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• Some things are complicated, too complicated for simple 
analytic tools. Both for physics processes as well as 
instrumental responses ( noise, efficiency, thresholds, jitter, 
etc.) 

Monte Carlo (Simulation)
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IceCube
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IceCube Optical Sensor
~300 Scientists 

12 Countries + Antarctica
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Monte Carlo - Physics Processes
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• The previous movie is the simulation of a high energy muon 
moving through the IceCube detector at the South Pole. 

• As the muon moves through ice photons are emitted. Lots and lots 
of photons that are individually simulated as the thin strands (color 
denotes time since being emitted) as they scatter and then are 
ultimately absorbed. 

• While the behavior that describes photon scatter and absorption 
may be simple, or complicated, it can be broken down at each 
photon ‘step’ 

• Does the photon get absorbed yes/no? 

• If no absorption, then does it scatter yes/no? 

• If it does scatter, how much between 0-360°? 

• Move one step and repeat 

• This is impossible without computers 

Monte Carlo - Physics Processes
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If we can give a probability of 
each of these outcomes, then 

we can break the complex 
process into manageable 

pieces 
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• Even with a purely analytic treatment of the physics, 
detectors/telescopes etc. are often complicated and 
extremely sensitive.

Monte Carlo - Instrument/Detector
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Monte Carlo - Instrument/Detector
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• The previous movie is 10 ms of simulated data including 
noise and cosmic ray muons (green lines)  

• The background rate (cosmic ray muons) is ~2200 Hz, 
whereas the neutrino signal for some analyses are 1 event 
every 1-3 months 

• Lots of Monte Carlo data makes sure you can optimize 
your analysis to keep signal and remove background, and 
has many, many more benefits 

• It’s all possible because of (pseudo) random number 
generators and computers

Monte Carlo - Instrument/Detector
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• A pillar of Monte Carlos and many analytic tools is the use 
of a generator that can produce ‘random’ values, most 
often 0-1 

• Random in a linear fashion from 0-1 is nice because: 

• Probabilities go from 0-1 

• It is usually easy to map/transform linear in 0-1 to other ranges, e.g. 
2-27, and functions. Note that zero can be problematic for some 
functions: 1/x, natural log, etc. 

• Many default random number generators produce values that are 
linear in 0-1, e.g. numpy.random.uniform() 

• There are two main ways to apply random numbers for 
Monte Carlo simulation and probability distribution 
function sampling: Transformation method and Accept-
Reject.

Random Numbers
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Transformation method
We have uniformly distributed random numbers r. We want random numbers x 
according to some distribution.

We want to try to find a function x(r), such that g(r) (uniformly distributed numbers)
will be transformed into the desired distribution f(x).

It turns out, that this is only possible, if one can (in this order):
• Integrate f(x)
• Invert F(x)

As this is rare, this method can not often be used by itself. However, in combination 
with the Hit-and-Miss method, it can pretty much solve all problems.
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*T. Petersen, Applied Statistics



Transformation method
So the “recipe” can be summarised as follows:

So the “recipe” can be summarised as follows:
• Ensure that the PDF is normalised!
• Integrate f(x) to get F(x) with the definite integral: 
• Invert F(x)

11

F (x) =

Z
x

�1
f(x0)dx0

Now you can generate random 
numbers, x, according to f(x), 
by choosing x = F-1(u), where u 
is a random uniform number.

*T. Petersen, Applied Statistics
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• Transformation method is efficient when possible, but 
rarely practical and will NOT be in any problem set or 
exam for this course. 

• Instead we focus on the Accept-Reject method, which is 
straightforward and many of the inherent inefficiencies are 
rarely noticed because of modern computer power 

In Practice
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• For a probability distribution function that can nicely fit in a 
easily to integrate width/area/volume/etc. it is possible to 
generate a PDF-based random number generator

Acceptance-Rejection Method
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Accept-Reject method 
(Von Neumann method)
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If the PDF we wish to sample from is bounded both in x and y, then we can use the
“Accept-Reject” method to select random numbers from it, as follows:
• Pick x and y uniformly without in the range of the PDF.
• If y is below PDF(x), then accept x.

The main advantage of this method is its simplicity, and given modern computers,
one does not care much about efficiency. However, it requires boundaries!

