Lecture 7: Parameter Estimation and Uncertainty

D. Jason Koskinen
koskinen@nbi.ku.dk

Advanced Methods in Applied Statistics
Feb - Apr 2018
Oral Presentation and Report

• By Feb. 26, everyone should have filled in the google spreadsheet noting which ‘paper’ you will present

• Wednesday March 7 the 1-2 page written report will be due by 16:00 CET

• Thursday March 8 will be the oral report
Outline

• Recap in 1D
• Extension to 2D
 • Likelihoods
 • Contours
 • Uncertainties

*Material derived from T. Petersen, D. R. Grant, and G. Cowan
Confidence intervals

“Confidence intervals consist of a range of values (interval) that act as good estimates of the unknown population parameter.”

It is thus a way of giving a range where the true parameter value probably is.

A very simple confidence interval for a Gaussian distribution can be constructed as:
\[
\bar{x} \pm z \frac{s}{\sqrt{n}}
\]

(z denotes the number of sigmas wanted)
Confidence intervals

Confidence intervals are constructed with a certain confidence level \(C \), which is roughly speaking the fraction of times (for many experiments) to have the true parameter fall inside the interval:

\[
Prob(x_- \leq x \leq x_+) = \int_{x_-}^{x_+} P(x) \, dx = C
\]

Often, \(C \) is in terms of \(\sigma \) or percent 50%, 90%, 95%, and 99%

There is a choice as follows:
1. Require symmetric interval (\(x_+ \) and \(x_- \) are equidistant from \(\mu \)).
2. Require the shortest interval (\(x_+ \) to \(x_- \) is a minimum).
3. Require a central interval (integral from \(x_- \) to \(\mu \) is the same as from \(\mu \) to \(x_+ \)).

For the Gaussian, the three are equivalent! Otherwise, 3) is usually used.
Confidence Intervals

- Confidence intervals are often denoted as C.L. or "Confidence Limits/Levels"
- Central limits are different than upper/lower limits
Variance of Estimators - Gaussian

Estimators

- Used for 1 or 2 parameters when the maximum likelihood estimate and variance cannot be found analytically. Expand $\ln L$ about its maximum via a Taylor series:

$$\ln L(\theta) = \ln L(\hat{\theta}) + \left(\frac{\partial \ln L}{\partial \theta} \right)_{\theta = \hat{\theta}}(\theta - \hat{\theta}) + \frac{1}{2!}\left(\frac{\partial^2 \ln L}{\partial \theta^2} \right)_{\theta = \hat{\theta}}(\theta - \hat{\theta})^2 + ...$$

- First term is $\ln L_{\text{max}}$, 2nd term is zero, third term can used for information inequality (not covered here)

- For 1 parameter:

- Minimize, or scan, as a function of θ to get $\hat{\theta}$

- Uncertainty deduced from positions where $\ln L$ is reduced by an amount $1/2$. For a Gaussian likelihood function w/ 1 fit parameter:

$$\ln L(\theta) = \ln L_{\text{max}} - \frac{(\theta - \hat{\theta})^2}{2\hat{\sigma}_\theta^2}$$

$$\ln L(\hat{\theta} \pm \hat{\sigma}_{\hat{\theta}}) = \ln L_{\text{max}} - \frac{1}{2} \text{ or } \ln L(\hat{\theta} \pm N\hat{\sigma}_{\hat{\theta}}) = \ln L_{\text{max}} - \frac{N^2}{2} \text{ For N standard deviations}$$
\[\ln(\text{Likelihood}) \text{ and } 2\times\text{LLH} \]

- A change of 1 standard deviation (\(\sigma\)) in the maximum likelihood estimator (MLE) of the parameter \(\theta\) leads to a decrease in the \(\ln(\text{likelihood})\) of 1/2 for a \textbf{gaussian distributed estimator}

- Even for a non-gaussian MLE, the 1\(\sigma\) region\(^a\) defined as \(\text{LLH}-1/2\) can be an \textit{okay} approximation

- Because the regions\(^a\) defined with \(\Delta \text{LLH}=1/2\) are consistent with common \(\chi^2\) distributions multiplied by 1/2, we often calculate the likelihoods as \((-)2\times\text{LLH}\)

- Translates to >1 parameters too, with the appropriate change in 2\(\times\text{LLH}\) confidence values
 - 1 parameter, \(\Delta(2\text{LLH})=1\) for 68.3% C.L.
 - 2 parameter, \(\Delta(2\text{LLH})=2.3\) for 68.3% C.L.

