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Physical Analogy
Cooling molecules to get crystal structure 

Defects when cooled too fast
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Figure 1.  Energy for a graph partitioning problem as the annealing progresses, 
using different annealing schedules: quench (T=0), random search 
(T=∞), exponential (eq. (3.1)), constant speed (eq. (3.4) or (3.5)). 

 
In these expressions v is the (constant) thermodynamic speed (see Sect. 6 below for further 
explanation), C and  are the heat capacity and internal relaxation time of the system, 
respectively, E  and  the corresponding mean energy and standard deviation of its 
natural fluctuations, and finally Eeq(T) is the internal energy the system would have if it 
were in equilibrium with its surroundings at temperature T. The physical interpretation of 
eq. (3.5) is that the environment should at all times be kept v standard deviations ahead of 
the system. Similarly eq. (3.4) indicates that the annealing should slow down where 
internal relaxation is slow and where large amounts of „heat‟ has to be transferred out of 
the system (Salamon et al. 1988). In case C and  do not vary with temperature, eq. (3.4) 
integrates to the standard schedule eq. (3.1). The more realistic assumption of an Arrhe-
nius-type relaxation time,  ~ exp(a/T), and a heat capacity C ~ T–2 implies the vastly 
slower schedule eq. (3.3). Reality is usually in between these extremes. Figure 1 shows the 
successive decrease in energy for annealings on a graph partitioning problem following 
different annealing schedules. 
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4.  PARALLEL IMPLEMENTATION 
 
 The extra temperature dependent variables of the constant thermodynamic speed 
schedule of course require additional computational effort. Since systems often change 
considerably in a few steps, ergodicity is not fulfilled, so the use of time averages to obtain 
E , , C, and  is usually not satisfactory. Instead we (Andresen et al. 1988) suggest to 

run an ensemble of systems in parallel, i.e. with the same annealing schedule, in the true 
spirit of the analogy to statistical mechanics. Then these variables can be obtained anytime 
as ensemble averages based on the system degeneracies pi = p(Ei): 
 

Z(T) = 
i

  pi  exp(–Ei/T)  (4.1) 

E(T) = T2 
d lnZ

dt   (4.2) 
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where 2 is the second largest eigenvalue of the thermalized version of the transition 
probability matrix P among all the energy levels ( 1 = 1 corresponds to equilibrium). 
 
 But where does one get the degeneracies pi from? Actually (Andresen et al. 1988), 
information to calculate the temperature-independent (or infinite-temperature, if you 
prefer) transition probability matrix P can be accumulated during the annealing run by 
simply adding up in a matrix Q the number of attempted moves (not just the accepted 
ones) from level i to j as the calculation progresses. Normalization of Q yields a good 
estimate of P, 
 

Pji = Qji / 
k

 Qki . (4.5) 

 
The degeneracies p are then the eigenvector of P corresponding to the eigenvalue 1. This 
procedure has generated the „thermodynamic portrait‟ of the bipartitioning of a [20, 2] 
necklace shown in Figure 2 (Andresen et al. 1988). The agreement between experimental 
values, based on eq. (4.5), and analytical values is convincing. 
 

Calculation of partition function, energy, 
heat capacity and relaxation constant during simulation