*T. Petersen, Applied Statistics
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• Get your favorite random number generator (and I know 
that you all have favorites) and start randomly sampling 

• Make plots 
• See if there’s a sequence to the generator 

• Is there a ‘seed’ option? If so does that change anything? 

• Time the random number generator 
• Does it take 10 times longer run if it produces 10 times more random 

numbers?

Random Number Generators
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• Random numbers from generators are as accurate as the 
method, e.g. Mersenne twister, as well as the 
computational precision of the variable(s) 

• Variable types related to int, float, and double have a 
characteristic precision, 8-bit, 32-bit, etc. 

• For example, the float precision in some python versions is 
53-bits, and therefore there is intrinsic rounding for 
precision at the scale of 1/253

Precision
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In [6]: 0.1 + 0.2 
Out[6]: 0.30000000000000004

*ipython 4.0.1
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• Okay, so now you have a random number generator, let’s 
put it to use 

• You have no clue about the value of π, but you want to 
calculate the area of a circle with only two things: 
• x2+y2=r2 

• random number generator 

• The core concept of a random number generator is that 
they are mostly random, but repeatable 

• Show visualization, i.e. plot, of your method for calculating 
the area of a circle

Classic & Simple Monte Carlo Usage
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• This is the classic illustration. Can you show your method in 
a different format that is understandable?

My Circle Area Visualization
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• Do we really want a ‘random’ generator to be random? 

• Using the previous code for estimating the area of a circle, 
plot the resulting area value for 1000 separate tests using 
100 throws per test for a radius of 5.2 meters 
• Does your previous code show actual randomness? How would you 

know? 

• Make histograms of the frequency of the area for the same 1000 
separate trials, i.e. not 3 separate histograms of 3 different 1000 
trials 
• Using bin widths of 3 m2, 1 m2 , and 0.1 m2 

• Are there gaps w/ no entries for certain values of the area? Should there be?

Random Number Generator
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• I made 1,000 separate Monte Carlo trials, each having 100 
random number generator throws to calculate the area of a 
circle with radius of 5.2 m

Dissecting a Plot
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• Using your Monte Carlo and the circle equation x2+y2=r2  

find out the value of π knowing that the area is πr2  
• After 10 successive ‘throws’ of your random number generator you 

have an estimate of the circle area. A bad estimate, but an estimate 
nonetheless. Using that estimate of the area, and knowing the radius 
(r=5.2), you can estimate π. 

• Repeat the estimation of π after 10 throws, 100 throws, 1000 throws, 
10000 throws, and 100000 throws 

• Plot. On the y-axis have the estimate of π and on the x-axis have the 
number of throws. 

Calculate the Precision of Pi
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• Repeat the estimation of π after 10 throws, 100 throws, 1000 throws, 
10000 throws, and 100000 throws

Calculate the Precision of Pi (1)
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• Repeat the estimation of π for at least 100 different sampling points 
between 1-10000

Calculate the Precision of Pi (2)
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• On Tuesday I talked briefly about the Central Limit 
Theorem, i.e. for a large number of measurements of 
continuous variables the outcome approaches a gaussian 
distribution.  

• Use your new found Monte Carlo simulation and estimates 
of π, see if the CLT holds for your estimation method and 
random number generator choice. 
• If you use 100 throws and to estimate π repeat it tens, hundreds, 

thousands, etc. of times is the ensuing collect of estimates a 
gaussian distribution?

Pi and the Central Limit Theorem

24



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016

• Get your favorite random number generator (and I know 
that you all have favorites) and break it 

• You can write your own, or use some package (numpy, R, ROOT, 
javascript online, actually roll dice or repeatedly flip 53 coins and 
convert to binary, etc…) 

• Sample enough times and in a specific range to show that the 
random number generator is not actually random. 

• This can be either by method, i.e. values start to repeat after some 
amount of iterations, or because the computer variable precision you 
give it is bad, or because the method internally uses finite precision 
variables 

• The goal is to find if you can get it to not be random at 
some point. Quite possibly your favorite generator is too 
good to break even by direct attempt.

Exercise
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• Join the slack-team AdvancedMethodsKU2016 

• sign in with your ***@alumni.ku.dk -mail 

• Choose password and username 

• Profit 

Slack Channel
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http://alumni.ku.dk

