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Statistical Hypothesis Tests

• Typical problem in physics and astronomy:

You have collected data with your experiment or observatory
and want to test a theory (signal hypothesis H1)?

Ü How can you judge if the hypothesis is correct/wrong?

Ü How does the alternative hypothesis (null hypothesis H0) look like?

Ü How confident can you be that your conclusions are correct?

• In most cases there is a chance that your decision is wrong:

8 You decided that H1 is correct, but it is actually wrong? (type I error)

8 You decided that H1 is wrong, but it is actually correct? (type II error)
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Statistical Hypothesis Tests

• A statistical hypothesis test is based on a quantity called test
statistic that allows to quantify the degree of confidence that your
decision was right or wrong.

• A useful test statistic:
• is sensitive to the signal hypothesis H1 (that’s a must!)
• is efficiently calculable (e.g. fast calculation on your computer)
• has a well-known behaviour for data following the null hypothesis H0

(more on this later)

• If we apply the statistical test to the observed data we can quantify
the Type I (“false positive”) and Type II (“false negative”) errors by
comparing to the expected test statistic distribution, p0 and p1, of
data following background (H0) and signal (H1) hypothesis,
respectively.
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Test Statistic Distribution
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In a hypothesis test we have to choose a critical t-value to either
reject or accept the hypothesis.
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Test Statistic Distribution

• significance (α) :
Probability that background would have created outcome with same t
or larger (type I error):

α =

∞∫

tobs

dt p0(t) = “p-value”

• Note: It is a convention that t increases for a more “signal-like”
outcome. If not, just define a new test statistic t′ = −t.

• power of test (1− β) :
Probability that signal would have created outcome with same t or less
(type II error):

β =

tobs∫

−∞

dt p1(t)
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Statistical Hypothesis Tests
Ü A good statistical test will have good “separation” of p0 and p1 to

allow a minimize type I/II errors. Separation from background allows
to quantify significance of even excesses:
• discovery (in particle physics) :

α ' 5.7× 10−7(“5σ”)

• evidence (in particle physics) :

α ' 2.7× 10−4(“3σ”)

• Often, we want to estimate the performance of a statistical test prior
to a measurement by simulations. We can tune this by tuning the
signal strength, e.g. the IceCube experiment uses:
• discovery potential:

α ' 5.7× 10−7(“5σ”) and β = 0.5
• 90% sensitivity level:

α = 0.5 and β = 0.1
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Today’s Program

• Today, we will explore various examples of hypothesis tests and test
statistics:

• Maximum likelihood ratio test
• This is the most powerful test statistic (Neyman-Pearson theorem).
• Allows to quantify background distributions p1 (Wilks theorem).
• We will study the applicability of Wilks theorem by a numerical example

(exercise 1).
• Discussion of trials factor corrections.

• Kolmogorov-Smirnov test
• We will introduce this test by the cumulative auto-correlation function of

event distributions on a sphere.
• This test allows to study hidden structure in event distributions, e.g.

deviations from an isotropic distribution.
• We will generate mock data following isotropic and simple anisotropic

distributions and study the performance of the test (exercise 2).
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Today’s Program (cont.)

• Angular power spectrum
• The power spectrum C` can be used as a test statistic that allows to study

distributions of data (large number of events, temperature flucuations
(CMB),. . . ) on a sphere.

• Brief introduction of spherical harmonics Y`m as basis functions on a
sphere (exercise 3).

• Introduction of the two-point angular correlation function and its relation
to the power spectrum.

• Introduction of the power spectrum.
• Extraction of power spectra from mock data and background (exercise 4).
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Part I
Maximum Likelihood Ratio
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Recap: Maximum Likelihood Ratio

• Consider data (Ntot “events”) distributed in Nbins bins.

