Lecture 7: Parameter Estimation and Uncertainty

D. Jason Koskinen koskinen@nbi.ku.dk

Advanced Methods in Applied Statistics Feb - Apr 2018

Oral Presentation and Report

- By Feb. 26, everyone should have filled in the google spreadsheet noting which 'paper' you will present
- Wednesday March 7 the 1-2 page written report will be due by 16:00 CET
- Thursday March 8 will be the oral report

Outline

- Recap in 1D
- Extension to 2D
 - Likelihoods
 - Contours
 - Uncertainties

Confidence intervals

"Confidence intervals consist of a range of values (interval) that act as good estimates of the unknown population parameter."

It is thus a way of giving a range where the true parameter value probably is.

A very simple confidence interval for a
Gaussian distribution can be constructed as:
(z denotes the number of sigmas wanted)

 $\overline{X} - z \sigma_{\overline{x}}$

Margin of Error

Lower

Bound

Margin of Error

Confidence intervals

Confidence intervals are constructed with a certain **confidence level C**, which is roughly speaking the fraction of times (for many experiments) to have the true parameter fall inside the interval:

$$Prob(x_{-} \le x \le x_{+}) = \int_{x_{-}}^{x_{+}} P(x)dx = C$$

Often, C is in terms of σ or percent 50%, 90%, 95%, and 99%

There is a choice as follows:

- 1. Require symmetric interval (x+ and x- are equidistant from μ).
 - 2. Require the shortest interval (x+ to x- is a minimum).
- 3. Require a central interval (integral from x- to μ is the same as from μ to x+).

For the Gaussian, the three are equivalent! Otherwise, 3) is usually used.

Confidence Intervals

- Confidence intervals are often denoted as C.L. or "Confidence Limits/Levels"
- Central limits are different than upper/lower limits

Variance of Estimators - Gaussian

Estimators

 Used for 1 or 2 parameters when the maximum likelihood estimate and variance cannot be found analytically. Expand InL about its maximum via a Taylor series:

$$\ln L(\theta) = \ln L(\hat{\theta}) + \left(\frac{\partial \ln L}{\partial \theta}\right)_{\theta = \hat{\theta}} (\theta - \hat{\theta}) + \frac{1}{2!} \left(\frac{\partial^2 \ln L}{\partial \theta^2}\right)_{\theta = \hat{\theta}} (\theta - \hat{\theta})^2 + \dots$$

- First term is lnL_{max}, 2nd term is zero, third term can used for information inequality (not covered here)
 - For 1 parameter:
 - Minimize, or scan, as a function of θ to get $\hat{\theta}$
 - Uncertainty deduced from positions where InL is reduced by an amount
 1/2. For a Gaussian likelihood function w/ 1 fit parameter:

$$\ln L(\theta) = \ln L_{max} - \frac{(\theta - \hat{\theta})^2}{2\hat{\sigma}_{\hat{\theta}}^2}$$

$$\ln L(\hat{\theta}\pm\hat{\sigma}_{\hat{\theta}}) = \ln L_{max} - \frac{1}{2} \quad \text{or} \quad \ln L(\hat{\theta}\pm N\hat{\sigma}_{\hat{\theta}}) = \ln L_{max} - \frac{N^2}{2} \quad \text{for N standard deviations}$$

In(Likelihood) and 2*LLH

- A change of 1 standard deviation (σ) in the maximum likelihood estimator (MLE) of the parameter θ leads to a decrease in the ln(likelihood) of 1/2 for a gaussian distributed estimator
 - Even for a non-gaussian MLE, the 1σ region^a defined as LLH-1/2 can be an *okay* approximation
 - Because the regions^a defined with Δ LLH=1/2 are consistent with common χ^2 distributions multiplied by 1/2, we often calculate the likelihoods as (-)2*LLH
- Translates to >1 parameters too, with the appropriate change in 2*LLH confidence values
 - 1 parameter, Δ (2LLH)=1 for 68.3% C.L.
 - 2 parameter, Δ (2LLH)=2.3 for 68.3% C.L.

