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Confidence intervals

“Confidence intervals consist of a range of values (interval)

that act as good estimates of the unknown population parameter.”
It is thus a way of giving a range where the true parameter value probably is.

A very simple confidence interval for a 8

i
AV,

Gaussian distribution can be constructed as: :E s

(z denotes the number of sigmas wanted) \/ﬁ
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Confidence intervals

Confidence intervals are constructed with a certain confidence level C, which is
roughly speaking the fraction of times (for many experiments) to have the true
parameter fall inside the interval:

T4
Problzr , so% 7] = Fitiar =0

4 b

Typically, C = 95% (thus around 20), but 90% and 99% are also used occasionally.

There is a choice as follows:

1. Require symmetric interval (x+ and x- are equidistant from p).
2. Require the shortest interval (x+ - x- is a minimum).
3. Require a central interval (integral from x- to u is the same as from u to x+).

For the Gaussian, the three are equivalent!
Otherwise, 3) is usually used.



Variance of Estimators - Graphical
Methoa

® Used for 1 or 2 parameters when the ML estimate and variance cannot be found
analytically. Expand InL about its maximum via a Taylor series:

A Oln L A 1 0°InL ~
lnL(H) = lnL(Q) -+ (W)Hzé(e — 9) + E(W)gzé(e — 9)2 + ...

® First term is InLmax, 2nd term is zero, third term is used for information inequality.

® for 1 parameter:

® plot InL as function of the 8 and read off the value of ¢ at the position

where L is largest. Sometimes there is more than one peak — take the
highest.

® Uncertainty deduced from positions where InL is reduced by an amount
1/2. For a Gaussian Likelihood function:

0 — 6)?
InL(0) =1InLqr — ( A2)
20@
A . 1 A N?  For N standard
In L(@ - 0'9“) = InLygz — 5 or lnL(é’ + Na—é) =In Lz — 7 odevi:ttaion:
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In(Likelihood) and 2*LLH

e A change of 1 standard deviation (0) in the maximum

likelihood estimator (MLE) of the parameter 0 leads to a
decrease in the in the In(likelihood) of 1/2 for a gaussian
distributed estimator

e Even for a non-gaussian MLE, the 10 region defined as LLH-1/2 is a
good approximation

e Because the regions defined with ALLH=1/2 are consistent with

common x? distributions multiplied by 1/2, we often calculate the
ikelihoods as 2*LLH

* Translates to >1 parameters too, with the appropriate
change in 2*LLH confidence values

e 1 parameter, A(2LLH)=1 for 68.3% C.L.
e 2 parameter, A(2LLH)=2.3 for 68.3% C.L.

oskinen - Advanced Methods in Applied Statistics - 2016




Variance of Estimators - Graphical
Methoa

® One Parameter cont.

P -525 L) L L

= :
® The formula applies for non- ~ exponential
(&))
o

Gaussian case, i.e. change
variables to g(0) which
produces a Gaussian
distribution. L is invariant under
parameter transformation.

® |f the Likelihood function is
asymmetric, as happens for

small sample size, then an

asymmetric interval about the

most likely value may result. ¥
7 = 1.062
A7 =0.137

0 =~ AT_ ~ A7 =~ 0.15
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Variance of Estimators - Graphical
Methoa

® Consider an example from scattering with an
angular distribution given by z = cosf

® if z,,<zx<zme then the PDF needs to be
. e+ e e-
normalized:

. 14 oar+ Bz? s , _ q
fleiap) = 150 [ a1 \

® Take the specific example where a=0.5 and

B=0.5 for 2000 points of -0.95 < x < 0.95 3 A
o b T ML fit result /]
® The maximum may be found numerically, |
IVING- o = 0.508, B =047 06 |
® The statistical errors can be estimated by o
numerically solving the 2nd derivative (shown |
here for completeness) do: U | | | !
. 0%1n L A 1 05 0 05 1
V_li-:— - 5 AA:, AA:, ) — V.
(V=1 90,00, |9:9 6a = 0.052, 65 = 0.11, cov[a, 8] = 0.0026 )
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Exercise #1

® Before we use the LLH values to determine the
uncertainties for a and B, let’s do it via Monte Carlo first

e Similar to the exercises 2-3 from Lecture 4, the theoretical
prediction:

f(z;a,8) =1+ ax + Sz

 For a=0.5 and B=0.5, generate 2000 Monte Carlo data points using

the above function transformed into a PDF over the range -0.95 < x
< 0.95

e Remember to normalize the function properly to convert it to a
oroper PDF

* Fitthe MLE parameters & and Busing a minimizer/maximizer

e Repeat 100 to 500 times plotting the distributions of & and § as

A

well as & vs. 3




Exercise #1

® Shown are 500 Monte Carlo pseudo-

experiments
N , . | & = 0.499
® [he estimates average to approximately s = 0.051
the true values, the variances are close to 5 = 0.498
initial estimates from slide 8 and the s = 0.111
marginal pdfs are approximately Gaussian.
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Comments

e After finding the best-tit values via In(likelihood)
maximization/minimization from data, one of THE best and
most robust calculations for the parameter uncertainties is
to run numerous pseudo-experiments using the best-fit
values for the Monte Carlo “true’ values and find out the
spread in pseudo-experiment best fit values

e MLEs don’t have to be gaussian, i.e. uncertainty is accurate even if
the Central Limit Theorem is invalid for your data/parameters

* Monte Carlo plus fitting routine will take care of many parameter

correlations

* The problem is that it can be slow and gets exponentially slower with

each dimension
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Good?