• Question: Is there an excess in the data?
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Recap: Maximum Likelihood Ratio

• Likelihood for data vector x and parameter vector µ:

L(µ|x) =
Nbins

∏
i=1

µxi
i

xi!
e−µi

︸ ︷︷ ︸
Poisson distributions

• Null hypothesis (“no excess”)

µi = µbg = const

• Signal hypothesis (“excess in bin 1”)

µi =

{
µsig + µ∗bg i = 1

µ∗bg 2 ≤ i ≤ Nbins

! Important note: µ∗bg 6= µbg
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Maximum of Null Hypothesis

• for convenience : likelihood → log-likelihood (LLH)

lnL(µ|x) =
Nbins

∑
i=1

(xi ln µi − µi) + const︸ ︷︷ ︸
independent of µ

• In general, maximum of LH (or LLH) can be derived numerically.
This example is easy enough to solve analytically:

• maximum LH value determined by:

d lnL
dµbg

= 0 =
Nbins

∑
i=1

(
xi

µbg
− 1
)

• maximum µ̂bg obeys:

µ̂bg =
Ntot

Nbins
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Maximum of Signal Hypothesis

• For the signal hypothesis we have to find maximum w.r.t. signal and
background strength:

d lnL
dµ∗bg

= 0 and
d lnL
dµsig

= 0

• Signal term µsig is (by construction) only present in bin 1.

• maximum {µ̂∗bg, µ̂sig} obeys:

µ̂∗bg =
Ntot − x1

Nbins − 1

µ̂sig = x1 − µ̂∗bg =
x1Nbins −Ntot

Nbins − 1
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Maximum LH Ratio

• test statistic λ is defined as maximum likelihood ratio:

λ(x) = −2 ln
L(x|µ̂bg, 0)
L(x|µ̂∗bg, µ̂sig)

• after some algebra using the solutions of µ̂bg, µ̂∗bg, and µ̂sig :

λ(x) = 2x1 ln
(

Nbins

Ntot
x1

)
+ 2(Ntot − x1) ln

(
Nbins

Ntot

Ntot − x1

Nbins − 1

)
(1)

• Note: The first (or second) term in Eq.(1) vanishes in the special case
x1 = 0 (or Ntot − x1 = 0).

• bonus exercise: Derive µ̂bg, µ̂∗bg, µ̂sig, and Eq.(1).

Ü exercise 1 : Let’s explore the behaviour of Eq.(1).
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Exercise 1

• Generate mock data assuming Nbins = 100 bins.

• Consider two categories:
• three background cases:

choose µsig = 0 and µbg = 0.1, 10, or 1000.
• two signal cases:

choose µ∗bg = 1000 and signal in first bin (i = 1) with µsig = 100 and 200.

• For each case generate many (105) samples x = {x1, . . . , xNbins} of

mock data and calculate λ(x1, Ntot = ∑Nbins
i=1 xi) :

λ = 2x1 ln
(

Nbins

Ntot
x1

)
+ 2(Ntot − x1) ln

(
Nbins

Ntot

Ntot − x1

Nbins − 1

)

• Make histograms of the λ values to estimate the null and signal
distributions.
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Exercise 1: Background Cases
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χ1 distribution
Nbins = 100 / µsig = 0 / µ∗bg = 0.1

for python code see : maxLH produce.py & maxLH show.py
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Exercise 1: Background Cases
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χ1 distribution
Nbins = 100 / µsig = 0 / µ∗bg = 10

for python code see : maxLH produce.py & maxLH show.py
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Exercise 1: Background Cases
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simulation (105 samples)

χ1 distribution
Nbins = 100 / µsig = 0 / µ∗bg = 1000

for python code see : maxLH produce.py & maxLH show.py
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Wilks Theorem (1938)

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

(. . . )

bonus exercise: Try to find this publication online.
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Wilks Theorem

• Prerequisites:
• Let x be data that follows a probability function f (x|θ1, . . . , θn).
• The corresponding likelihood function L(θ1, . . . , θn|x) has a maximum at

θ̂1, . . . , θ̂n.

• Let the true hypothesis have θ1 = θ
(0)
1 , . . . , θm = θ

(0)
m with m < n.

• The constrained likelihood function L(θ(0)1 , . . . , θ
(0)
m , θm+1, . . . , θn|x) has a

maximum at ˆ̂θm+1,. . . , ˆ̂θn.