afor a distribution w/ 1 fit parameter

Variance of Estimator

Likelihood is from Lecture 3 and is

$$f(t;\tau) = \frac{1}{\tau}e^{-t/\tau}$$

- The formula can apply to non-Gaussian estimators, i.e. change variables to g(θ) which produces a Gaussian distribution.
 Likelihood distribution is invariant under parameter transformation.
- If the distribution of the estimated value of T is asymmetric, as happens for small sample size, then an asymmetric interval about the most likely value may result

Variance of Estimator

- First, we find the best-fit estimate of τ via our LLH minimization to get $\hat{\tau}_{\text{best}}$
 - Provides LLH($\hat{\tau}_{best}$)=-53.0
 - We could scan to get $\hat{\tau}_{best}$, but it won't be as precise or fast as the minimizer
- We only have 1 fit parameter, so from slide 7 we know that values of τ which cross LLH($\hat{\tau}_{best}$)-0.5 are the 1σ ranges, i.e. when the LLH equals -53.5

Reporting Very Asymmetric Central Limits

- Central limits are often reported as $\hat{\theta} \pm \sigma_{\theta}$ or $\hat{\theta}_{-\sigma_{\theta_2}}^{+\sigma_{\theta_1}}$ if the error bars are asymmetric
- What happens when upper or lower range away from the best-fit value(s) does not have the right coverage? E.g. for 68% coverage, the lower 17% of the distribution includes the best fit point.
 - Quote the best-fit estimator of θ and the limit ranges separately. "Best fit is θ =0.21 and the 90% central confidence region is 0.17-0.77"

Variance of Estimators - Graphical

Method

- Consider an example from scattering with an angular distribution given by $x = cos\theta$
- if $x_{min} < x < x_{max}$ then the PDF needs to be normalized:

$$f(x; \alpha, \beta) = \frac{1 + \alpha x + \beta x^2}{2 + 2\beta/3} \qquad \int_{x_{min}}^{x_{max}} f(x; \alpha, \beta) dx = 1$$

- Take the specific example where α =0.5 and β =0.5 for 2000 points where -0.95 \leq x \leq 0.95
- The maximum may be found numerically, giving values $\alpha=0.508,\;\beta=0.47\;$ for the plotted data
- The statistical errors can be estimated by numerically solving the 2nd derivative (shown here for completeness)

$$(\hat{V}^{-1})_{ij} = -\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}|_{\vec{\theta} = \hat{\vec{\theta}}} \qquad \hat{\sigma}_{\hat{\alpha}} = 0.052, \ \hat{\sigma}_{\hat{\beta}} = 0.11, \ cov[\hat{\alpha}, \hat{\beta}] = 0.0026$$

Exercise #1

- Before we use the LLH values to determine the uncertainties for α and β , let's do it via Monte Carlo first
- Similar to the exercises 2-3 from Lecture 3, the theoretical prediction:

$$f(x; \alpha, \beta) = 1 + \alpha x + \beta x^2$$

- For α =0.5 and β =0.5, generate 2000 Monte Carlo data points using the above function transformed into a PDF over the range -0.95 \leq x \leq 0.95
 - Remember to normalize the function properly to convert it to a proper PDF
 - Fit the MLE parameters $\hat{\alpha}$ and $\hat{\beta}$ using a minimizer/maximizer
 - Repeat 100 to 500 times plotting the distributions of $\hat{\alpha}$ and $\hat{\beta}$ as well as $\hat{\alpha}$ vs. $\hat{\beta}$

Exercise #1

- Shown are 500 Monte Carlo pseudo-experiments
- The estimates average to approximately the true values, the variances are close to initial estimates from slide 8 and the estimator distributions are approximately Gaussian $\hat{\alpha} = 0.5005$

