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• Submission is both: 
• A nicely written and composed PDF file devoid of code 

• You can create a latex/Word/OpenOffice/etc. template right now and save yourself 
time 

• The code you used to generate your results 

• If you have problems email me. Worst scenario is you get a 
reply “I cannot help you with XXXXXX”. 

• Especially for Ph.D. students,  if you don’t get an exam link 
via email, I will post the exam on the course webpage 
within a few minutes of start time CET and you can email 
your exam submission(s): code and PDF write-up.

Exam Notes
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• I will not be reviewing everything in the course today 
• Some text-heavy slides are included online, but won’t be covered in 

class. 

• An omitted topic in today’s review may appear on the 
exam

Announcements
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• The likelihood is the product of the individual probability (or 
probabilities for multiple parameters) of parameters (θ) which 
produce the observed outcomes (𝓍i) 

• The likelihood (𝓛 or L) given the observed data (𝓍i) for the 
parameters (θ) is equal to the probability (𝓟) given the 
parameters (θ) of getting the observed data (𝓍i)

Likelihoods
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L(✓|x) = P (x|✓)

L(✓) =
NY

i=0

f(xi; ✓)

f() is commonly the  
probability distribution function
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• A very powerful and general method of parameter estimation when the 
functional form of the parent distribution is known. 

• For large samples the estimators are normally (gaussian) distributed and 
hence the variances of the estimates are simple to determine. 

• Even for small samples the estimators possess most of the expected “good” 
properties. 

• Define: The estimate,    , is the value that maximizes the likelihood function.   

• Since the likelihood function and the natural logarithm (ln) of the function 
have the same point for their maximum, we typically use the ln(L) since sums 
are easier to handle than products:

Maximum Likelihood Method

X

�̂

lnL =
nX

i=1

ln(f(xi;�))
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• An computation tool that finds the minima/maxima, 
depending on how it is setup, within a likelihood space 

• Minimizers are named as such for a reason. If you want to 
find the maximum likelihood, you often use a minimizer 
and minimize over in terms of the negative ln(likelihood),   
-LLH, or -2*LLH 

• Minimizers are often accurate, but can be sensitive to 
tuning parameters and local minima/maxima 

• A good first step is to run a coarse scan over the -LLH 
space to search out good regions to start the minimizer

Likelihood Minimizers

X
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• This is a semi-coarse sampling of the LLH space. Establish 
which region(s) of the scanned  parameter values have the 
best LLH and start your fit there, or at multiple points near 
the best LLH.

Raster Scan

5

α
0.2− 0 0.2 0.4 0.6 0.8

β

0

1

2

3

4

5

6

7

8

9

10

0

20

40

60

80

100

120

140

160

180

Start somewhere 
around here



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018

• Likelihood landscapes are important to visualize and understand… super 
important. Plot them whenever possible to understand the topology that 
your minimizer encounters 

• For values of 𝝰=0.6 and 𝝱=0.5 for the previous formula/PDF make a 2D plot 
of the likelihood or LLH landscape

Exercise 3 cont.
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• A change of 1 standard deviation (σ) in the maximum 
likelihood estimator (MLE) of the parameter θ leads to a 
decrease in the in the ln(likelihood) of 1/2 for a gaussian 
distributed estimator 

• Even for a non-gaussian MLE, the 1σ region defined as LLH-1/2 is a 
good approximation 

• Because the regions defined with ΔLLH=1/2 are consistent with 
common 𝜒2  distributions multiplied by 1/2, we often calculate the 
likelihoods as 2*LLH 

• Translates to >1 parameters too, with the appropriate 
change in 2*LLH confidence values 
• 1 parameter,  Δ(2LLH)=1 for 68.3% C.L. 
• 2 parameter,  Δ(2LLH)=2.3 for 68.3% C.L.

ln(Likelihood) and 2*LLH 
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• The LLH (or -2*LLH) landscape provides the necessary 
information to construct 2+ dimensional confidence 
intervals, provided the respective MLEs are gaussian or 
well-approximated as gaussian 

• Some minimization programs will return the uncertainty on 
the parameter(s) after finding the best-fit values 
• The .migrad() call in iminuit 

• It is possible to write your own code to do this as well

Variance/Uncertainty - Using LLH 
Values

8
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Contours on Top of the LLH Space
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• Often we want to know if our model fits the data, or vice 
versa, where we find ourselves in the realm of wanting to 
test one hypothesis against another 
• Is my event signal or background? 

• In comparison to model H1 can an alternate model H0 be excluded 
as incompatible with the data? 

