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Although Bayesian analysis has been in use since Laplace, the Bayesian
method of model-comparison has only recently been developed in
depth. In this paper, the Bayesian approach to regularization and
model-comparison is demonstrated by studying the inference prob-
lem of interpolating noisy data. The concepts and methods described
are quite general and can be applied to many other data modeling
problems. Regularizing constants are set by examining their posterior
probability distribution. Alternative regularizers (priors) and alterna-
tive basis sets are objectively compared by evaluating the evidence for
them. “Occam’s razor” is automatically embodied by this process. The
way in which Bayes infers the values of regularizing constants and
noise levels has an elegant interpretation in terms of the effective num-
ber of parameters determined by the data set. This framework is due
to Gull and Skilling.
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Outline

e |ntroduction to Bayesian Interpolation
e Evidence
e Occam'’s razor

e |nterpolation of noisy data
e Model comparison

e Conclusion
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Introduction to Bayesian Interpolation

« How can we find the best possible interpolant?

e 1st level of inference

P(D | w,H;)P(w | H,))
P(D|H;) =

P(W | D, H;‘) =

e 2nd level of inference

P(Hi | D) & P(D | H;)P(H;)
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Occam factor

* Occam’s razor: “Among competing hypotheses, the one with
the fewest assumptions should be selected.”

e« The evidence for H.:

P(D | H;) = [ P(D|w,H)P(w | H;)dw

P(w|D,H;)

----------------------------------

P(D | H,} ~ P(D | WMPwHF)J F(WMP | 'H,) ﬁ‘lﬂi
Evidence ~ Best fit l;kelihood 0ccarr1r factor
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Interpolation of noisy data

Interpolant ——

Interpolated function:

k
y(x) = wipn(x)

h=1

Reqgularizer (prior):

exp{—aEy(y | R)]
Zy(a)

P(y|R:ﬂ)=

Ey - fy”(x)zdx
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Evidence for the smoothening parameter a

Pla.f| D, AR) = _P(aﬁ)
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Evidence for the basis functions

P(A,R | D) x[P(D | A, R)P(A, R)
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Evidence for legendre polynomials
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Model comparison

* The highest value for the evidence gives the best model

Data Set X
Model Best Log
parameter evidence
values

Legendre polynomials k=38 —47
Gaussian radial k > 40,

basis functions r=.25 —288+1.0
Cauchy radial k > 50,

basis functions r=.27 -189+1.0
Splines, p = 2 k > 80 -9.5
Splines, p =3 k> 80 5.6
Splines, p = 4 k > 80 -13.2
Splines, p =5 k> 80 —-249
Splines, p = 6 k > 80 —-35.8
Hermite functions k=18 —66
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Conclusion

* The evidence is a 'solely’ data-dependent measure
* Different models can be ranked by their evidences

* The best model is the one that both fits the data well and is
not too complex
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