\(^a\text{for a distribution w/ 1 fit parameter}\)
Variance of Estimator

- The formula can apply to non-Gaussian estimators, i.e. change variables to \(g(\theta) \) which produces a Gaussian distribution. Likelihood distribution is invariant under parameter transformation.
- If the distribution of the estimated value of \(\tau \) is asymmetric, as happens for small sample size, then an asymmetric interval about the most likely value may result.

\[
\hat{\tau} = 1.062 \\
\Delta \hat{\tau}_- = 0.137 \\
\Delta \hat{\tau}_+ = 0.165 \\
\hat{\sigma}_\tau \approx \Delta \hat{\tau}_- \approx \Delta \hat{\tau}_+ \approx 0.15
\]

Likelihood is from Lecture 3 and is

\[
f(t; \tau) = \frac{1}{\tau} e^{-t/\tau}
\]
Variance of Estimator

- First, we find the best-fit estimate of τ via our LLH minimization to get $\hat{\tau}_{\text{best}}$
 - Provides $\text{LLH}(\hat{\tau}_{\text{best}}) = -53.0$
 - We could scan to get $\hat{\tau}_{\text{best}}$, but it won’t be as precise or fast as the minimizer
- We only have 1 fit parameter, so from slide 7 we know that values of τ which cross $\text{LLH}(\hat{\tau}_{\text{best}}) - 0.5$ are the 1σ ranges, i.e. when the LLH equals -53.5

\[
\hat{\tau} = 1.062 \\
\Delta \hat{\tau}_- = 0.137 \\
\Delta \hat{\tau}_+ = 0.165 \\
\sigma_\tau \approx \Delta \hat{\tau}_- \approx \Delta \hat{\tau}_+ \approx 0.15
\]
Reporting Very Asymmetric Central Limits

- Central limits are often reported as $\hat{\theta} \pm \sigma_\theta$ or $\hat{\theta}^+\sigma_{\theta_1}$ if the error bars are asymmetric.
- What happens when upper or lower range away from the best-fit value(s) does not have the right coverage? E.g. for 68% coverage, the lower 17% of the distribution includes the best fit point.
- Quote the best-fit estimator of θ and the limit ranges separately.

 “Best fit is $\theta=0.21$ and the 90% central confidence region is 0.17-0.77”
Variance of Estimators - Graphical Method

- Consider an example from scattering with an angular distribution given by $x = \cos\theta$

- if $x_{min} < x < x_{max}$ then the PDF needs to be normalized:

 $$f(x; \alpha, \beta) = \frac{1 + \alpha x + \beta x^2}{2 + 2\beta/3} \int_{x_{min}}^{x_{max}} f(x; \alpha, \beta) dx = 1$$

- Take the specific example where $\alpha=0.5$ and $\beta=0.5$ for 2000 points where $-0.95 \leq x \leq 0.95$

- The maximum may be found numerically, giving values $\alpha = 0.508$, $\beta = 0.47$ for the plotted data

- The statistical errors can be estimated by numerically solving the 2nd derivative (shown here for completeness)

$$\left(V^{-1}\right)_{ij} = -\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j} \bigg|_{\hat{\theta}} \quad \hat{\sigma}_\alpha = 0.052, \quad \hat{\sigma}_\beta = 0.11, \quad \text{cov}[\hat{\alpha}, \hat{\beta}] = 0.0026$$
Exercise #1

• Before we use the LLH values to determine the uncertainties for α and β, let’s do it via Monte Carlo first

• Similar to the exercises 2-3 from Lecture 3, the theoretical prediction:

$$f(x; \alpha, \beta) = 1 + \alpha x + \beta x^2$$

• For $\alpha=0.5$ and $\beta=0.5$, generate 2000 Monte Carlo data points using the above function transformed into a PDF over the range $-0.95 \leq x \leq 0.95$

 • Remember to normalize the function properly to convert it to a proper PDF
 • Fit the MLE parameters $\hat{\alpha}$ and $\hat{\beta}$ using a minimizer/maximizer
 • Repeat 100 to 500 times plotting the distributions of $\hat{\alpha}$ and $\hat{\beta}$ as well as $\hat{\alpha}$ vs. $\hat{\beta}$
Exercise #1

