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Reminder of the Fourier Transform
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๏Tells you the frequency components in a signal

๏One method of encoding a signal (e.g. a piece of music): take the Fourier transform, keep 
only those contributions in the frequency domain that are large - this is a (bad!) lossy 
compression technique.

๏Remember the uncertainty principle - you need an infinite number of Fourier terms in order 
to make a sharp spike.

๏Put another way, if you have a spike in your data with a width approaching zero, you start 
getting a very large number of populated frequencies.

๏The Fourier basis functions, sine and cosine, have infinite extent.

๏The Fourier transform does not tell you when (or where) in your data a particular frequency is 
occurring.  It just tells you what contribution a given frequency makes.

๏The result of all this is ringing.  Although using a Fourier basis can be a good way of 
encoding some signals, in some situations you get artefacts due to the finite number of terms.
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Example of the Square Wave
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๏Using the first ~20 Fourier components of a step function.

๏Note the wiggles - ringing
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Short-Time Fourier Transform
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๏To get around these limitations, people tried modifying the Fourier basis functions by a 
moveable Gaussian window
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Note how the transformed 
function now depends on 
frequency and time

But the width of the 
Gaussian window is fixed



Enter Wavelets
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Mathematical tool 
developed in the 
1980s and 90s

Grew out of short-time 
Fourier Transforms, i.e. 

windowed by a Gaussian 
(Morlet & Grossman,1980)  

Modern, discrete and 
orthogonal wavelet basis 
developed in large part by 
Ingrid Debauchies (~1988)

Many applications in a 
wide range of subjects. 
Deep relevance to the 
way the natural world 

appears to work.



Continuous Wavelet Transform
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Yields time-frequency information on a signal



Discrete Wavelet Transform
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Arbitrary scale (limit of 
resolution is a good choice)

Coefficient Wavelet function

Index m identifies the physical scale of the 
coefficient (c.f. wavelength for Fourier)

Index n identifies the location (translation) of 
the contribution

The wavelet bases are re-scalings and 
translations of a (scale-less) mother wavelet

 mn (�) =
p

2m (2m�� n)
Wavelet coefficients have both scale, and 
translation (FT has only scale)



Demonstration of the Haar Wavelet
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The Haar wavelet is the simplest 
wavelet, consisting of a step 
function that takes the difference 
between adjacent points

After taking the difference, the two 
points are averaged, and the output 
is a re-scaled version of the signal Re-apply the 

wavelet to the re-
scaled signal
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Wavelet Coefficients Wavelet Coefficients Wavelet Coefficients

(More generally, a high-pass and low-pass filter)



Iterative Harr
Imagine a short signal 8 

samples long 1 2 3 4 5 6 7 8

3 5 7 9 111315151 1 1 1 1 1 1 1
Take the difference and 

sum of neighbouring 
cells

difference sum

Keeping half of the 
sums and half of the 

differences preserves all 
information

1 1 1 1 3 7 11 15

4 4 4 4 10 18 26 26

4 4
10 26

16 36

difference sum

sum

Repeat this on the 
output of the half of the 

sums we keep. 

The Wavelet 
Coefficients are the 
differences we Keep

36 16 4 4 1 1 1 19



Interpretation

3616 4 4 1 1 1 1

1 2 3 4 5 6 7 8

๏ The high-frequency, small scale cell-by-cell changes appear on the right.  There 
is a uniform change of 1 at this scale.

๏ Moderate scale changes over scales of two cells are in the middle coefficients

๏ The total sum is on the leftover coefficient (36)

๏ Note the high-frequency component occupies fully half of the information!

๏ This is how a compression algorithm works

Wavelet      Transform

10



Daubechies Wavelet Basis
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The Daubechies family of wavelets 
are usually more useful - encodes 
high frequency features better

Derived  recursively by 
inverse transforming 

{1,0,0,...N}

The “well known” 
Daubechies 4 wavelet

And the re-scaling 
function



Multi-Resolution Analysis
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Wavelets are an example of multi-resolution 
analysis

Your brain processes 
vision like this - 

analysing contrast 
changes over the local 

background (This is the same 
image, but when 
seen from afar 
your brain uses 
the large-scale 
structure, up 
close it prioritises 
the fine detail)

Already we can see how this 
is useful in physics to 
separate fine details from 
broad structures



Use of Wavelets
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The cochlea inside your ear is arranged such that it 
performs a wavelet transform on sound.  Attempts to 
“sonify” LHC data were doing wavelet analysis!

Astronomers use 
these techniques 
for image 
analysis, 
extraction of fine 
details like 
Einstein rings.

Wavelets used to 
decompose the 

CMBR

The Stock market 
is (allegedly) 

fractal, and 
subject to wavelet 

analysis

FTSE 100

Wavelets can be 
used as the basis 
of a compression 
algorithm, 
including JPEG 
2000



Self-Similarity
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Benoît B.* Mandlebrot: 
“Clouds are not spheres, mountains are not cones, coastlines 
are not circles, and bark is not smooth, nor does lightning 
travel in a straight line.”
*The B. stands for “Benoît B. Mandlebrot”

Building up a structure from repeated re-
scalings of the same basic shape is very 
common in nature - fractal structures.

~
Complex structures 
from simple rules

105º

≠

Jackson Pollock

Wavelets can be a good way of understanding 
and looking for this self-similarity

If you have come across the scale-
dependence of e.g. coupling constants in 
particle physics (α_s), then you might see this 
is a similar idea.



Gaussian Noise example: wavelet_gaussian.py
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๏Uses Python and the PyWavelets package: http://pywavelets.readthedocs.org/en/latest/

๏Produces a simple Gaussian and then adds noise

๏You can vary the amount of noise by increasing or decreasing the “stats” parameter in the 
code, and also by changing the random seed

๏ First performs a continuous wavelet transform - note the separation in frequency between the 
noise and the signal

๏Then perform a discrete transform, filter the coefficients to reduce the noise, and reverse the 
transform to re-obtain the signal

๏At its simplest, the threshold sets to zero any coefficient whose value is below the RMS for its 
“level”

๏Wavelet level = all coefficients having the same scaling parameter

๏Try and play around with the filtering, see the effect of different thresholds, removing high 
and low frequency contributions, using different basis functions.

http://pywavelets.readthedocs.org/en/latest/
http://pywavelets.readthedocs.org/en/latest/


Note on Random Noise
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0

1

Generate 
random 
numbers 
uniformly 

between {0,1}

๏To generate Gaussian-
distributed random 
numbers for the noise, we 
need the inverse of the ERF 
function

๏The ERF function is the 
cumulative distribution 
function of the Gaussian

๏The output of ERF is 
between 0 and 1

๏ So when you take the 
inverse ERF of a uniform 
random number between 0 
and 1, you get a Gaussian 
distribution



LIGO data
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๏The second example uses the LIGO data available from here: https://losc.ligo.org/events/
GW150914/

๏ LIGO provide their own tutorial using Fourier analysis.  You can follow it here:  https://
losc.ligo.org/s/events/GW150914/GW150914_tutorial.html

๏We will use the 4096 Hz samples from the Livingston and Hanford detectors.  Note they are 
6.9 ms apart.

๏Without signal processing, they do not look anything like the famous chirp sound formed 
when two black holes collide.

๏Our goal will be to filter using wavelets to see if we can extract the chirp!

https://losc.ligo.org/events/GW150914/
https://losc.ligo.org/events/GW150914/
https://losc.ligo.org/events/GW150914/
https://losc.ligo.org/events/GW150914/
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html
https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html
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LIGO data