 $\hat{\alpha} = 0.5005$ $\hat{\alpha}_{RMS} = 0.0557$

 $\hat{\beta} = 0.5044$

 $\hat{\beta}_{RMS} = 0.1197$

Comments

- After finding the best-fit values via In(likelihood)
 maximization/minimization from data, one of **THE** best and
 most robust calculations for the parameter uncertainties is
 to run numerous pseudo-experiments using the best-fit
 values for the Monte Carlo 'true' values and find out the
 spread in pseudo-experiment best-fit values
 - MLEs don't have to be gaussian. Thus, the uncertainty is accurate even if the Central Limit Theorem is invalid for your data/parameters
 - Routine of 'Monte Carlo plus fitting' will take care of many parameter correlations
 - The problem is that it can be slow and gets exponentially slower with each dimension

Brute Force

- If we either did not know, or did not trust, that our estimator(s) are nicely analytic PDFs (gaussian, binomial, poisson, etc.) we can use our pseudo-experiments to establish the uncertainty on our best-fit values
 - Using original PDF, sample from original PDF with injected values of $\hat{\alpha}_{obs}$ and $\hat{\beta}_{obs}$ that were found from our original 'fit'
 - Fit each pseudo-experiment
 - Repeat
 - Integrate ensuing estimator PDF
 To get ±1σ central interval

$$\frac{100\% - 68.27\%}{2} = \int_{C_{+}}^{\infty} g(\hat{\alpha}; \hat{\alpha}_{obs}) d\hat{\alpha}$$
$$\frac{100\% - 68.2\%}{2} = \int_{C_{-}}^{C_{-}} g(\hat{\alpha}; \hat{\alpha}_{obs}) d\hat{\alpha}$$

Brute Force cont.

- The previous method is known as a parametric bootstrap
 - Overkill for the previous example
 - Useful for estimators which are complicated
- Finding the uncertainty using the integration of the tails works for bayesian posteriors in same way as for likelihoods

Exercise 1b

- Continuing from Exercise 1 and using the same procedure for the 100 or 500 values from the pseudo-experiments, i.e. parametric bootstrapping
 - Find the central 1σ confidence interval(s) for $\hat{\alpha}$ as well as $\hat{\beta}$ using bootstrapping
- Repeat, but now:
 - Fix α =0.5, and only fit for β , i.e. α is now a constant
 - What is the new 1σ central confidence interval for $\hat{\beta}$?
- Repeat with a new angular distributions range of the -0.9 \leq $x \leq 0.85$
 - Again, $\mathbf{fix} \alpha = 0.5$
 - 2000 Monte Carlo 'data' points

Good?

- The LLH minimization will give the best-fit values and often the uncertainty on the estimators. But, likelihood fits do not tell whether the data and the prediction agree
 - Remember that the likelihood has a form (PDF) that is provided by
 you and may not be correct
 - The PDF may be okay, but there may be some measurement systematic uncertainty that is unknown or at least unaccounted for which creates disagreement between the data and the best-fit prediction
 - Likelihood *ratios* between two hypotheses are a good way to exclude models, and we'll cover hypothesis testing on Thursday.

Multi-parameter

- Getting back to LLH confidence intervals
- In one dimension fairly straightforward
 - Confidence intervals, i.e. uncertainty, can be deduced from the LLH difference(s) to the best-fit point(s)
 - Brute force option is rarely a bad choice, and parametric bootstrapping is nice
- Both strategies work in multi-dimensions too
 - Often produce 2D contours of $\hat{\theta}$ vs. $\hat{\varphi}$
 - There are some common mistakes to avoid

Likelihood Contour/Surface

- For 2 dimensions, i.e. 2-parameter fits, we can produce likelihood landscapes. In 3 dimensions a surface, and in 3+ dimensions a likelihood hypersurface.
- The contours are then lines of with a constant value of likelihood or In(likelihood)

*LLH landscape is from Lecture 3

Variance of Estimators - Graphical Method

β

Two Parameter Contours

 Tangent lines to the contours give the standard deviations

Variance of Estimators - Graphical Method

- When the correct, tangential, method is used then the uncertainties are not dependent on the correlation of the variables.
- The probability the ellipses of constant $\ln L = \ln L_{max} a$ contains the true point, θ_1 and θ_2 , is:

correct

a (1 dof)	a (2 dof)	σ
0.5	1.15	1
2.0	3.09	2
4.5	5.92	3

Best Result Plot?