Beyond Parameter Estimation
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• An very common test-statistic for the likelihood ratio is: 

• Difference between the null hypothesis in the numerator and the 
alternative hypothesis in the denominator is that the null hypothesis 
has a fixed value of one (or more) of the θ parameters whereas the 
alternative hypothesis fits/maximizes the parameter. 

• For a normal distributed, i.e. gaussian, variable the ratio 
follows the 𝜒2 distribution, 
• NDOF = difference in dimensionality between the models 

• Also requires that Wilk’s Theorem is satisfied

Maximum Likelihood Ratio
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⇤(✓, xobs) = �2 ln
L(✓0|xobs)

L(✓̂|xobs)
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• As the number of data points approaches infinity, the LLH 
ratio converges to a 𝜒2 distribution if H0 is true 

• But there are regions where the gaussian, and therefore 
Wilk’s and our use of 𝜒2, breaks down 
• Low number of events where the probability switches from gaussian 

to poisson 

• Bounds on the model parameters, e.g. as n→infinity the parameter 
does not smoothly vary, but has some truncation or discrete behavior 

• Parameters that have a near-infinite variance

Wilk’s Theorem… Kinda

12

⇤(✓, xobs) = �2 ln
L(✓0|xobs)

L(✓̂|xobs)
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• Use of the likelihood value, ln(likelihood), and ln(likelihood) 
ratio are complemented by other test-statistics 

• The most common is the Kolmogorov-Smirnov test 

• The KS-test is a quantitative metric of the statistical 
compatibility between two spectra 
• Analytic function versus data 

• data versus data 

• I guess analytic function versus analytic function too, but that’s just 
silly

More Test Statistics Methods

X
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• Pearson’s Chi-square Test 

• A goodness of fit test that could be applied to a histogram of observed 
values, x, with N bins.   For the number of entries in bin i, ni, and the number 
of expected entries for the same bin, λi, the test statistic becomes: 

• If the data are Poisson distributed, and the number of entries is not too small 
in each bin (>5), then T follows a chi-square distribution of N degrees of 
freedom.  This is true regardless of the distribution of x, implying the chi-
square test is distribution free.  

• Even though finding the maximum likelihood estimator (MLE) 
best-fits are often done using an unbinned likelihood, it is often 
useful to use histograms to get a (reduced) chi-squared value as a 
goodness-of-fit parameter

Goodness-of-fit

X

T = �2 =
NX

i=1

(ni � �i)2

�i
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• Most often we want to know about the greatest difference 
between the two distributions/samples, regardless of whether 
sign (+/-) of the deviation. This is a two-sided or two-tailed test. 

• A one-sided test is where we want to know about deviations in 
only a single direction, i.e. + or - deviations. 

One/Two Sided Test

X

x
0 1 2 3 4 5 6 7 8 9 10

C
um

ul
at

iv
e 

Fr
ac

tio
n

0

0.2

0.4

0.6

0.8

1

D+

D-



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018

Bayesian

13
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• The maximum likelihood approach is both effective and 
powerful, but does not necessarily take into account any 
preferences or prior information that may produce a more 
informed or accurate result 

• Thankfully, we have Bayes theorem and Bayesian statistics 
which make explicit use of prior information 

• Bayesian probabilities and statistics can encode an amount 
of belief in (data, model, systematics, hypothesis, 
parameters, etc.)

Transition to Bayes

14
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• We have Bayes’ theorem 

• or sometimes 

• Let B be the observed data and A be the model/theory 
parameters, then we often want the P(A|B); the posterior 
probability distribution conditional on having observed B.

Bayes’ Theorem

15

P (A|B) =
P (B|A)P (A)

P (B)

P (A|B) =
P (B|A)P (A)P
i P (B|Ai)P (Ai)

P (B|A)P (A)R
P (B|A)P (A)dA

(Continuous)(Discrete)



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018

• One can solve the respective conditional probability equations for       
P(A and B) and P(B and A), setting them equal to give Bayes’ theorem: 

• In the previous class we avoided dealing with the marginal likelihood, i.e. 
the normalizing constant, because it does not depend on the 
parameter(s) A. But it is an important value in order to get an accurate 
posterior distribution which is a useable probability. 