• Wilks theorem:
For a large number of samples x, the distribution of the test statistic

−2 ln
L(θ(0)1 , . . . , θ

(0)
m , ˆ̂θm+1, . . . , ˆ̂θn|x)

L(θ̂1, . . . , θ̂n|x)

approaches a χ2
k distribution with k = n−m in the limit of a large

number of events, Ntot.
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χ2
k Distributions

• Definition of χ2
k distributions:

χ2
k(x) =

xk/2−1e−x/2

2k/2Γ(k/2)

Ü our example:

k = 2 (µ̂∗bg, µ̂sig)− 1 (µ̂bg) = 1
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Ü χ2
k(x) is related to the integrated probability of a k-variate normal

distribution (s : units of “sigma”) :

∫

s2

dxχ2
k(x) =

∫

rTΣ−1r/2>s

dr1 . . . drk
1√

(2π)kdetΣ
exp(−rTΣ−1r/2)
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Quick Example

• For large Ntot we can apply Wilks theorem and assume that the
background distribution follows a χ2

1 distribution.

p− value =

∞∫

λobs

dxχ2
k(x) = 1− erf(

√
λobs/2)

• Assume Ntot = 105, Nbins = 100 and first bin containes:
• 1100 events : maximum likelihood value λobs ' 9.8

Wilks theorem: p ' 0.0017
• 1150 events : maximum likelihood value λobs ' 21.7

Wilks theorem: p ' 3.2× 10−6

• 1200 events : maximum likelihood value λobs ' 38.0
Wilks theorem: p ' 7.1× 10−10

Ü the 5σ discovery threshold corresponds to x1 ' 1162 events
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Exercise 1, cont.: Signal vs. Background

0 20 40 60 80 100
test statistic λ

10−1

100

101

102

103

104

105
nu

m
be

r
of

sa
m

pl
es
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χ1 distribution
Nbins = 100 / µsig = 0 / µ∗bg = 1000

Nbins = 100 / µsig = 100 / µ∗bg = 1000

Nbins = 100 / µsig = 200 / µ∗bg = 1000

for python code see : maxLH produce.py & maxLH show.py
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Sensitivity and Discovery Potential

• performance of the test
• sensitivity level:

defined as the level of µsig such that 90% of the signal distribution is
above 50% of the background distribution

• discovery potential:
defined as the level of µsig such that 50% of samples have a chance

probability of 5.7× 10−7 to be generated by background only

Ü This is a challenge for brute-force background simulation – you
need Nsamples � 107 for accuracy!

• However, Wilks theorem allows to extrapolate the background
distribution very easily:

Ü For χ1 distribution we know that the “5σ” level corresponds to:

λthreshold = 52 = 25
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Trial Correction

• What happens if we want to find an excess not just in bin 1 but in any
of the Nbins bins?

• We can simply repeat the test over all bins and identify the bin with
minimum p-value p∗.

• Problem: There are many bins (“hypothesis”) and we have to
account for the fact that there can be a chance fluctuation in the local
p-values.

• If Nbins are independent of each other (as in our example) then we can
define a post-trial p-value as

ppost = 1− (1− p∗)Ntrials

︸ ︷︷ ︸
background probability

' Ntrialsp∗

• Number of independent “trials”, Ntrials, is often difficult to estimate.
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Example: IceCube Neutrino Data

“All-sky” point-like source search:
each location tested for an excess!
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Example: IceCube Neutrino Data

• Trial factor: Ntrials ∼ Nbins ∼ O(1000)

• IceCube procedure: choose maximal plocal in sky map as a new test
statistic and compare against maximal plocal of randomly generated sky maps
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Part II
Kolmogorov Smirnov Test
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Example: Arrival Direction of Cosmic Rays

Equatorial

Auger 2014 E≥ 57 EeV (×) / TA 2014 E≥ 57 EeV (+)

Anisotropies in the arrival directions of ultra-high energy cosmic rays
(data from the observatories Telescope Array (TA) and Auger).
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Auto-Correlation

• So far, we have only looked into local excesses in individual bins.

• This method was not sensitive to the correlation between events, e.g.
in neighbouring bins or in small clusters.

• Consider Ntot events distributed on a sphere with position ni (unit
vector)

• For two events with label i and j (i 6= j) we can define an angular
distance:

cos ϕij = ni · nj

• The cumulative two-point auto-correlation function is defined as

C({ni}, ϕ) =
2

Ntot(Ntot − 1)

Ntot

∑
i=1

i−1

∑
j=1

Θ(cos ϕij − cos ϕ) (2)

with step function Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0.