KamLAND: "just smiling"

Variance/Uncertainty - Using LLH Values

- The LLH (or -2*LLH) landscape provides the necessary information to construct 2+ dimensional confidence intervals
 - Provided the respective MLEs are gaussian or well-approximated as gaussian the intervals are 'easy' to calculate
 - For non-gaussian MLEs which is not uncommon a more rigorous approach is needed, e.g. parametric bootstrapping
- Some minimization programs will return the uncertainty on the parameter(s) after finding the best-fit values
 - The .migrad() call in iminuit
 - It is possible to write your own code to do this as well

Exercise #2

- Using the same function and α =0.5 and β =0.5 as Exercise #1, find the MLE values for a single Monte Carlo sample w/ 2000 points
- Plot the contours related to the 1σ , 2σ , and 3σ confidence regions
 - Remember that this function has 2 fit parameters
 - Because of different random number generators, your result is likely to vary from mine
- Calculate a goodness-of-fit
 - For a quick calculation a reduced chi-square might be enough, but it is better to quote the goodness-of-fit, i.e. p-value assuming gaussian estimator w/ a fixed α and/or β
 - E.g. use a reduced chi-squared and convert to a goodness-of-fit value

Contours on Top of the LLH Space

Just the Contours

Contours from -2*LLH

Real Data

• 1D projections of the 2D contour in order to give the best-fit values and their uncertainties $\sin^2 \theta_{23} = 0.53^{+0.09}_{-0.12}$

$$\Delta m_{32}^2 = 2.72_{-0.20}^{+0.19} \times 10^{-3} \text{eV}^2$$

Remember, even though they are 1D projections the ΔLLH conversion to σ must use the degrees-of-freedom from the actual fitting routine

*arXiv:1410.7227

Exercise #3

- There is a file posted on the class webpage for "Class 7" which has two columns of x numbers (not x and y, only x for 2 pseudo-experiments) corresponding to x over the range $-1 \le x \le 1$
- Using the function:

$$f(x; \alpha, \beta) = 1 + \alpha x + \beta x^2$$

- Find the best-fit for the unknown α and β
- Calculate the goodness of fit (p-value) by histogramming the data.
 The choice of bin width can be important
 - Too narrow and there are not enough events in each bin for the statistical comparison
 - Too wide and any difference between the 'shape' of the data and prediction histogram will be washed out, leaving the result uninformative and possibly misleading

Extra

• Use a 3-dimensional function for α =0.5, β =0.5, and γ =0.9 generate 2000 Monte Carlo data points using the function transformed into a PDF over the range -1 \leq x \leq 1

$$f(x; \alpha, \beta, \gamma) = 1 + \alpha x + \beta x^2 + \gamma x^5$$

- Find the best-fit values and uncertainties on α , β , and γ
- Similar to exercise #1, show that Monte Carlo re-sampling produces similar uncertainties as the Δ LLH prescription for the 3D hyper-ellipse
 - In 3D, are 500 Monte Carlo pseudo-experiments enough?
 - Are 2000 Monte Carlo data points per pseudo-experiment enough?
 - Write a profiler to project the 2D contour onto 1D, properly

Extra Extra

- Use Markov Chain to get the likelihood minimum and then use the LLH (or -2*LLH) values to get the uncertainties.
 - Is the MCMC quicker to converge to the 'best-fit' than using your LLH minimizer?
 - The Markov Chain estimator (maximum a posteriori MAP) has a precision on the variance of $\mathcal{O}(1/n)$ for n simulation points, i.e. you can't get 99.9% interval without at least 1000 MCMC 'steps' after convergence. With a flat prior and using the 3-dimensional function the variance with an MCMC posterior distribution, do the best-fit values and uncertainties match what you get for the Δ LLH approach
 - Use the same 2000 data points for consistency from a single pseudo-experiment
 - Flat prior does not impact the O(1/n) variance, but just makes it easier to compare to the results already derived using the Δ LLH formulation for uncertainty