* The LLH maximization/minimization will give the best
parameters and often the uncertainty on those parameters.

But, likelihood fits do not tell whether the data and the
prediction agree.

* Remember that the likelihood has a form (PDF) that is provided by
you and may not be correct.

* The physics PDF may be okay, but there may be some systematic
that is unknown or at least unaccounted for which creates
disagreement between the data and the best-fit prediction.

* Likelihood ratios between two hypotheses are a good way to
exclude models, and we'll cover hypothesis testing on Thursday.
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Goodness-of-fit

® Pearson’s Chi-square Test

® A goodness of fit test that could be applied to a histogram of observed
values, x, with N bins. For the number of entries in bin i, n;, and the number

of expected entries for the same bin, A;, the test statistic becomes:
N

ni—)\iQ
i=1 ¢

® |f the data are Poisson distributed, and the number of entries is not too small
in each bin (>5), then T follows a chi-square distribution of N degrees of
freedom. This is true regardless of the distribution of x, implying the chi-
square test is distribution free.

® Even though finding the maximum likelihood estimator (MLE)
best-fits are often done using an unbinned likelihood, it is often
useful to use histograms to get a (reduced) chi-squared value as a
goodness-of-fit parameter
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Variance of Estimators - Graphical
Methoa

¢ Two Parameter Contours
e For L(z;01,02) we can plot the contours of constant likelihood in the 6,6, plane.

e Forlarge n, InL takes a quadratic form near the maximum:

AN\ 2 A
_ 1 a—a\> [B-0 a—a\ (B-23
B0 By~ 0 Loma = 50— oy [( o ) +< o ) _Qp( o )< o ﬂ
Then the contour given by In L(«, 3) = In L, ;00 — 1/2

A\ 2 .
1 (oz_@>2+ 3-8 . (a—&) B=B\| _ | is an ellipse, distributed
(1—p?) o4 o P\ oa F as chi-square with 2 dof

e There is often more than one maximum and if there is no clear peak over the
others an additional experiment may be needed to identify which to consider.

e To find the uncertainty we plot the contour with InL =In L., — 1/2 and examine
the projection of the contour on the two axes.
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Variance of Estimators - Graphical
Methoa

e Two Parameter Contours

0 /

é2 . Aég & / N
6, — NG, 0, 6, + A6, 0, 64
correct incorrect
. 07
e Tangent lines to the contours b

give the standard deviations.

05 | true value :

* Angle of ellipse, ¢, is related to -t rsur
the correlation: 04 \ | WI(@8)=InL..—1/2
2 040 5 : P
tan2¢ = H 03 L L )
0'& — O'B 0.3 04 05 0.6 0.7
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Variance of Estimators - Graphical
Methoa

e Two Parameter Contour

e \When the correct, tangential,

method is used then the 7
uncertainties are not dependent 7 &(

on the correlation of the

—
_

variables. 0= 20
e For a 2D Gaussian likelihood b, — A, 0 0.+ A0 0,
function, the probability to be in correct
the error range is 0.683.
a a -
e The probability the ellipses of (1 dof) (2 dof)
COﬂStE.aﬂt lanlanafc —a 0.5 115 :
contains the true point, §; and 65,
s: 2.0 3.09 2
4.5 5.92 3

D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016




Variance of Estimators - Graphical
Methoa

e Two Parameter Contour

e |f the likelihood function contours are very irregular so that a transformation to a
2D Gaussian is not possible, or if the contour consists of more than one closed
curve, it is usually better to show the likelihood function contour directly instead

of quoting intervals.

* For three or more parameters, larger samples are necessary to have the
likelihood function to be Gaussian

e A general max/min program will probably be necessary to find the estimate and
the uncertainties (ie. MINUIT from CERNLIB, BRENT and POWELL from

Numerical Recipes).
e Example: Region for mean and variance in a normal distribution:
 The joint maximum likelihood estimates of the mean and variance for the normal

: . 1 —1 1
pdf are: MZfzﬁZiL‘z‘ 52" 2= =3 (2, — &)

n n

1

D. Jason Koskinen - Advanced Methods in Applied Statistics - 2016



Best Result Plot?

