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Oral Presentation and Report

e By Feb. 26, everyone should have filled in the google
spreadsheet noting which ‘paper’ you will present

e \Wednesday March 7 the 1-2 page written report will be
due by 16:00 CE

® Thursday March 8 will be the oral report
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Outline

® Recap in 1D

e Extension to 2D
e |ikelihoods

e Contours

e Uncertainties

*Material derived from T. Petersen, D. R. Grant, and G. Cowan
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Confidence intervals

“Confidence intervals consist of a range of values (interval)

that act as good estimates of the unknown population parameter.”
It is thus a way of giving a range where the true parameter value probably is.

A very simple confidence interval for a 8

Gaussian distribution can be constructed as: x —

(z denotes the number of sigmas wanted) ’\/ﬁ

|
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Confidence intervals

Confidence intervals are constructed with a certain confidence level C, which is
roughly speaking the fraction of times (for many experiments) to have the true
parameter fall inside the interval:

Prob(x_ < x < xy)= P(x)dx =C

Often, C is in terms of o or percent 50%, 90%, 95%, and 99%

There is a choice as follows:

1. Require symmetric interval (x+ and x- are equidistant from p).
2. Require the shortest interval (x+ to x- is a minimum).
3. Require a central interval (integral from x- to u is the same as from u to x+).

For the Gaussian, the three are equivalent!
Otherwise, 3) is usually used.




Confidence Intervals

e Confidence intervals are often denoted as C.L. or
"Confidence Limits/Levels”

e Central limits are different than upper/lower limits
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Variance of Estimators - Gaussian
Estimators

® Used for 1 or 2 parameters when the maximum likelihood estimate and variance
cannot be found analytically. Expand InL about its maximum via a Taylor series:

A Oln L A 1 0°InL ~
lnL(H) = lnL(Q) -+ (W)Qzé(e — 9) + Q(W)gzé(e — 9)2 + ...

® First term is InLmax, 2nd term is zero, third term can used for information inequality
(not covered here)

® ror 1 parameter:

® Minimize, or scan, as a function of 0 to get 4

® Uncertainty deduced from positions where InL is reduced by an amount

1/2. For a Gaussian likelihood function w/ 1 fit parameter:

0 — )2
InL(0) =1InLqr — ( A2)
20é
A . 1 A R N?  For N standard
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In(Likelihood) and 2*LLH

e A change of 1 standard deviation (a) in the maximum
likelihood estimator (MLE) of the parameter 8 leads to a
decrease in the In(likelihood) of 1/2 tor a gaussian

distributed estimator

e Even for a non-gaussian MLE, the 10 regiona defined as LLH-1/2 can
be an okay approximation

e Because the regionse defined with ALLH=1/2 are consistent with
common x2 distributions multiplied by 1/2, we often calculate the

likelihoods as (-)2*LLH
e Translates to >1 parameters too, with the appropriate
change in 2*LLH confidence values

* 1 parameter, A(2LLH)=1 for 68.3% C.L.
° 2 parameter, A(ZLLH)=2'3 fOI’ 683% C.L. efor a distribution w/ 1 fit parameter
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Variance of Estimator

Likelihood is from Lecture 3 and is

1
t, — —t/’T
flt;7) = —e

* The formula can apply to non-

. . . E B2 5 T T v
Gaussian estimators, i.e. change & exponential
. . &)
variables to g(0) which produces S ] 2

a Gaussian distribution.
Likelihood distribution is
invariant under parameter
transformation.

e |f the distribution of the
estimated value of T is

asymmetric, as happens for small
sample size, then an asymmetric

# = 1.062
interval about the most likely As — 0137
value may result A%, = 0.165

0 =~ AT_ ~ A7 =~ 0.15
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Variance of Estimator

e First, we find the best-fit
estimate of T via our LLH

"52 5 L) | |
exponential

log L(t)

minimization to get Thost
e Provides LLH(Tpest)=-53.0

e \We could scan to get ‘Arbest,
but it won't be as precise or
fast as the minimizer

