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Important

* Problem set 2 has been posted on the course website

e Due: March 23, 2018 by 16:00 CET
* The “Project” due data is also approaching

e |tis 30% of the final course grade, i.e. quite a lot
e Due: April 3, 2018 by 22:00 CET

e Note that there will be some class discussion regarding an
article on March 20

e Nested Sampling for General Bayesian Computation by John Skilling

* Read at least up until the section “Density of States”
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http://www.inference.org.uk/bayesys/nest.pdf

Overview

* Much ot what we have covered has been parameter
estimation, but using analytic or defined density
expressions

e Today we cover density estimates from the data itself

* The methods are regularly employed on finite data
samples that need smoothing or require non-parametric
methods to get a PDF

e | ast few slides of this lecture contain extended literature
for further reading
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Histogram

* The histogram is one of the most simple forms of a data-
driven non-parametric density estimator

e But, the only two histogram parameters (bin width and bin
position(s)) are arbitrary
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Histograms

* The histogram is one of the most simple forms of a data-
driven non-parametric density estimator

e But, the only two histogram parameters (bin width and bin
position(s)) are arbitrary

e Histograms are not smooth, but ideally our density estimator/
function is smooth

* More dimensions requires more data in order to have a multi-
dimensional histogram which can match the true PDF

e \We can avoid some of these issues, and others, with
density estimates by using something more sensible
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Wish List

e For density estimates what do we want?

® non-parametric, i.e. no explicit requirement for the form of the PDF
e (Easily) extendable to higher dimensions

e Use data to get local point-wise density estimates which can be
combined to get an overall density estimate

e Smooth

e At least more smooth than a ‘jagged’ histogram

* Preserves real probabilities, i.e. any transformation has to give PDFs
which integrate to 1 and don’t ever go negative

e The answer... Kernel Density Estimation (KDE)

e Sometimes it is “Estimator” too for KDE
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Bayesian Blocks

e An alternative to constant bins for histograms is to use
Bayesian Blocks developed by J.D. Scargle

e Bayesian Blocks are very useful for determining time varying changes

e Covers many, but not all, wish list items
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Basics of Data Driven Estimation

* Fixed regions in parameter space are expected to have
approximately equal probabilities

* The smaller the region(s) the more supported our assumption that
probability is constant

e The more data in each region the more accurate the density estimate

e We will keep the region fixed and find some compromise;
large enough to collect some data, but small enough that
our probability assumption is reasonable

e For more thorough treatment of the original idea see the articles by
Parzen and Rosenblatt in the last slides of this lecture
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Hyper-Cube

* Qur first ‘region’ definition is an D-dimensional hyper-cube
with lengths equal to h on each side

* |n 3D this is a normal cube with volume h3
* |In 2D, when there are two parameters, the hyper-cube is a square
with area h?
* We include all points within the hyper-cube volume via some
weighting scheme. This is known as the kernel (K) which is

for this KDE:

K (7)) 1, %; in region Ry
Lg) = . : .
0, z; outside region Ry

for some R centered at point x4

e Sometimes you will see the kernel as K(u) where u is the ‘distance’
from x; to Xy
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Kernel Characteristics

* The integrated kernel always equals 1

+00
K(u)du =1

— O

e |t ‘U’ is multidimensional, then so is the integration. But,
the integral is always 1.

e Even if the kernel is not transformed to be 1D, e.qg. K(x,y,z)
instead of K(u), the integral of the kernel is always 1.

/// [((gj7 Y, Z) dr dy dz = 1 3D in cartesian coordinate x, y, and z

/ .o / K(Sl, Cee Sk) dSl . dSk — 1] k-dimensions represented by s
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Visual Region

* Everything within the hyper-cube is
included with a weight of 1

e For the density estimator we need:
e To normalize by the total number of events
in the sample (N) @ X

e To normalize for the number of dimensions
(D) and the ‘'volume’

e The PDF estimator (Pkpg) is now
constructed from the individual data h

points N

e The illustration is the estimation at a N

single point xg4 € X =\ n
gep d PKDE(ZC) — gmm o K( )
N - g <

® The hPis the normalization for a hyper- n=1

cube of dimension D each w/ the same

: The kernel normalization for this example
Iength h. It they were different |engths doesn’t change. So, instead of calculating it for
then the hyper_vo|ume normalization each data point n, | can treat is a constant and
factor it out of the summation
WOU|d be h1*h2*h3...*hD_1*hD
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Exercise 1