KamLAND: "just smiling"
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Variance of Estimators - Graphical
Methoa

* Two Parameter Contour - with provided co-variance matrix

e Example cont.

e with covariance elements given by:
o’ 204

Cl1 — — C22 — ——
n n

e The ellipse which gives a 95% joint likelihood region is:

Q=(n— i)z + (0> =6 Q =2a = a=—In(1 - 0.95) = 2.996

e Consider a gaussian sample with n=100, sample mean=1 and sample
variance=1. We want to find the ellipse or joint likelihood region. Recall the
region bounded by a parabola for 2 parameters for the equal tail probability:

p=1/2(1—+0.95)
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Variance of Estimators - Graphical
Methoa

e Two Parameter Contour

e The likelihood region
(ellipse) and confidence

region (intersected o) A
parabola) for the 95% CL. O
* Note the ellipse is 15
smaller than the y
confidence region. |
0.75
e at n=100 one is not yet at
the asymptotic limit (>500
usually). Thus, the

likelihood region is an
approximation of large n.
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Variance/Uncertainty - Using LLH

Values

® The LLH (or -2*LLH) landscape provides the necessary
information to construct 2+ dimensional confidence
intervals, provided the respective MLEs are gaussian or
well-approximated as gaussian

* Some minimization programs will return the uncertainty on
the parameter(s) after finding the best-fit values

e The .migrad() call in iminuit

* |tis possible to write your own code to do this as well
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Exercise #2

e Using the same function and a=0.5 and B=0.5 as Exercise
#1, find the MLE values for a single Monte Carlo sample w/

2000 points

e Plot the contours related to the 10, 20, and 30 contfidence
regions

 Remember that this function has 2 fit parameters

e Because of different random number generators, your result is likely
to vary from mine

e Calculate a goodness-of-fit using a reduced chi-squared
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Contours on Top of the LLH Space

266¢
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Just the Contours

Contours from -2*LLH
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Real Data

* 1D projections of the 2D contour in order to give the best-

fit values and their uncertainties

sin® fp3 = 0.53700)

Am3, = 2.727029 x 1073eV?

—2AInL
N

sl — |ceCube 2014 [NH] == T2K 2014 [NH]
' MINOS w/atm [NH] o SK IV [NH]

Remember, even though
they are 1D projections the
ALLH conversion to 0 must

use the degrees-of-
freedom from the actual
fitting routine

| | | | | | L
0.30 0.35 0.40 0.45 0.50 055 0.60 0.65 0.70 O 1 2 3 4
SiIlZ (023) —2AInL
*arXiv:1410.7227
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Exercise #3

* There is a file posted on the class webpage for “Class 7
which has two columns of x numbers (not x and y, only x

for 2 pseudo-experiments) correspond to x over the range
-1 <x <1

e Using the function:

flz;o, B) =14 ax + Ba”
e Find the best-fit for the unknown a and

e Calculate the reduced chi-square goodness of fit by histogramming
the data. The choice of bin width can be important.

e Too narrow and there are not enough events in each bin for the statistical
comparison.

 Too wide and any difference between the ‘shape’ of the data and prediction

histogram will be washed out, leaving the result uninformative and possibly
misleading.
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Extra

e Use a 3-dimensional function for a=0.5, B=0.5, and Y=0.9
generate 2000 Monte Carlo data points using the function
transformed into a PDF over the range -1 < x < 1

flz;a,B,7) =1+ az + pz” + yz°
* Find the best-fit values and uncertainties on a, B, and Y

* Similar to exercise #1, show that Monte Carlo re-sampling
produces similar uncertainties as the ALLH prescription for
the 3D hyper-ellipse

* |In 3D, are 500 Monte Carlo pseudo-experiments enough?
* Are 2000 Monte Carlo data points per pseudo-experiment enough?

e Write a profiler to project the 2D contour onto 1D, properly
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Extra Extra

e Use Markov Chain to get the likelihood minimum and then
use the LLH (or -2*LLH) values to get the uncertainties.

* |sthe MCMC quicker to converge to the ‘best-fit’ than using your
LLH minimizer?

* The Markov Chain estimator (maximum a posteriori - MAP) has a
precision on the variance of O(1/n) tfor n simulation points, i.e. you
can't get 99.9% interval without at least 1000 MCMC 'steps’ after
convergence. With a flat prior and using the 3-dimensional function
the variance with an MCMC posterior distribution, do the best-fit
values and uncertainties match what you get for the ALLH approach

e Use the same 2000 data points for consistency from a single pseudo-experiment

* Flat prior does not impact the O(1/n) variance, but just makes it easier to compare to
the results already derived using the ALLH formulation for uncertainty
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Extra
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Variance of Estimators - Graphical
Methoa

® More than one parameter

A

® [orthe case we estimate n parameters 4 . The inverse minimum variance
bound is given by the Fisher information matrix:

2 2
Iij:E[—alnL:—n/foalnf )d

00,00 00,00
® The information inequality state V — I is a positive semi-definite matrix with:
V;'j = COU[éi,éj] — V[éz] Z (I_l)m'

® One will often find the inverse of the information matrix as an approximation
for the covariance matrix, estimated using a matrix of 2nd derivatives at the
maximum for the likelihood function L.

® [wo Parameters

® Forthe 2D normal distribution, the consistent maximum likelihood estimators

are: __lz __12 | tion coeff
1 — N xlj {,Cz — N 'CUZJ sampecorreatlon coeirt.

N _ _
j=1 j=1 — Zj:l(xlj - 331)($2j — T3)

/ /
N s s,
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