 We only have 1 tit parameter, so
from slide 7 we know that values
of T which cross LLH(Tpes)-0.5 are

the 10 ranges, i.e. when the LLH 7 = 1.062
A7 =0.137
equals -53.5 A
AT_|_ 20165

0 =~ AT_ ~ A7 =~ 0.15

D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018




Reporting Very Asymmetric Central
Limits

e Central limits are often reported

A o9, .
as 0 £og or 0__ ' if the error
2

bars are asymmetric <
e What happens when upper or T Best fit estimator
lower range away from the best- >
fit value(s) does not have the /
right coverage? E.g. for 68% el
coverage, the lower 17% of the
distribution includes the best fit
point. j
e Quote the best-fit estimator of 6 0 6’A

and the limit ranges separately.
“Best fit is 0=0.21 and the 90%
central confidence region is
0.17-0.77"
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Variance of Estimators - Graphical
I\/Iethod

Consider an example from scattering with an
angular distribution given by z = cosf

@ f 2, <z<zm then the PDF needs to be
normalized: e+ 0 e

1 2 Tmaw
F(aia,B) = ;f;;/gx / " i pr =1 N

® Take the specific example where a=0.5 and

1 I I

B=0.5 for 2000 points where -0.95 < x < 0.95 i  Monte Carlo data
--- ML fit result 5
® The maximum may be found numerically, giving e _
values a = 0.508, 8 =0.47 for the plotted data e |
® The statistical errors can be estimated by ol
numerically solving the 2nd derivative (shown
here for completeness) a1
) 921n I ) 1 05 0 05 1

1y, — . 5. — 5. — A, 3] =
(V=1); 89i5’€j|9=9 oa = 0.052, 65 = 0.11, cov|a, 6] = 0.0026
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Exercise #1

e Before we use the LLH values to determine the
uncertainties for & and B, let's do it via Monte Carlo first

e Similar to the exercises 2-3 from Lecture 3, the theoretical

prediction:
f(z;a,8) =1+ ax + Sz

e For ®=0.5 and =0.5, generate 2000 Monte Carlo data points using

the above function transformed into a PDF over the range -0.95 < x
< 0.95

e Remember to normalize the function properly to convert it to a
oroper PDF

* Fitthe MLE parameters & and Busing a minimizer/maximizer

e Repeat 100 to 500 times plotting the distributions of & and § as
well as @& vs. B




Exercise #1

® Shown are 500 Monte Carlo pseudo-experiments
® The estimates average to approximately the true values, the variances
are close to initial estimates from slide 8 and the estimator
distributions are approximately Gaussian A~ 0.5005
arms = 0.0557
B = 0.5044
Brus = 0.1197
0.9 355_
0.8F- :
- 30—
07[- -
06F 255_
05F 201
0.4§— 153_
03 10%—
0.2F -
: x St
0.1; E | ol b b b by L L0
OO:H‘(‘)‘.1‘H(‘).‘Z""(‘).‘9‘:"6‘.4”&5“‘(‘).‘6‘”(‘).‘7‘”(‘).‘8‘”(‘)5”‘1 % 0102 0304 050607 0.8 09 B1

o
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Comments

o After finding the best-tit values via In(likelihood)
maximization/minimization from data, one of THE best and

most robust calculations for the parameter uncertainties is

to run numerous pseudo-experiments using the best-fit
values for the Monte Carlo ‘true’ values and find out the

spread in pseudo-experiment best-fit values

e MLEs don’t have to be gaussian. Thus, the uncertainty is accurate
even it the Central Limit Theorem is invalid for your data/parameters