* Take the fixed length hyper-cube KDE out for a spin in 1D

e Using the following data [1,2,5,6,12,15,16,16,22,22,22,23]
for the finite data sample and h=3
e This univariate, so D=1

e Because the length is h, to be in the 'hyper-cube’ each data
point x; only needs to be h/2 in each dimension from x4

® Calculate PKDE(X=6), PKDE(X=10.1), PKDE(X=20.499), and
PKDE(X=20.501)

Code this by-hand, i.e. no external packages
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Exercise 1 Example

o Calculate the Pxpe(x=6) by taking all 12 data points and
seeing if they are within =h/2 of x=6, i.e. in the range 4.5
to 7.5. Here 6 is our x4 value from the picture on slide 8.

* \We include the data point at x=6 in the KDE

N — —
Prpp(r =6) = N—hDZK(x xn)

= gy (K50 K (50) +w(50) ek (550) ok (B

= 5 o+o+1+1+0+0+0+0+0+0+0+o]

*The x and x,, are switched from the first line to the
second. But, it doesn’t make any difference.
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KDE Comments

e The function K() is known as the kernel, and h is the

bandwidth

* Larger bandwidths mean more smoothing, but it can
remove real features

* Smaller bandwidths will approach the true PDF better, but
need lots of data points otherwise they are "oumpy’

e The fixed window KDE is similar to a histogram, but has
better support for local densities
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Hyper-Cube

e We could use the hyper-cube kernel to construct a density
estimator, but there are a few drawbacks to this kernel

e We have discrete jumps in density and limited smoothness

* Nearby points in x have some sharp differences in probability, e.g.
Pkpe(x=20.499)=0 but Pkpe(x=20.501)=0.08333

e All data have equal weighting and contribution regardless of
distance to the estimation point

e So |let’s switch to a different kernel with weights that
decrease smoothly as a function of distance from the
estimation point
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Gaussian Kernel

 The generic KDE expression remains similar, e.g.

Prpp(T) = NhD ZK

e The kernel is now:

* The kernel at each data point now contributes a non-zero
probability from [-e0,+e0] smoothly with decreasing weight
as a function of distance

e Each data point and corresponding kernel integrate to 1 over the
whole parameter space
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Gaussian Kernel

 The generic KDE expression remains similar, e.g.

_)

P KDE (CC E K

. \ n.b. | factored the kernel normalization out of the kernel and
@ h e ke rne | IS NOW: the summation. Technically the 1/hP should be part of each

’ hyper-cube kernel.
— — 2
. 1 _ Z—En ||
K(Z,0) = e 207
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* The kernel at each data point now contributes a non-zero
probability from [-e0,+e0] smoothly with decreasing weight
as a function of distance

e Each data point and corresponding kernel integrate to 1 over the
whole parameter space
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Exercise 2

e Redo exercise 1 using the new Gaussian kernel
* For the gaussian width use 0=3

e Calculate the KDE two ways:
e By hand

* Using an external package

e Plot the density estimate Pxpe(x) from -10 < x < 35

* |[f you have time, plot the individual kernel contributions
too
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Exercise 2 KDE plot

Gaussian Kernels (0=3.00)
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Compact Kernel

* The gaussian kernel contributes A ———
across the whole space (infinite
support), but sometimes we want
compact support, i.e. zero

08 |-
06 |
0.4 | .

outside of a specific range

02

* Maybe some parameters are

constrained to be non-negative

* We know the physical system has

either boundaries or effective cut-offs
{%(1 —u?)  for Ju| <1

e A common compact support 0 for |u| > 1

kernel is the Epanechnikov kernel

*https://en.wikipedia.org/wiki/Kernel_(statistics)
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Exercise 3

