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Statistical Hypothesis Tests

e Typical problem in physics and astronomy:

You have collected data with your experiment or observatory
and want to test a theory (signal hypothesis H;)?

=» How can you judge if the hypothesis is correct/wrong?
=» How does the alternative hypothesis (null hypothesis Hy) look like?

=» How confident can you be that your conclusions are correct?
e In most cases there is a chance that your decision is wrong:

X You decided that Hj is correct, but it is actually wrong? (type | error)

X You decided that Hj is wrong, but it is actually correct? (type Il error)
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Statistical Hypothesis Tests

o A statistical hypothesis test is based on a quantity called test
statistic that allows to quantify the degree of confidence that your
decision was right or wrong.

e A useful test statistic:

e is sensitive to the signal hypothesis Hy (that's a must!)

e is efficiently calculable (e.g. fast calculation on your computer)

¢ has a well-known behaviour for data following the null hypothesis Hy
(more on this later)

o If we apply the statistical test to the observed data we can quantify
the Type | (“false positive”) and Type Il ( “false negative") errors by
comparing to the expected test statistic distribution, pp and p;, of
data following background (Hp) and signal (H;) hypothesis,
respectively.
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Test Statistic Distribution

0.35 T
1 — mock data following Hy
030} i — mock data following H;
! _. choice of treshold
1
1
< 0.25¢ 1
9 i
o 1
[ 1
3 0.201 i
- i
S i
5 0.15¢ i
Q0 ]
E :
[}
< 0.10f
type Il type I
0.05+ error / error
0.0075 0 5 10 15 20

test statistic ¢

In a hypothesis test we have to choose a critical {-value to either
reject or accept the hypothesis.
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Test Statistic Distribution

« significance («) :
Probability that background would have created outcome with same ¢
or larger (type | error):

o= /dtpo(t) = “p-value”
t

e Note: It is a convention that { increases for a more “signal-like”
outcome. If not, just define a new test statistic t = —t.
* power of test (1 —p) :

Probability that signal would have created outcome with same f or less
(type Il error):

tobs

p=[am@

—0o0
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Statistical Hypothesis Tests

=» A good statistical test will have good “separation” of pg and p; to
allow a minimize type /1l errors. Separation from background allows
to quantify significance of even excesses:
o discovery (in particle physics) :

x~57x1077(“50")
e evidence (in particle physics) :

w~ 2.7 x1074(“30”")

e Often, we want to estimate the performance of a statistical test prior
to a measurement by simulations. We can tune this by tuning the
signal strength, e.g. the lceCube experiment uses:
¢ discovery potential:

¥ ~57x10"7(“5¢") and p=05
e 90% sensitivity level:

x=0.5 and B =01
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Today's Program

e Today, we will explore various examples of hypothesis tests and test
statistics:

e Maximum likelihood ratio test

e This is the most powerful test statistic (Neyman-Pearson theorem).
o Allows to quantify background distributions p1 (Wilks theorem).

e We will study the applicability of Wilks theorem by a numerical example
(exercise 1).

e Discussion of trials factor corrections.
e Kolmogorov-Smirnov test
e We will introduce this test by the cumulative auto-correlation function of
event distributions on a sphere.

e This test allows to study hidden structure in event distributions, e.g.
deviations from an isotropic distribution.

o We will generate mock data following isotropic and simple anisotropic
distributions and study the performance of the test (exercise 2).
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Today's Program (cont.)

e Angular power spectrum

e The power spectrum C; can be used as a test statistic that allows to study
distributions of data (large number of events, temperature flucuations
(CMB),...) on a sphere.

e Brief introduction of spherical harmonics Yy, as basis functions on a
sphere (exercise 3).

e Introduction of the two-point angular correlation function and its relation
to the power spectrum.

e Introduction of the power spectrum.

e Extraction of power spectra from mock data and background (exercise 4).
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Part |
Maximum Likelihood Ratio
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Recap: Maximum Likelihood Ratio

o Consider data (Nt “events”) distributed in Ny;,s bins.
e Question: Is there an excess in the data?