Ü This expression counts the pairs of events within angular distance ϕ.
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Exercise 2: Event Distributions

• Generate mock data of events on a sphere for two categories:

• isotropic distribution:
• generate Ntot events randomly distributed on a sphere
• e.g. python module healpy allows for pixelised sky maps with equal pixel

sizes
• In general: How would you sample from an azimuth angle ϕ and zenith

angle θ to obtain a random distribution?
• Derive the two-point auto-correlation function for the distribution.
• What distribution do you expect for a large number of events?

• biased distribution:
• generate Ntot events following a non-isotropic distribution
• e.g. only sample events within a limited azimuth or zenith range, or events

following a dipole distribution
• How does the auto-correlation function compare to that of the isotropic

distribution?
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Exercise 2: Isotropic Distribution

simulation (Ntot = 10)

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (Ntot = 100)

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (Ntot = 1000)

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution
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for python code see : twopoint.py
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Exercise 2: Isotropic Distribution
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for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
cos ϕ

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

au
to

-c
or

re
la

ti
on
C(

ϕ
)

simulation (1000 events)

for python code see : twopoint.py
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Exercise 2: Large-N limit

• In the limit of a large number of events, Ntot the cumulative
distribution is just given by the relative size of the solid angle ∆Ω with
half-opening angle ϕ

lim
Ntot→∞

C({ni}, ϕ)→ Ciso(ϕ) =
∆Ω
4π

• solid angle
∆Ω = 2π(1− cos ϕ)

• isotropic distribution:

Ciso(ϕ) =
1
2
(1− cos ϕ)

! Note: an isotropic distribution of a finite number of events will
always show deviations from Ciso.
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Exercise 2: Anisotropic Distribution

simulation with dipole anisotropy (10 events)

for python code see : twopoint.py
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Exercise 2: Anisotropic Distribution
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Kolmogorov-Smirnov (KS) Test

• We want to define a quantity that is
a statistical measure for the difference
between the empirical distribution
and background distribution.

• Area between two curves?
∫

d cos ϕ|C({ni}, ϕ)− Ciso(ϕ)|

• Or, more general (Lp norm)?

[∫
d cos ϕ |C({ni}, ϕ)− Ciso(ϕ)) |p

] 1
p

• Kolmogrov-Smirnov: p→ ∞.
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Kolmogorov-Smirnov (KS) Test

• In general, given two cumulative probability distributions,
0 ≤ A(x) ≤ 1 and 0 ≤ B(x) ≤ 1, we can define the
Kolmogorov-Smirnov test as:

KS = supx|A(x)− B(x)|

• Cumulative auto-correlation function C({ni}, ϕ) follows the probability
distributions to find a pair of events within an angular distance ϕ.

• We will use this in the following to define a test statistic, that
describes deviation from an isotropic background distribution:

KS({ni}) = supϕ|C({ni}, ϕ)− Ciso(ϕ)|
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Kolmogorov-Smirnov (KS) Test

• Plan: For a fixed number of events Ntot we can simulate isotropic
event distributions (null hypothesis) and their KS values (test
statistic).

Ü Separation of KS for observed data from background distribution
allows to estimate significance of an excess.

• Similar to Wilks theorem the background distribution approaches a
predictive asymptotic behaviour for large number of events, but we
will not cover this here.

• number of event pairs increases as

Npair =
1
2

Ntot(Ntot − 1) ∝ N2
tot

8 Cumulative auto-correlation function in Eq. (2) becomes numerically
inefficient.
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Kolmogorov-Smirnov (KS) Test
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for python code see : KS produce.py & KS show.py
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Part III
Angular Power Spectrum
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Example: Temperature Flucuation in CMB

Temperature anisotropies of the cosmic microwave background
(CMB) observed by the Planck satellite.
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Example Temperature Flucuation in CMB

The angular power spectrum C` of the temperature fluctuations.
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Auto-Correlation for Large Ntot

• In the Kolmogorov-Smirnov test we observed that for large Ntot the
number of pairs increase as N2

tot and the calculation can become very
inefficient.