- Shown are 500 Monte Carlo pseudo-experiments
- The estimates average to approximately the true values, the variances are close to initial estimates from slide 8 and the estimator distributions are approximately Gaussian

\[
\bar{\alpha} = 0.5005 \\
\hat{\alpha}_{RMS} = 0.0557 \\
\bar{\beta} = 0.5044 \\
\hat{\beta}_{RMS} = 0.1197
\]
• After finding the best-fit values via \(\ln(\text{likelihood}) \) maximization/minimization from data, one of THE best and most robust calculations for the parameter uncertainties is to run numerous pseudo-experiments using the best-fit values for the Monte Carlo ‘true’ values and find out the spread in pseudo-experiment best-fit values

• MLEs don’t have to be gaussian. Thus, the uncertainty is accurate even if the Central Limit Theorem is invalid for your data/parameters

• Routine of ‘Monte Carlo plus fitting’ will take care of many parameter correlations

• The problem is that it can be slow and gets exponentially slower with each dimension
Brute Force

- If we either did not know, or did not trust, that our estimator(s) are nicely analytic PDFs (gaussian, binomial, poisson, etc.) we can use our pseudo-experiments to establish the uncertainty on our best-fit values
 - Using original PDF, sample from original PDF with injected values of $\hat{\alpha}_{\text{obs}}$ and $\hat{\beta}_{\text{obs}}$ that were found from our original ‘fit’
 - Fit each pseudo-experiment
 - Repeat
 - Integrate ensuing estimator PDF

To get ±1σ central interval

$$\frac{100\% - 68.27\%}{2} = \int_{C_+}^{\infty} g(\hat{\alpha}; \hat{\alpha}_{\text{obs}}) d\hat{\alpha}$$

$$\frac{100\% - 68.2\%}{2} = \int_{-\infty}^{C_-} g(\hat{\alpha}; \alpha_{\text{obs}}) d\hat{\alpha}$$
Brute Force cont.

- The previous method is known as a parametric bootstrap
 - Overkill for the previous example
 - Useful for estimators which are complicated
- Finding the uncertainty using the integration of the tails works for bayesian posteriors in same way as for likelihoods
Exercise 1b

- Continuing from Exercise 1 and using the same procedure for the 100 or 500 values from the pseudo-experiments, i.e. parametric bootstrapping
 - Find the central 1σ confidence interval(s) for $\hat{\alpha}$ as well as $\hat{\beta}$ using bootstrapping

- Repeat, but now:
 - **Fix** $\alpha=0.5$, and only fit for β, i.e. α is now a constant
 - What is the new 1σ central confidence interval for $\hat{\beta}$?

- Repeat with a new angular distributions range of the $-0.9 \leq x \leq 0.85$
 - Again, **fix** $\alpha=0.5$
 - 2000 Monte Carlo ‘data’ points
Good?

- The LLH minimization will give the best-fit values and often the uncertainty on the estimators. But, likelihood fits do not tell whether the data and the prediction agree.
 - Remember that the likelihood has a form (PDF) that is provided by you and may not be correct.
 - The PDF may be okay, but there may be some measurement systematic uncertainty that is unknown or at least unaccounted for which creates disagreement between the data and the best-fit prediction.
 - Likelihood ratios between two hypotheses are a good way to exclude models, and we’ll cover hypothesis testing on Thursday.
Multi-parameter

- Getting back to LLH confidence intervals
- In one dimension fairly straightforward
 - Confidence intervals, i.e. uncertainty, can be deduced from the LLH difference(s) to the best-fit point(s)
 - Brute force option is rarely a bad choice, and parametric bootstrapping is nice
- Both strategies work in multi-dimensions too
 - Often produce 2D contours of $\hat{\theta}$ vs. $\hat{\phi}$
 - There are some common mistakes to avoid
• For 2 dimensions, i.e. 2-parameter fits, we can produce likelihood landscapes. In 3 dimensions a surface, and in 3+ dimensions a likelihood hypersurface.

• The contours are then lines of with a constant value of likelihood or \(\ln(\text{likelihood}) \).

*LLH landscape is from Lecture 3
Variance of Estimators - Graphical Method

- Two Parameter Contours

- Tangent lines to the contours give the standard deviations

\[
\ln L(\alpha, \beta) = \ln L_{max} - 1/2
\]
• When the correct, tangential, method is used then the uncertainties are not dependent on the correlation of the variables.

• The probability the ellipses of constant $\ln L = \ln L_{max} - a$ contains the true point, θ_1 and θ_2, is:

$$\hat{\theta}_1 - \Delta \hat{\theta}_1 \quad \hat{\theta}_1 \quad \hat{\theta}_1 + \Delta \hat{\theta}_1 \quad \hat{\theta}_2 - \Delta \hat{\theta}_2 \quad \hat{\theta}_2 + \Delta \hat{\theta}_2$$

$$\begin{array}{|c|c|c|}
\hline
a & a & \sigma \\
\hline
(1 \text{ dof}) & (2 \text{ dof}) & \\
0.5 & 1.15 & 1 \\
2.0 & 3.09 & 2 \\
4.5 & 5.92 & 3 \\
\hline
\end{array}$$
Best Result Plot?