* Redo exercise 2 using the Epanechnikov kernel with a
bandwidth that you choose

* [n a nicely formatted table compare Calculate Pxpe(x=6),
Pkpe(x=10.1), Pkpe(x=20.499), and Pkpe(x=20.501) between

the 3 different kernels; Parzen-Rosenblatt, gaussian, and
Epanechnikov

* Use either your by-hand(s) version or external package
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Kernel Bandwidth

e Every KDE is, unfortunately, strongly influenced by the
kernel bandwidth, which is a user defined free parameter
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Bandwidth Selection

* An analytic approach to bandwidth selection is to choose a
bandwidth which minimizes the mean integrated square

error (MISE)

MISE(h) = E| / (Prpp(Z) — P(7))2dz

e But analytically this requires some known tform ot the
underlying distribution

e Assuming that the underlying distribution is gaussian, the
optimal bandwidth is

A

O standard deviation from data

- ~aAT—1/5
h ~ 1.060 N / /N number of data points
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Bandwidth Selection Non-parametric

e |nstead of using a known function we can use subsets of
the data as cross-validation of the kernel bandwidth

ISE(fy) = / (Faly) — )

/ dy—Z/fh dy+/f(y)2dy

* This can be shown to converge to a least squares cross-
validation (LSCV) expression as

LSCV (h) = /(fh(y))Qdy — %Zf—z(yz)

e The expression f-i(y:) is the kernel estimator from the data
omitting the data point y;which is also known as the
"leave-one-out” density estimator

*httos://proiecteuclid.orq/euclid.ss/ 1113832723
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KDE in 2D, and more

e While the previous examples and work were for 1-
dimension, the kernels work just fine in additional
dimensions

* No escaping the curse of dimensionality :~(

e Similar to all other multi-dimensional problems, anything beyond 3D
is difficult to visualize

o Kernel bandwidths do not have to be the same in each
dimension

e Either specify the bandwidth in each dimension, or

e Transform the parameter space(s) to be uniform for a given

bandwidth
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More KDE comments

* The kernel is symmetric about each data point

* Makes sense, because the region near the data point should have a similar
probability for a narrow (enough) bandwidth

e Kernel symmetry is not technically a requirement, but in practice symmetry
is often desirable because then the average of the kernel is centered on the

data point
* The kernel density estimator PDF is often used for Monte Carlo
sampling

e E.g. N-body simulations (galaxy formation, astrophysical large scale
structure, disease propagation in an ecosystem, etc.) take 2 months to
generate 200 data points across 3 dimensions or parameters. Real data is
much, much larger. In order to use our N-body PDF, we can sample from a

smoothed PDF from a KDE.

e Because KDEs require ‘subjective’ input, clearly state the kernel,
bandwidth, and any optimization from an analysis
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Exercise 4

* There are many online tutorials covering different 2D

density estimation problems in R, python, MatlLab, etc.

e Eruption of "Old Faithtul” geyser

e Rendering of text and numerals

e Spread of diseases

* Geographical population densities

o After working t
500 pseudo-ex

nrough your own particular choice, use the

periment bootstrap from Lecture 7 exercise

Tb to produce a 2D KDE

* Because the LLH method gives precise contours, you can compare
the contours from the KDE
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Further Info

e Fixed kernel width window, Parzen-Rosenblatt window

e Parzen (http://www.jstor.org/stable/2237880)
e Rosenblatt (http://projecteuclid.org/euclid.aoms/1177728190)

* Nice list of various kernels at https://en.wikipedia.org/wiki/
Kernel_(statistics)

e Very nice article on kernel bandwidth selection review
https://projecteuclid.org/euclid.ss/1113832723

e Collection of other cross-validation techniques https://
cran.r-project.org/web/packages/kedd/vignettes/kedd.pdt
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Further Into (cont.)

e Variable bandwidth kernels
e 7. I.Botey, et al., Kernel Density Estimation via Diffusion, Annals of
Statistics, 38 5, 2916-2957 (2010).

e |.S. Abramson, On bandwidth variation in kernel estimates—A
square root law, Annals of Statistics, 10 4, 1217-1223 (1982).

e Any other suggestions?
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