* Routine of ‘Monte Carlo plus fitting” will take care of many parameter
correlations
* The problem is that it can be slow and gets exponentially slower with

each dimension
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Brute Force

e |[f we either did not know, or did not trust, that our
estimator(s) are nicely analytic PDFs (gaussian, binomial,
poisson, etc.) we can use our pseudo-experiments to
establish the uncertainty on our best-fit values

o Usmg orlgmal PDF, sample from original PDF with injected values of
Kope and Bobs that were found from our original “fit’

e Fit each pseudo-experiment 3

* Repeat 705 ]]I
: : 601
* |ntegrate ensuing estimator PDF :
S50
To get +10 central interval s0f
100% — 68.27% _/°° (8 Gop ) 30
2 _ C+ g y Lbobs 20;
100% — 68.2% [~ 10F
9 :/ g(a;aobs)da 0_

—0 0 0102 03 04 05 06 0.7 08 09 A1
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Brute Force cont.

* The previous method is known as a parametric bootstrap

e Overkill for the previous example
e Useful for estimators which are complicated

e Finding the uncertainty using the integration of the tails
works for bayesian posteriors in same way as for

likelihoods
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Exercise 1b

e Continuing from Exercise 1 and using the same procedure
for the 100 or 500 values from the pseudo-experiments,
i.e. parametric bootstrapping

* Find the central 10 confidence interval(s) for & as well as B using
bootstrapping

* Repeat, but now:

e Fix x=0.5, and only fit for B, i.e. & is now a constant

e What is the new 10 central confidence interval for f?

* Repeat with a new angular distributions range of the -0.9 <
X < 0.85
e Again, fix x=0.5
e 2000 Monte Carlo ‘data’ points

oskinen - Advanced Methods in Applied Statistics - 2018



Good?

 The LLH minimization will give the best-fit values and often
the uncertainty on the estimators. But, likelihood fits do
not tell whether the data and the prediction agree

e Remember that the likelihood has a form (PDF) that is provided by
you and may not be correct

e The PDF may be okay, but there may be some measurement
systematic uncertainty that is unknown or at least unaccounted for
which creates disagreement between the data and the best-fit
prediction

o |ikelihood ratios between two hypotheses are a good way to
exclude models, and we'll cover hypothesis testing on Thursday.
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Multi-parameter

e Getting back to LLH confidence intervals

* |n one dimension fairly straightforward

e Confidence intervals, i.e. uncertainty, can be deduced from the LLH
difference(s) to the best-fit point(s)

* Brute force option is rarely a bad choice, and parametric
bootstrapping is nice

e Both strategies work in multi-dimensions too

N\

e Often produce 2D contours of B vs. ¢

e There are some common mistakes to avoid

oskinen - Advanced Methods in Applied Statistics - 2018



Likelihood Contour/Surface

* For 2 dimensions, i.e. 2-parameter fits, we can produce likelihooad
andscapes. In 3 dimensions a surface, and in 3+ dimensions a

ikelihood hypersurtace.

e The contours are then lines of with a constant value of likelihood or

In(likelihood)

—130¢

0.9

0.8

0.7
130(

0.6

0.5 129¢
129(C

128¢

128( :
-0.2 0 0.2 0.4 0.6 0.8 “LLH landscape is from

Lecture 3

D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018



Variance of Estimators - Graphical
Methoa

e Two Parameter Contours

= N N
O

/

ég—Aég \ " N

él - Aél él él + Aél 91 01

K correct J L incorrect J

e Tangent lines to the contours

give the standard deviations

— In L(a,B) =In Lppge — 1/2
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Variance of Estimators - Graphical
Methoa

e \When the correct, tangential,
method is used then the 02 + Ab;

uncertainties are not dependent on 6, Z

the correlation of the variables.

—
7

* The probability the ellipses of
constant InL = In Ly,,, —a contains

0, — A6, 0, 0.+ A0, 604
the true point,6; and 6, is:

correct
a a -
(1 dof) (2 dof)
0.5 1.15 1
2.0 3.09 2
4.5 5.92 3

D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018




Best Result Plot?