12001

1150

11001

1050+

number of events

1000

950

0 20 40 60 80 100
bin number
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Recap: Maximum Likelihood Ratio

e Likelihood for data vector x and parameter vector u:

Nbins Vxl o
L= T Een
i=1 i

—_——
Poisson distributions

e Null hypothesis (“no excess")
Wi = Hpg = const

e Signal hypothesis ( “excess in bin 1")

Ui = Hsig T g 1= 1
B P 2 < i < Niins

I Important note: yﬁg # Hbg
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Maximum of Null Hypothesis

e for convenience : likelihood — log-likelihood (LLH)

Nbins
InL(ux) = ) (xilnp; —p;)+  const
i=1 f

independent of u

e In general, maximum of LH (or LLH) can be derived numerically.

This example is easy enough to solve analytically:

e maximum LH value determined by:

b
dinl Z < - 1)
diupg Hbg

* maximum fipg Obeys:
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Maximum of Signal Hypothesis

e For the signal hypothesis we have to find maximum w.r.t. signal and
background strength:
din L din L

=0 and =0
d;u{;g dptsig

e Signal term pgig is (by construction) only present in bin 1.

e maximum {fiy, flsig} obeys:

,ﬁ* . Niot — X1
be =
& Npins — 1

ﬁ — ﬁ* _ xleins - Ntot
sig — “Hbe — T N7 4
8 Nbins -1
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Maximum LH Ratio

e test statistic A is defined as maximum likelihood ratio:

L(x|fipg, 0)

&) LIty fig)

o after some algebra using the solutions of fip,g, ﬁl’;g, and flgig

A(x) = 2x;In (I\Z@mxl) +2(Niot — x1) In <

tot

Npins Ntot — X1 > (1)
Ntot Nbins -1

e Note: The first (or second) term in Eq.(1) vanishes in the special case
X1 = 0 (or Ntot — X1 = 0)

e bonus exercise: Derive flpg, fly,, flsig, and Eq.(1).
=» exercise 1 : Let's explore the behaviour of Eq.(1).
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Exercise 1

Generate mock data assuming Np;,s = 100 bins.

Consider two categories:
e three background cases:
choose psig = 0 and ppg = 0.1, 10, or 1000.
e two signal cases:
choose yf;g = 1000 and signal in first bin (i = 1) with pig = 100 and 200.

For each case generate many (10°) samples x = {x1,...,xn,, } Of
mock data and calculate A(x1, Niot = Zf\i’il“s Xi)

Nbins
A=2x11 2(Niot — 1
o < Xl) * ( ot xl) n ( Ntot Nbins -1

Nbins Niot — X1 >
Ntot

Make histograms of the A values to estimate the null and signal
distributions.
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Exercise 1: Background Cases

simulation (10° samples)

105
— X1 distribution

10 m Noins = 100 / Hsig = 0/ y{;g =0.1

103

number of samples
p—
(e}
N

10!

100

-1 | .
10 0 5 10 15 20 25

test statistic A

for python code see : maxLH produce.py & maxLH_show.py
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Exercise 1: Background Cases

simulation (10° samples)

105

— X1 distribution
- Npins = 100 / Hsig = 0/ .”ljg =10

number of samples

10 15 20 25
test statistic A

for python code see : maxLH produce.py & maxLH_show.py
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Exercise 1: Background Cases

simulation (10° samples)

105

— xi distribution
m Noins = 100 / ptsig = 0 / py = 1000

number of samples

10 15 20 25
test statistic A

for python code see : maxLH produce.py & maxLH_show.py
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Wilks Theorem (1938)

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES'

By 8. S. WiLks

(.))

Theorem: If a population with a variate z is distributed according to the probabil-
wy function f(z, 6, 6z - - - 63), such that optimum estimates 8; of the 0; exist which
are distributed in large samples according to (3), then when the hypothesis H is
truethat 0; = 6o; 2 = m + 1, m + 2, . .. h, the distribution of — 2 log \, where \
13 given by (2) is, except for terms of order 1/+/n, distributed like x* with h — m
degrees of freedom.

bonus exercise: Try to find this publication online.