• In large-Ntot limit we can approximate the event distribution by a
smooth function

g(Ω) = lim
Nbins→∞

∆n(Ω)

Ntot∆Ω

• On a smooth distribution we can define the two-point
auto-correlation functio as

ξ(ϕ) =
∫

dΩ1

∫
dΩ2δ(n(Ω1)n(Ω2)− cos ϕ)g(Ω1)g(Ω2)

• Note: This is the differential version of cumulative auto-correlation
function.
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Auto-Correlation for Large Ntot

• comment 1 : cumulative two-point auto-correlation function:

C(ϕ) =

1∫

cos ϕ

d cos ϕ′ξ(ϕ′)

• comment 2 : isotropic distribution g(Ω) = 1/(4π)

ξ(ϕ)
†
=

1
2
→ Ciso(ϕ) =

1∫

cos ϕ

d cos ϕ′
1
2
=

1
2
(1− cos ϕ) (4)

† follows from:

δ(n(Ω1)n(Ω2)− cos ϕ) = 2π
∞

∑
`=0

`

∑
m=−`

P`(cos ϕ)Y∗`m(Ω1)Y`m(Ω2)
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Spherical Harmonics

• Every smooth function g(θ, φ) on a sphere can be decomposed in
terms of spherical harmonics Y`m:

g(θ, φ) =
∞

∑
`=0

`

∑
m=−`

a`mY`m(θ, φ)

• coefficients given by:

a`m =
∫

dΩY∗`m(θ, φ)g(θ, φ)

Ü for real-valued functions:

a∗`m = (−1)ma`−m
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Spherical Harmonics

• The low-` components are

• ` = 0 : monopole Y00 = 1/
√

4π
• ` = 1 : dipole

Y10 =

√
3

4π
cos θ Y1−1 =

√
3

8π
sin θe−iϕ Y11 = −

√
3

8π
sin θeiϕ

• ` = 2 : quadrupole, ` = 3 : octupole, etc.

• angular power spectrum:

C` =
1

2`+ 1

`

∑
m=−`

|a`m|2

• simple relation to ξ via Legendre polynomials P`:

ξ(ϕ) = 2π ∑
`

(2`+ 1)C`P`(cos ϕ)
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Exercise 3

• visualize spherical harmonics for various combinations of ` and m
• for example, in python use healpy:
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Exercise 3 : Example Map of Spherical Harmonic
` = 10 & m = 4

-1.05756 1.05756

for python code see : Ylm.py
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Power Spectrum
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isotropic / Ntot = 100
dipole / Ntot = 100

for python code see : C1 produce.py & C1 show.py
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Power Spectrum

• In general, we want to judge if a distribution of events shows evidence
for an excess in the power spectrum compared to background
expectations.

• Strategy: Generate background maps from data via scrambling:

a) choose two random bins i and j
b) interchange the events in the two bins
c) repeat from a) until Nscramble � Nbins

• The distribution of the power spectrum of these maps gives an
estimate of the median and variance of the background power.

• Expected median noise level:

N =
1

Ntot
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Exercise 4

• Load the two data files truemap1.fits and eventmap1.fits

(the second file is a bin-wise Poisson sample with mean given in the
first map)

• Display the maps

• Determine and compare the power spectra C`/C0 of the two maps,
e.g. with HealPix or healpy

• Generate a background map via data scrambling, as described on the
previous slide.

• Compare the power spectrum of the event map to the expected noise
level 1/Ntot.
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Exercise 4 : Template vs. Event Map

template map (Poisson mean per pixel)

2.36559 3.58579

for python code see : powerspectrum.py
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Exercise 4 : Template vs. Event Map

data map with 147473.0 events

0 13

for python code see : powerspectrum.py
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Exercise 4 : Power Spectra
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for python code see : powerspectrum.py
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Example: HAWC Anisotropies
6 HAWC Collaboration

Figure 4. Relative intensity of the cosmic-ray flux for 113 days of HAWC-95/111, in equatorial coordinates. Right ascension runs from 0◦
to 360◦ from right to left. The solid horizontal line denotes a declination of 0◦. Lines of equal right ascension and declination are separated
by 30◦. The map contains 4.9 × 1010 events. An integration time of ∆t = 24h is used to access the largest features present in the map.
The map is shown with 10◦ smoothing applied.