Bayes’ Theorem

X

P (A|B) =
P (B|A)P (A)

P (B)

posterior

prior

likelihood

marginal likelihood

posterior / prior⇥ likelihood
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Application Overview

X

*M.A. Thomson
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• We apply prior information not just for discrete 
probabilities, but for probability distributions as well 

• Remember that for Bayesian analyses we include all 
possible values of the parameter, i.e. θ 
• This means for the PDF, it will not be calculated at a single value of 
θ, but over a suitable range

Bayes for Parameter Estimation

16

P (A|B) =
P (B|A)P (A)

P (B)

posterior

prior

likelihood

marginal likelihood

posterior / prior⇥ likelihood
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• Coin flipping bias with n throws/flips, but now in Bayesian 
style where we want the prob. of coming up heads (θ)

Exercise #1 plot (from Lec. 6)
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• With 10x more statistics, an obvious feature pops up, i.e. that 
as n⇾infinity the maximum a posterior (MAP) approaches the 
maximum likelihood estimator (MLE)

Exercise #1 (cont.)
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• The previous example had only 1 parameter (θ) and 1 
prior. When dealing with more parameters, the 
computational load approx. increases exponentially with 
the number of parameters. 
• For summation, or integration via Monte Carlo sampling, the number 

of points (n) grows as           if n points are used to cover each 
parameter (d) 

• It’s possible to tune the number of scan or Monte Carlo points, but 
then the number of points necessary for calculation is the product of 
the number of points: 

Numerical Limitations

19

O(nd)

dY
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• So how does a Markov chain help with establishing Bayesian 
posterior distributions? 

• Markov chains will asymptotically approach a stable 
distribution, and we can give the Markov chain a distribution 
that is representative of the posterior. Remember that, 

• So using Markov Chain Monte Carlo, the chain can start at 
points that are not typical of the actual posterior (which we 
may not know well), but after enough Monte Carlo iterations it 
should converge to the posterior 

• Markov Chain Monte Carlo is the solution

Markov Chains for Bayes’ Stuff

20

posterior / prior⇥ likelihood
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• After maybe 5-10 iterations from the starting point the 
chains look to converge to some stationary behavior 

Exercise #2 (plots) (From Lec. 6)

21
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when estimating the 
posterior distribution. 
They’re generally just 

discarded and understood as 
the cost of using Markov 

Chain Monte Carlos.
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• For 2000 iterations plot Markov Chain Monte Carlo 
samples as a function of iteration, as well as a histogram of 
the samples, i.e. the posterior distribution.

Exercise #3 (cont.) (from Lec. 6)

22



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018

• The posterior distribution in the Bayesian framework provides not only the most 
likely value of our parameter of interest, i.e. the maximum a posterior value, 
but also the uncertainty. The width of the posterior gives the parameter 
uncertainty.  

• For the example below, if 68.3% of the posterior MCMC iterations occur from 
0.5 to 0.59, then that is the uncertainty range.

Why the Posterior?

23
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• Unlike the maximum likelihood approach, where we 
normally just have to know the -2*LLH value which can be 
converted to a probability, the Bayesian approach can be 
more resource intensive 

• In order to get a 5σ confidence limit, we need approx. 
1.7M stable posterior points/iterations

Bayesian Complication

24
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Smoothing, 
Interpolating, and 
Estimation  
- 
Splines and Kernel 
Density Estimation

25
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• Where do we want to use 
splines? 

• Computer aided drawing 
and graphics 

• Creating continuous 
functions from discrete data 

• Creating smooth functions 
from jagged or irregular 
data

Spline/Interpolation Use

26
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• Linear splines are continuous across the data points, but 
do not match the 1st or 2nd derivative at the knots 

• Quadratic splines (not shown) match the 1st derivative but 
not necessarily the 2nd 

• Cubic splines are continuous and match the 1st and 2nd 
derivative at the knots

Common Spline Types

27

*Scipy interpolate

• Hermite splines - 
Continuous cubic splines 
matching the 1st 
derivative but not 
necessarily the 2nd   
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• A problem referred to as ‘ringing’ is pronounced in 
polynomial interpolations.

Polynomial Interpolation

28
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• Basis splines (b-splines) are common too. They are 
piecewise polynomials of order k (k=3 for cubic), where the 
interpolated value and most often the derivative and 2nd 
derivative match the adjacent piece-wise polynomials at 
the knots. 

• There is a parameter ‘smoothness’ which can regulate the 
behavior of the spline 
• Large smoothness means a cubic spline is more smooth (less bumpy) 

, but also not constrained to go through the knots 

• Small smoothness means the splines are constrained to be close to 
the knots. 