Markus Ahlers (NBI, Copenhagen) Lecture 9 March 6, 2017 slide 17



Wilks Theorem

¢ Prerequisites:

Let x be data that follows a probability function f(x|61,...,0x).

The corresponding likelihood function L£(61,...,0,[x) has a maximum at
91, ey 971.

Let the true hypothesis have 6; = 9%0), R 9,(,?) with m < n.

The constrained likelihood function £(6\”,...,0,6,,41,...,64]x) has a

a~
N

maximum at 0,11,....0,.

e Wilks theorem:
For a large number of samples x, the distribution of the test statistic

o £, .. .,Ae,SP,émjl, 0%
L0,...,0.x)

approaches a X% distribution with k = n — m in the limit of a large
number of events, Niot.
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X% Distributions

e Definition of X% distributions:

k/2—1,—x/2
X2(x) = roe -
k 2k/2T (k /2)

=» our example:

k= z(ﬁf;gv ﬁsig) -1 (ﬁbg) =1

0.0 25 5.0 7.5 100 125 150 175 200
x

= x2(x) is related to the integrated probability of a k-variate normal
distribution (s : units of “sigma”) :

1
dxx?(x) = / dri...dr—— exp(—1r'2 7 1¢/2
[ dxix) e el )
s2 T 1r/2>s
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Quick Example

e For large Niot we can apply Wilks theorem and assume that the
background distribution follows a x? distribution.

p — value = / dxx?(x) = 1 — erf(\/Agps/2)

/\obs

e Assume Niot = 10°, Npins = 100 and first bin containes:

e 1100 events : maximum likelihood value Agps >~ 9.8
Wilks theorem: p ~ 0.0017

e 1150 events : maximum likelihood value Aypg ~ 21.7
Wilks theorem: p ~ 3.2 x 10~

e 1200 events : maximum likelihood value Agps >~ 38.0
Wilks theorem: p ~ 7.1 x 1010

=¥ the 50 discovery threshold corresponds to x; ~ 1162 events
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Exercise 1, cont.: Signal vs. Background

simulation (10° samples)

10°

_ X1 distribution

mn Nbins = 100 / Jisig = 0 / p, = 1000
m Noins = 100 / jisig = 100 / pif, = 1000
:mp Noins = 100 / jisig =200 / pif, = 1000

10*

10°

102

10!

number of samples

100

-1
107 20 40 60 80 100

test statistic A

for python code see : maxLH_produce.py & maxLH_show.py
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Sensitivity and Discovery Potential

e performance of the test

e sensitivity level:
defined as the level of ;g such that 90% of the signal distribution is
above 50% of the background distribution

e discovery potential:
defined as the level of jgjg such that 50% of samples have a chance

probability of 5.7 x 1077 to be generated by background only

=» This is a challenge for brute-force background simulation — you
need Nsamples = 107 for accuracy!

e However, Wilks theorem allows to extrapolate the background
distribution very easily:

=» For x1 distribution we know that the “5¢" level corresponds to:

Athreshold = 52 =25
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Trial Correction

e What happens if we want to find an excess not just in bin 1 but in any
of the Npjns bins?

e We can simply repeat the test over all bins and identify the bin with
minimum p-value p,.

e Problem: There are many bins ( “hypothesis’) and we have to
account for the fact that there can be a chance fluctuation in the local
p-values.

o If Npins are independent of each other (as in our example) then we can
define a post-trial p-value as

Ppost = 1- (1- P*)Nmals >~ NirjalsP+
—_———

background probability

e Number of independent “trials”, Nials, is often difficult to estimate.
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Example: lceCube Neutrino Data

IceCulz)e Pre].iminars:i
f300° P00

—60°

Galactic

0 2 ! ’
— l()gm(plurnl)

“All-sky” point-like source search:
each location tested for an excess!
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Example: lceCube Neutrino Data