The relative intensity of the cosmic-ray flux for an inte-
gration time of ∆t = 24h and a smoothing scale θ = 10◦

is shown in Fig. 4. Several significant features appear
in this map. The localized excess region at right ascen-
sion 60◦ and declination −10◦, which roughly coincides
with Region A of the Milagro map and (more accurately)
with Region 1 of the ARGO-YBJ map, dominates the sky
map. In addition, the large-scale structure of the cosmic-
ray flux, with its broad deficit region at 200◦, is clearly
visible in this map. The large-scale structure potentially
distorts any smaller structures, enhancing their excess in
the region near the maximum of the large-scale structure
and suppressing them near the broad minimum. As we
are interested in structure on scales smaller than 60◦,
corresponding to multipoles ℓ > 3, we need to remove
the lower order multipoles from the sky map. We apply
two different methods to remove or suppress the ℓ ≤ 3
term.

In the first method, we directly fit the relative intensity
map to the sum of the monopole (ℓ = 0), dipole (ℓ = 1),
quadrupole (ℓ = 2), and octupole (ℓ = 3) terms of an
expansion in Laplace spherical harmonics Yℓm. The fit
function F (α, δ) therefore has the form

F (αi, δi) =

3∑

ℓ=0

ℓ∑

m=−ℓ

aℓmYℓm(π − δi, αi) , (4)

where (αi, δi) are the right ascension and declination of
the ith pixel and the aℓm are the 16 free parameters of
the fit. We then subtract the fit result from the map,
and analyze the residual map.

We perform the fit on the 525 716 pixels of the rela-
tive intensity map that lie in the field of view of HAWC.
The χ2/ndf = 527 282/525 700 corresponds to a χ2-
probability of 6.0%. The marginal probability indicates
that additional smaller structure is still present in the
data. Note that this fit gives a significantly better re-
sult than the fit with ℓmax = 2 only (DC offset + dipole
+ quadrupole), corresponding to a χ2-difference of 262
with 7 degrees of freedom. The residual map in relative

intensity (top) and significance (bottom) are shown in
Fig. 5.

The second method uses a shorter integration time,
∆t = 4 h, to filter any structure with angular extent
greater than 60◦. In Fig. 6, we show the relative intensity
(top) and significance maps (bottom) produced with this
method. A comparison between Fig. 5 and Fig. 6 shows
that the maps are largely equivalent. While regions A
and C agree well in shape and relative intensity, region
B extends into mid-latitudes for the ∆t = 4h map.

There are also regions of strong deficits visible, typ-
ically on both sides of the strong excess regions. The
appearance of these deficit regions, correlated with
the excess regions, is a well-known artifact of the
method (Abdo et al. 2008). They appear because the
background near strong excesses is overestimated due to
the fact that the excess events are part of the background
estimation.

The two methods to remove the large-scale anisotropy
are affected by different systematic uncertainties. Esti-
mating the background using ∆t = 24h and explicitly
subtracting lower order multipoles should, in principle,
minimize artifacts from the presence of strong excesses
described above. However, because of the incomplete sky
coverage, the removal of the lower order multipoles can
potentially affect higher order terms, too. This effect
is studied with the angular power spectrum analysis de-
scribed in Section 4.3 and is found to be small in HAWC
data. Filtering the low order multipoles by choosing a
short integration time ∆t also influences higher order
multipoles (in a less transparent way than the direct sub-
traction), and it depends on the choice of ∆t.