• Like Hermite splines, b-splines do not frequently suffer 
from ‘ringing’ effects

b-splines and Smoothing

X
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Data Driven Density Estimation

29
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• The generic KDE expression can be expressed as:  

• A gaussian kernel is: 

• The kernel at each data point contributes a non-zero 
probability from [-∞,+∞] smoothly with decreasing weight 
as a function of distance 
• Each data point and corresponding kernel integrate to 1 over the 

whole parameter space

Kernel Density Estimator

30
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• The 1/N normalizes the KDE for the number of events, and 
an additional factor is necessary for normalizing the         
D-dimensional hyper-volume 

• Neither normalization term in this kernel choice depend on 
values of x

Comment on KDE Normalizations

31
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• The gaussian kernel 
contributes across the whole 
space (infinite support), but 
sometimes we want compact 
support, i.e. zero outside of a 
specific range 
• Maybe some parameters are 

constrained to be non-negative 

• We know the physical system has 
either boundaries or effective cut-
offs 

• A common compact support 
kernel is the Epanechnikov 
kernel

Compact Kernel

X

*https://en.wikipedia.org/wiki/Kernel_(statistics)

K(u) =

(
3
4 (1� u2) for |u|  1

0 for |u| > 1



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018

• Every KDE  is, unfortunately, strongly influenced by the 
kernel bandwidth, which is a user defined free parameter

Kernel Bandwidth

32
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Multivariate Method 
and Boosted Decision 
Tree

33
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• Using likelihoods to separate background from signal is not 
always feasible 
• Likelihood may be too complicated for analytic or Monte Carlo evaluation 
• High dimensionality makes Monte Carlo computationally expensive 

• Data sets which are linearly separable in variables, e.g. 
between signal and background, have useful tools for doing 
such a separation (Fisher Discriminant) 

• For linear and non-linear classification scenarios and/or where 
the available separators are weak, there is a class of 
multivariate tools 
• k-Nearest Neighbor 
• Random Forest 
• Artificial Neural Networks 
• Support Vector Machine (can be a linear regression classifier too) 

“Simple” Problems

34
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• Machine Learning algorithms can be overly optimized 
wherein statistical fluctuations from the training data are 
wrongly characterized as true features of the distributions 
• Deficit of training data statistics versus number of variables or 

complexity 

• Model flexibility, e.g. many free parameters

Overtraining

35
*H. Voss (MPIK)
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• Past the first one, each iterative boosted decision tree (classifier) 
is trained on the ‘same’ events. But now, the events have weights 
according to whether they were previously wrongly classified.

Boosted Decision Trees

36
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• The combined classifier is the weighted average from all 
trees for the different regions 

• Works very well “out-of-the-box”

Boosted Decision Trees

37



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018

• After training, and hopefully testing, the BDT can generate 
a score when run over new data that allows signal/
background separation 
• More negative values are background 

• Place a cut at some score to get desired purity and efficiency

Boosted Decision Tree Classifier

38
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Score” which is here the BDT 

decision score.
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• It is common to throw an absurd number of variables into a 
BDT and have it signify the variables of importance. The 
more variables used in any supervised learning algorithm, 
the more difficult it is to debug when something goes 
wrong, e.g. user error. 

• The number of nodes, variables, and depth of each tree 
can influence the classification outcome. But, because 
BDTs are generally fast to train it is often easy to tune 
settings by-hand 

• Ensure that the variables used in training match the 
distribution shapes in data. Poor variable agreement will 
bias the BDT, and if the BDT uses many variables it can be 

BDT Comments

X
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Uniform Confidence 
Intervals 
- 
Feldman-Cousins

39
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• Important method for correct coverage when reporting 
analysis results 

• It is — in my opinion — extremely useful for research when 
being correct is important 
• Hopefully ‘being correct’ is always important 

• Can be time-consuming for problems with multiple fit parameters 

• Because simple cases are the only ones easy to do quickly, 
there will not be a Feldman-Cousins question on the exam

Unified Approach to Confidence 
Interval

40
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Hypothesis rejection
• Each hypothesis will have an interval within which an 

observation will accept the hypothesis  

• For multiple possible true values  
of the parameter, the acceptance  
intervals can be determined 

• Example on the right for 68% 
central interval for a few true  
values  

X



D. Jason Koskinen - Advanced Methods in Applied Statistics - 2018 X

Acceptance belt
• Similarly can we produce acceptance belt for a 

90% lower limit 
 
 
 
 
 
 
 

Observation

90% lower 
CL limit
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Complication: 
Choosing strategy later

• Assume gaussian PDF with σ = 1, with the strategy of 
changing from 90% upper limits to 90% central limit if the 
observation is 3σ away from 0 (flip-flop) 

Change strategy
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Complication: 
Choosing strategy later

• Problem: Part of the range only has 85% coverage, 
not the 90% that we designed the method for 

Only 85%!
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Approach
• Introduce ranking principle based on the following likelihood ratio, 

or rank: 

• With the likelihood value of observing n given a true value θ, or the 
best fit value of the parameter θbest given the dataset and any 
constraints on θ 