1.0 . ! — by
: — EX])(‘l’illl(‘ll'Eilil Value
: — l’ﬁ(‘ll(l()fEXpI[‘l"llll(‘llTS
0.8 - ! ! ! Vo1 F
! — Plocal - (1 = Proca)’
1 1 1
y — [
é 0.6 - | E p[)l)&l - 0?00 |
; 1 1
):/‘ 1 1
| 1 1
C 04 ; | -
i TeeCube Pr(:liminzn]\'
1 1
i 1
0.2 1 1 = 3
n 100
4 1
1
1 1
0.0 T T L =
4 5 6 7 8 9
- hlgl[)(pluml)

o Trial factor: Niials ~ Npins ~ O(1000)

e IceCube procedure: choose maximal pjocq) in sky map as a new test
statistic and compare against maximal pjycq1 of randomly generated sky maps
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Part Il
Kolmogorov Smirnov Test
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Example: Arrival Direction of Cosmic Rays

Auger 2014

E>57EeV (x)/TA 2014 E > 57 EeV (+)

Equatorial

Anisotropies in the arrival directions of ultra-high energy cosmic rays
(data from the observatories Telescope Array (TA) and Auger).
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Auto-Correlation

->

So far, we have only looked into local excesses in individual bins.

This method was not sensitive to the correlation between events, e.g.
in neighbouring bins or in small clusters.

Consider Nyt events distributed on a sphere with position n; (unit
vector)

For two events with label i and j (i # j) we can define an angular
distance:
Ccos (Pl] =n;- I‘l]'

The cumulative two-point auto-correlation function is defined as

Niot i—1

C({ni}, 9) = W Y. le ©(cos @;j — cos @) (2)
ot tot i=1j=

with step function ®(x) =1 for x > 0 and ®(x) = 0 for x < 0.

This expression counts the pairs of events within angular distance ¢.
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Exercise 2: Event Distributions

e Generate mock data of events on a sphere for two categories:
¢ isotropic distribution:

e generate Niot events randomly distributed on a sphere

e e.g. python module healpy allows for pixelised sky maps with equal pixel
sizes

e In general: How would you sample from an azimuth angle ¢ and zenith
angle 6 to obtain a random distribution?

e Derive the two-point auto-correlation function for the distribution.

e What distribution do you expect for a large number of events?

o biased distribution:

o generate Niot events following a non-isotropic distribution

e e.g. only sample events within a limited azimuth or zenith range, or events
following a dipole distribution

e How does the auto-correlation function compare to that of the isotropic
distribution?
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Exercise 2: Isotropic Distribution

simulation (Niot = 10)

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (Nt = 100)

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (Nt = 1000)

R

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (10 events)

1.0

N o o
IS =N ®

cumulative auto-correlation C(¢)
o
)

00, 50-075-0.50—025 0.00 025 050 0.75 1.00
cos ¢

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (100 events)

1.0

N o o
IS =N ®

cumulative auto-correlation C(¢)
o
)

00, 50-075-0.50—025 0.00 025 050 0.75 1.00
cos ¢

for python code see : twopoint.py
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Exercise 2: Isotropic Distribution

simulation (1000 events)

1.0

N o o
IS =N ®

cumulative auto-correlation C(¢)
o
)

00, 50-075-0.50—025 0.00 025 050 0.75 1.00
cos ¢

for python code see : twopoint.py
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Exercise 2: Large-N limit

e In the limit of a large number of events, Ny the cumulative
distribution is just given by the relative size of the solid angle AQ) with
half-opening angle ¢

lim C({I‘li}, qo) — Ciso(§0> Ao

Ntot—)OO 47T

e solid angle
AQ = 27(1 — cos @)

e isotropic distribution:

1
Ciso(qo) = 5(1 — COs gO)

I Note: an isotropic distribution of a finite number of events will
always show deviations from Cjgo.
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Exercise 2: Anisotropic Distribution

simulation with dipole anisotropy (10 events)

for python code see : twopoint.py
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Exercise 2: Anisotropic Distribution

1.0

simulation (10 events)

o
®

o
=N

cumulative auto-correlation C(¢)
o
)

<
'S

— dipole
— isotropic

04

00—0.75-0.50—0.25 0.00 025 050 0.75 1.00

cos ¢

for python code see : twopoint.py
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Kolmogorov-Smirnov (KS) Test

e We want to define a quantity that is
a statistical measure for the difference
between the empirical distribution

and background distribution.

