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C. W.

& Bonn, G. K. (2007). Medicinal applications of fullerenes. International Journal

of Nanomedicine, 2(4), 639–649. https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC2676811/

5. Becker, L., Poreda, R. J. & Bunch, T. E. (2000). Fullerenes: An extraterrestrial

carbon carrier phase for noble gases. Proceedings of the National Academy of

Sciences, 97(7), 2979–2983. https://doi.org/10.1073/pnas.97.7.2979

6. Brinkmann, G., Fowler, P. & Yoshida, M. (1998). New non-spiral fullerenes

from old: Generalised truncations of isolated pentagon-triple carbon cages.

MATCH Commun Math Comput Chem, (38), 7–17. https://match.pmf.kg.ac.rs/

electronic_versions/Match38/match38_7-17.pdf

7. Brinkmann, G., Goedgebeur, J. & McKay, B. D. (2012). The generation of

fullerenes. Journal of Chemical Information and Modeling, 52(11), 2910–2918. https:

//doi.org/10.1021/ci3003107

136

https://doi.org/10.1039/a901600g
https://doi.org/10.1039/a901600g
https://www.nbi.dk/~avery/CARMA/Task-R/
https://www.nbi.dk/~avery/CARMA/Task-R/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676811/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676811/
https://doi.org/10.1073/pnas.97.7.2979
https://match.pmf.kg.ac.rs/electronic_versions/Match38/match38_7-17.pdf
https://match.pmf.kg.ac.rs/electronic_versions/Match38/match38_7-17.pdf
https://doi.org/10.1021/ci3003107
https://doi.org/10.1021/ci3003107


BIBLIOGRAPHY 137

8. Buseck, P. R., Tsipursky, S. J. & Hettich, R. (1992). Fullerenes from the geological

environment. Science, 257(5067), 215–217. https://doi.org/10.1126/science.

257.5067.215

9. Buseck, P. R. (2002). Geological fullerenes: Review and analysis. Earth and

Planetary Science Letters, 203(3-4), 781–792. https://doi.org/10.1016/s0012-

821x(02)00819-1

10. Chae, S.-R., Hotze, E. M. & Wiesner, M. R. (2014). Possible applications of

fullerene nanomaterials in water treatment and reuse. Nanotechnology applica-

tions for clean water (pp. 329–338). Elsevier. https://doi.org/10.1016/b978-1-

4557-3116-9.00021-4

11. Deza, M., Sikiric, M. & Fowler, P. (2009). The symmetries of cubic polyhedral

graphs with face size no larger than 6. MATCH.

12. Fischer, J. E., Heiney, P. . & Amos B. Smith, I. (1992). Solid-state chemistry of

fullerene-based materials. Acc. Chem. Res., 25, 112–118. https://doi.org/10.

1021/ar00015a003

13. Fowler, P. W. (2006). An atlas of fullerenes. Dover Publications.

14. Goldberg, M. (1937). A class of multi-symmetric polyhedra. Tohoku Mathemat-

ical Journal, First Series, 43, 104–108.

15. Hasheminezhad, M., Fleischner, H. & McKay, B. D. (2008). A universal set of

growth operations for fullerenes. Chemical Physics Letters, 464(1-3), 118–121.

https://doi.org/10.1016/j.cplett.2008.09.005

16. Heuser, B. (2020). Folding carbon: Computational study of the auto assembly of

existing fullerene precursor molecules and building towards the fast automated quality

assessment of an arbitrary fullerene structure (Master’s thesis). University of

Copenhagen. Blegdamsvej 17.

17. Heuser, B., Mikkelsen, K. V. & Avery, J. E. (2021). Simulating fullerene polyhed-

ral formation from planar precursors. Phys. Chem. Chem. Phys., 23, 6561–6573.

https://doi.org/10.1039/D0CP04901H

https://doi.org/10.1126/science.257.5067.215
https://doi.org/10.1126/science.257.5067.215
https://doi.org/10.1016/s0012-821x(02)00819-1
https://doi.org/10.1016/s0012-821x(02)00819-1
https://doi.org/10.1016/b978-1-4557-3116-9.00021-4
https://doi.org/10.1016/b978-1-4557-3116-9.00021-4
https://doi.org/10.1021/ar00015a003
https://doi.org/10.1021/ar00015a003
https://doi.org/10.1016/j.cplett.2008.09.005
https://doi.org/10.1039/D0CP04901H


BIBLIOGRAPHY 138

18. Howard, J. B., McKinnon, J. T., Makarovsky, Y., Lafleur, A. L. & Johnson,

M. E. (1991). Fullerenes c60 and c70 in flames. Nature, 352(6331), 139–141.

https://doi.org/10.1038/352139a0

19. Jensen, F. (2017). Introduction to computational chemistry, 3rd edition. John Wiley

& Sons, Ltd.

20. Kabdulov, M. A., Amsharov, K. Y. & Jansen, M. (2010). A step toward direct

fullerene synthesis: C60 fullerene precursors with fluorine in key positions.

Tetrahedron, 66(45), 8587–8593. https://doi.org/10.1016/j.tet.2010.09.055

21. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. (1990). Solid

c60: A new form of carbon. Nature, 347(6291), 354–358. https://doi.org/10.

1038/347354a0

22. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. (1985). C60:

Buckminsterfullerene. Nature, 318(6042), 162–163. https://doi.org/10.1038/

318162a0

23. Langa, F. & Nierengarten, J.-F. (2007). Fullerenes: Principles and applications. RSC

Publishing.
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A ADDITIONAL UNFOLDINGS
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Figure A.1: A selection of unfoldings for the remaining isomers that were not
discussed in the results section for completeness.
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