In the following analysis, we estimate the systematic
error on the relative intensity of cosmic-ray excess regions
by comparing the intensity obtained with the two meth-
ods, and, in addition, by comparing two different integra-
tion times (3 h and 4 h) which are both found to preserve
the power in the higher order multipoles of the angular
power spectrum (Section 4.3). The larger difference of
the two alternative methods is taken as the systematic
uncertainty reported in Section 4.2 for the various regions

Study of cosmic ray arrival directions with the
High Altitude Water Cherenkov (HAWC) detector.
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Example: HAWC Anisotropies
10 HAWC Collaboration

Figure 8. Angular power spectra of the unsmoothed relative intensity map (Fig. 4) before (blue) and after (red) fitting and subtraction of
the dipole, quadrupole, and octupole moments (ℓ ≤ 3). The error bars on the Cℓ are statistical. Note that the ℓ < 3 terms in the residual
spectrum are not shown because they were found to be compatible with zero within statistical uncertainties. The gray bands show the 68%
and 95% spread of the Cℓ for isotropic data sets.

from the diagonal components of the covariance matrix
(see Efstathiou (2004) for a detailed discussion). The
gray bands in Fig. 8 indicate the 68% and 95% spread
of the Cℓ around the median for a large number of rel-
ative intensity maps representing isotropic arrival direc-
tion distributions. These isotropic skymaps were gener-
ated by comparing the counts from the reference map to
a Poisson-fluctuated reference map.

The angular power spectrum of the relative intensity
map shows, as expected, a strong dipole (ℓ = 1) and
quadrupole (ℓ = 2) moment. With increasing ℓ, the
strength of the corresponding moments Cℓ decreases, but
higher order multipoles up to ℓ = 15 still contribute
significantly to the sky map. After subtraction of the
dipole, quadrupole, and octupole (ℓ = 3) moments by the
fit method described above, the dipole and quadrupole
moments are missing in the spectrum and the octupole
moment is diminished by two orders of magnitude. All
other moments are still present and, excluding ℓ = 4,
have the same strength as in the original map given sta-
tistical uncertainties. This indicates that the procedure
described above is successful in reducing the correlation
between the different ℓ modes caused by the incomplete
sky coverage. However, the fact that the octupole mo-
ment is not completely removed after the fit shows that
some correlation between modes persists.

As mentioned in Section 4.1, sky maps produced with
the direct integration method to estimate the reference
level are potentially biased because the method can mask
or reduce the strength of declination-dependent struc-
tures. Since the angular power spectrum is based on
these sky maps, it is also affected by this limitation of
the technique. The effect can lead to an underestima-
tion of the power in certain multipoles, especially those
with low ℓ, and might thus distort the shape of the power
spectrum. It also complicates comparisons between the
measured power spectrum and theoretical predictions.

However, the angular power spectrum remains a power-
ful diagnostic tool, for example in the evaluation of the
two methods used to eliminate large-scale structure de-
scribed in Section 4.1.

4.4. Study of the Region A Excess

The study of Region A in Milagro data showed that the
spectrum of the cosmic-ray flux in this region is harder
than the isotropic cosmic-ray flux, with a possible cut-
off around 10TeV. At this point, a detailed study of the
energy dependence of the flux in the excess regions with
HAWC is not possible. Energy estimators based on the
tank signal as a function of distance to the shower core
are currently being developed, but these techniques will
only reach their full potential with data from the com-
plete 300-tank detector. Here, we perform a study based
on a simple energy proxy that is based on the number
of PMTs in the event and the zenith angle of the cosmic
ray. In Fig. 9, we show the median cosmic-ray energy
as a function of these two parameters, based on simu-
lations. As expected, for a fixed number of PMTs, the
median energy rises with zenith angle, as the shower has
to traverse a larger integrated atmospheric depth.

Based on this plot, we identify 7 bins in median energy
given by (1.7+6.6

−1.3)TeV, (3.2+10.9
−2.4 )TeV, (5.6+14.2

−3.9 ) TeV,

(8.4+20.3
−5.9 )TeV, (9.8+24.8

−6.7 ) TeV, (14.1+28.7
−9.9 )TeV, and

(19.2+32.3
−13.3)TeV, respectively. We define Region A as

all pixels within a radius of 10◦ about the center at
(α, δ) = (60.0◦, −7.1◦). The relative intensity of the
cosmic-ray flux in Region A is then obtained using the
sum of all the angular bins in this region, for the 7 me-
dian energy bins. To check the technique we also use
the amplitude of a two-dimensional Gaussian fit to the
relative intensity map. Since the relative intensity of the
excess as a function of radial distance to the center is
relatively flat near the center, the methods give similar
results.

Study of cosmic ray arrival directions with the
High Altitude Water Cherenkov (HAWC) detector.
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