Area between two curves?

/dCOS Q‘C({ni}/ (P) - Ciso((P)|

Or, more general (L¥ norm)?

[/dcosq) IC({n;}, ¢) — Ciso(@)) |P

Markus Ahlers (NBI, Copenhagen)

Kolmogrov-Smirnov: p — cc.

Lecture 9

1

1.0

0.8

Clg)

0.6

0.4

cumulative auto-correlation

simulation (10 events)

\ — dipole
isotropic
— K§ =021

04

.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
cos ¢
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Kolmogorov-Smirnov (KS) Test

e In general, given two cumulative probability distributions,
0 <A(x) <1and 0 <B(x) <1, we can define the
Kolmogorov-Smirnov test as:

KS = sup,|A(x) - B(»)|
o Cumulative auto-correlation function C({n;}, ¢) follows the probability
distributions to find a pair of events within an angular distance ¢.

e We will use this in the following to define a test statistic, that
describes deviation from an isotropic background distribution:

KS({n;}) = sup,|C({ni}, ¢) — Ciso(9)]|
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Kolmogorov-Smirnov (KS) Test

e Plan: For a fixed number of events Ni,: we can simulate isotropic
event distributions (null hypothesis) and their KS values (test
statistic).

=¥» Separation of KS for observed data from background distribution
allows to estimate significance of an excess.

e Similar to Wilks theorem the background distribution approaches a
predictive asymptotic behaviour for large number of events, but we
will not cover this here.

e number of event pairs increases as

1
Npair = ENtO’t(Ntot - 1) & Nt20t

X Cumulative auto-correlation function in Eq. (2) becomes numerically
inefficient.
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Kolmogorov-Smirnov (KS) Test

simulation (10* samples)

10*
w isotropic / Niot = 100
[} dipole / Ntot =100

103_

102_

101_

number of samples

100.

-1
100.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

KS

for python code see : KS_produce.py & KS_show.py
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Part Il
Angular Power Spectrum
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Example: Temperature Flucuation in CMB

Temperature anisotropies of the cosmic microwave background
(CMB) observed by the Planck satellite.
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Example Temperature Flucuation in CMB

Multipole moment, ¢
2 10 50 500 1000 1500 2000 2500

6000

5000

4000

3000 f

2000

1000 |

Temperature fluctuations [ p K2]

o0° 18 1° 02° 0r° 0.07°
Angular scale

The angular power spectrum C, of the temperature fluctuations.
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Auto-Correlation for Large Niot

e In the Kolmogorov-Smirnov test we observed that for large Nyt the
number of pairs increase as N2, and the calculation can become very
inefficient.

e In large-Niot limit we can approximate the event distribution by a

smooth function
An(Q))

O)= Iim —=%
g( ) bins —7 NtOtAQ
e On a smooth distribution we can define the two-point
auto-correlation functio as

2(p) = [d0 [d020(n(Q1)n(0) — cos p)g(C)g ()

e Note: This is the differential version of cumulative auto-correlation
function.
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Auto-Correlation for Large Niot
e comment 1 : cumulative two-point auto-correlation function:

1
Clg) = [ deosg'e(y))

cos @

o comment 2 : isotropic distribution g(Q) = 1/(4m)

1
1 1 1
9) L5 = Cuolp)= [ deosg/s =S(1-cosg) (V)
cos ¢
1 follows from:
o0 l

d(n(O)n(Qp) —cos ¢) =27 2 Z Py(cos ¢)Y7,, (1) Y (o)