KamLAND: "just smiling"
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Variance/Uncertainty - Using LLH

Values
® The LLH (or -2*LLH) landscape provides the necessary

information to construct 2+ dimensional confidence
intervals

* Provided the respective MLEs are gaussian or well-approximated as
gaussian the intervals are ‘easy’ to calculate

* For non-gaussian MLEs — which is not uncommon — a more
rigorous approach is needed, e.g. parametric bootstrapping

 Some minimization programs will return the uncertainty on
the parameter(s) after finding the best-fit values

e The .migrad() call in iminuit

* |tis possible to write your own code to do this as well
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Exercise #2

e Using the same function and a=0.5 and B=0.5 as Exercise
#1, find the MLE values for a single Monte Carlo sample w/

2000 points

e Plot the contours related to the 10, 20, and 30 confidence
regions

e Remember that this function has 2 fit parameters
e Because of different random number generators, your result is likely

to vary from mine

e Calculate a goodness-of-fit

e For a quick calculation a reduced chi-square might be enough, but it
is better to quote the goodness-of-fit, i.e. p-value assuming gaussian
estimator w/ a fixed a and/or 8

e E.g. use areduced chi-squared and convert to a goodness-of-fit value
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Contours on Top of the LLH Space
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Just the Contours

Contours from -2*LLH
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Real Data

e 1D projections of the 2D contour in order to give the best-

fit values and their uncertainties

sin® fp3 = 0.53700)

Am3, = 2.727029 x 1073eV?

—2AInL
N

sl — |ceCube 2014 [NH] == T2K 2014 [NH]
' MINOS w/atm [NH] o SK IV [NH]

Remember, even though
they are 1D projections the
ALLH conversion to 0 must

use the degrees-of-
freedom from the actual
fitting routine

| | | i | i L
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0 1 2 3 4
SiIlZ (023) —2AInL

*arXiv:1410.7227
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Exercise #3

* There is a file posted on the class webpage for “Class 7"
which has two columns of x numbers (not x and y, only x

for 2 pseudo-experiments) corresponding to x over the
range -1 < x <1

e Using the function:
flz;o, B) =14 ax + Ba”

e Find the best-fit for the unknown a and 8

e Calculate the goodness of fit (p-value) by histogramming the data.
The choice of bin width can be important

e Too narrow and there are not enough events in each bin for the statistical
comparison

 Too wide and any difference between the ‘shape’ of the data and prediction

histogram will be washed out, leaving the result uninformative and possibly

misleading
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Extra

e Use a 3-dimensional function for a=0.5, B=0.5, and Y=0.9
generate 2000 Monte Carlo data points using the function
transformed into a PDF over the range -1 < x < 1

flz;a,B,7) =1+ az + pz” + yz°
e Find the best-fit values and uncertainties on a, B, and Y

e Similar to exercise #1, show that Monte Carlo re-sampling
produces similar uncertainties as the ALLH prescription for
the 3D hyper-ellipse

* |In 3D, are 500 Monte Carlo pseudo-experiments enough?
e Are 2000 Monte Carlo data points per pseudo-experiment enough?
e Write a profiler to project the 2D contour onto 1D, properly
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Extra Extra

e Use Markov Chain to get the likelihood minimum and then
use the LLH (or -2*LLH) values to get the uncertainties.

* |sthe MCMC quicker to converge to the ‘best-fit’ than using your
LLH minimizer?

* The Markov Chain estimator (maximum a posteriori - MAP) has a
precision on the variance of O(1/n) tfor n simulation points, i.e. you
can't get 99.9% interval without at least 1000 MCMC 'steps’ after
convergence. With a flat prior and using the 3-dimensional function
the variance with an MCMC posterior distribution, do the best-fit
values and uncertainties match what you get for the ALLH approach

* Use the same 2000 data points for consistency from a single pseudo-experiment

e Flat prior does not impact the O(1/n) variance, but just makes it easier to compare to
the results already derived using the ALLH formulation for uncertainty
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