KamLAND: "just smiling"
Variance/Uncertainty - Using LLH Values

• The LLH (or -2*LLH) landscape provides the necessary information to construct 2+ dimensional confidence intervals
 • Provided the respective MLEs are gaussian or well-approximated as gaussian the intervals are ‘easy’ to calculate
 • For non-gaussian MLEs — which is not uncommon — a more rigorous approach is needed, e.g. parametric bootstrapping

• Some minimization programs will return the uncertainty on the parameter(s) after finding the best-fit values
 • The .migrad() call in iminuit
 • It is possible to write your own code to do this as well
Exercise #2

• Using the same function and $\alpha=0.5$ and $\beta=0.5$ as Exercise #1, find the MLE values for a single Monte Carlo sample w/ 2000 points

• Plot the contours related to the 1σ, 2σ, and 3σ confidence regions
 • Remember that this function has 2 fit parameters
 • Because of different random number generators, your result is likely to vary from mine

• Calculate a goodness-of-fit
 • For a quick calculation a reduced chi-square might be enough, but it is better to quote the goodness-of-fit, i.e. p-value assuming gaussian estimator w/ a fixed α and/or β
 • E.g. use a reduced chi-squared and convert to a goodness-of-fit value
Contours on Top of the LLH Space

-2*LLH

D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018
Just the Contours

Contours from $-2\times\text{LLH}$
Real Data

- 1D projections of the 2D contour in order to give the best-fit values and their uncertainties

\[
\sin^2 \theta_{23} = 0.53^{+0.09}_{-0.12}
\]

\[
\Delta m_{32}^2 = 2.72^{+0.19}_{-0.20} \times 10^{-3} \text{ eV}^2
\]

Remember, even though they are 1D projections the \(\Delta\text{LLH}\) conversion to \(\sigma\) must use the degrees-of-freedom from the actual fitting routine

arXiv:1410.7227
Exercise #3

• There is a file posted on the class webpage for “Class 7” which has two columns of x numbers (not x and y, only x for 2 pseudo-experiments) corresponding to x over the range \(-1 \leq x \leq 1\).

• Using the function:

\[f(x; \alpha, \beta) = 1 + \alpha x + \beta x^2 \]

• Find the best-fit for the unknown \(\alpha\) and \(\beta\).

• Calculate the goodness of fit (p-value) by histogramming the data. The choice of bin width can be important:
 • Too narrow and there are not enough events in each bin for the statistical comparison.
 • Too wide and any difference between the ‘shape’ of the data and prediction histogram will be washed out, leaving the result uninformative and possibly misleading.
Extra

• Use a 3-dimensional function for $\alpha=0.5$, $\beta=0.5$, and $\gamma=0.9$
 generate 2000 Monte Carlo data points using the function transformed into a PDF over the range $-1 \leq x \leq 1$

 $$f(x; \alpha, \beta, \gamma) = 1 + \alpha x + \beta x^2 + \gamma x^5$$

• Find the best-fit values and uncertainties on α, β, and γ

• Similar to exercise #1, show that Monte Carlo re-sampling produces similar uncertainties as the ΔLLH prescription for the 3D hyper-ellipse
 • In 3D, are 500 Monte Carlo pseudo-experiments enough?
 • Are 2000 Monte Carlo data points per pseudo-experiment enough?
 • Write a profiler to project the 2D contour onto 1D, properly
• Use Markov Chain to get the likelihood minimum and then use the LLH (or -2*LLH) values to get the uncertainties.

• Is the MCMC quicker to converge to the ‘best-fit’ than using your LLH minimizer?

• The Markov Chain estimator (maximum a posteriori - MAP) has a precision on the variance of $O(1/n)$ for n simulation points, i.e. you can’t get 99.9% interval without at least 1000 MCMC ‘steps’ after convergence. With a flat prior and using the 3-dimensional function the variance with an MCMC posterior distribution, do the best-fit values and uncertainties match what you get for the ΔLLH approach

• Use the same 2000 data points for consistency from a single pseudo-experiment
• Flat prior does not impact the $O(1/n)$ variance, but just makes it easier to compare to the results already derived using the ΔLLH formulation for uncertainty