(=0m=—{

Markus Ahlers (NBI, Copenhagen) Lecture 9 March 6, 2017 slide 41



Spherical Harmonics

 Every smooth function g(6,¢) on a sphere can be decomposed in
terms of spherical harmonics Yy,

o]

g(0,9) = Z E aomY em(0, )

(=0m=—1

o coefficients given by:

o = [ 4O, (6,9)3(6,¢)

=>» for real-valued functions:

gy = (=1)"a0
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Spherical Harmonics

e The low-f components are

e { =0 : monopole Yoo =1/v4r
e /=1 ": dipole

— _— — _— @ — . 1p
Yi0 = A/ cosf Yi_1 =1/ 3 sin fe Y11 = —4/ 3 sin fe

e { =2 : quadrupole, { = 3 : octupole, etc.

e angular power spectrum:

1 ¢
Cp=—— 2
(=5 m:E_,£|ﬂ£m|

e simple relation to ¢ via Legendre polynomials Py:

£(p) = 2 Y (20 +1)C/Py(cos ¢)
l
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Exercise 3

e visualize spherical harmonics for various combinations of £ and m
o for example, in python use healpy:

nside = 128
npix = H.nside2npix(nside)

LMAX = 4*nside
almsize = np.int(((LMAX+2)*(LMAX+1))/2)
alm = np.zeros(almsize,dtype=np.complex)

1=10
m=4

index = H.sphtfunc.Alm.getidx(LMAX,1,m)
alm[index] = 1.0

map = H.alm2map(alm,nside, lmax=LMAX)
mapmax = max(max(map),max(-map))
maptitle = r'$\ell= " + str(l) + '$ \& $m= " + str(m) + '$’

H.mollview(map,cmap=cm.RdBu_r,max=mapmax,min=-mapmax,title=maptitle)

H.graticuleQ)
show()
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Exercise 3 : Example Map of Spherical Harmonic

-1.05756 1.05756

for python code see : Ylm.py
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Power Spectrum

simulation (10° samples)

10%¢

= isotropic / Niot = 100
m dipole / Ntot =100

number of samples

0.10 0.15 0.20 0.25 0.30
test statistic C;/Cp

for python code see : C1_produce.py & C1_show.py
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Power Spectrum

o In general, we want to judge if a distribution of events shows evidence
for an excess in the power spectrum compared to background
expectations.

o Strategy: Generate background maps from data via scrambling:

a) choose two random bins i and j
b) interchange the events in the two bins
c) repeat from a) until Ngcramble = Nbpins

e The distribution of the power spectrum of these maps gives an
estimate of the median and variance of the background power.

e Expected median noise level:

1

N =
Ntot
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Exercise 4

e Load the two data files truemapl.fits and eventmapl.fits
(the second file is a bin-wise Poisson sample with mean given in the
first map)

e Display the maps

e Determine and compare the power spectra C;/Cy of the two maps,
e.g. with HealPix or healpy

e Generate a background map via data scrambling, as described on the
previous slide.

e Compare the power spectrum of the event map to the expected noise
level 1/Ntot-
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Exercise 4 : Template vs. Event Map

template map (Poisson mean per pixel)

2.36559 3.58579

for python code see : powerspectrum.py
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Exercise 4 : Template vs. Event Map

data map with 147473.0 events

.

0 13

for python code see : powerspectrum.py
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Exercise 4 : Power Spectra
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for python code see : powerspectrum.py
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Example: HAWC Anisotropies

| T
-16 -12 -8 -4 0 4 8 12 16

relative intensity [x 107*]

Study of cosmic ray arrival directions with the
High Altitude Water Cherenkov (HAWC) detector.
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Example: HAWC Anisotropies

106 180° 45° 20° 10° 5°

¢ Power Spectrum

¥ Power Spectrum, ¢ <3 subtracted
107}

108} f
109} ’
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1011
0 5 10 15 20 25 30 35 40

multipole ¢

Study of cosmic ray arrival directions with the
High Altitude Water Cherenkov (HAWC) detector.
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