• Completely rethink the construction of acceptance intervals for the 
acceptance belt: For a given true value θ, include values of n to the 
interval from highest rank R(θ) to lower, until the desired probability 
is reached
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• Assume a Poisson measurement with true value θ = 1 

• ‘rank’ indicates in which order the values of n are included for a 
90% interval 

Approach - Example

n P(n|θ=1) θbest P(n|θbest) R rank

0 0.368 0 1 0.368 3

1 0.368 1 0.368 1 1

2 0.184 2 0.271 0.680 2

3 0.061 3 0.224 0.274

4 0.015 4  0.195 0.079

5 0.003 5 0.175 0.017
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Auto-Correlation and 
Statistical Tests

41
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Example: Arrival Direction of Cosmic Rays

Equatorial

Auger 2014 E � 57 EeV (⇥) / TA 2014 E � 57 EeV (+)

Anisotropies in the arrival directions of ultra-high energy cosmic rays
(data from the observatories Telescope Array (TA) and Auger).

Markus Ahlers (NBI, Copenhagen) Lecture 9 March 6, 2017 slide 27
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Auto-Correlation

• So far, we have only looked into local excesses in individual bins.

• This method was not sensitive to the correlation between events, e.g.
in neighbouring bins or in small clusters.

• Consider Ntot events distributed on a sphere with position ni (unit
vector)

• For two events with label i and j (i 6= j) we can define an angular
distance:

cos jij = ni · nj

• The cumulative two-point auto-correlation function is defined as

C({ni}, j) =
2

Ntot(Ntot � 1)

Ntot

Â
i=1

i�1

Â
j=1

Q(cos jij � cos j) (2)

with step function Q(x) = 1 for x � 0 and Q(x) = 0 for x < 0.
‹ This expression counts the pairs of events within angular distance j.

Markus Ahlers (NBI, Copenhagen) Lecture 9 March 6, 2017 slide 28



44

Kolmogorov-Smirnov (KS) Test

• We want to define a quantity that is
a statistical measure for the di↵erence
between the empirical distribution
and background distribution.

• Area between two curves?
Z

d cos j|C({ni}, j) � Ciso(j)|

• Or, more general (Lp norm)?

Z
d cos j |C({ni}, j) � Ciso(j)) |

p
� 1

p

• Kolmogrov-Smirnov: p ! •.

�1.00�0.75�0.50�0.25 0.00 0.25 0.50 0.75 1.00
cos j
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C
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)

simulation (10 events)

dipole
isotropic
KS = 0.21
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Kolmogorov-Smirnov (KS) Test

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
KS

10�1

100

101

102

103

104

nu
m

be
r

of
sa

m
pl

es

simulation (104 samples)

isotropic / Ntot = 100
dipole / Ntot = 100

for python code see : KS produce.py & KS show.py
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Nested Sampling
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• Nested sampling for Bayesian inference is a more recent 
development and can handle very complicated posterior/
likelihood landscapes 

• Covered just last week, so no review here…

Pure Mystic Beauty

47

Any sufficiently advanced technology is 
indistinguishable from magic.
- Arthur C. Clarke
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• Using the following likelihood for the two cylinders plot the 
underlying likelihood and posterior distribution:  

• c1=( 2.5, 3.1) and c2=( 2.7, 2.7) and r1=2 and r2=1

Exercise Nested Nested Cylinder
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Gaussian Shell Landscape

L(~✓) = circ(~✓;~c1, r1,�1) + 1.5 circ(~✓;~c2, r2,�2)
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Fin
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• Model being tested (and parameters) should not be drawn 
from the data set to which the model is being compared 

• If the value of the KS statistic is out in the tails, be wary, 
you are dealing in low-statistics and low-likelihood regimes 
• Thankfully this suggests that the two distributions are similar 

• But, actual differences in tails of distributions are unlikely to be 
identified by the KS-test 

• Only valid for continuous distributions 

• “The distribution of the KS statistic is also not distribution-
free when the dataset has two or more dimensions” -Babu 
& Feigelson 

• Does not require binned data. Works better w/o binning

KS-Test features

X
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• With a specific model, commonly the null-hypothesis H0 or 
F0, we can test the max divergence with data through the 
EDF with the expectation from the model (or another EDF, 
which we’ll do later) 

• Math bits: The Kolmogorov-Smirnov statistic is the 
supremum of the point-wise EDF (Fn(x)) with the model 
CDF (F(x)) 

• Note that the KS-test is shape-dependent. It is mostly 
insensitive to any normalization differences

Hypothesis Testing for KS-test

X

Dn = sup
x

|Fn(x)� F (x)|
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• Compare the supremum, i.e. largest difference, for the two 
cumulative distributions  

Graphical KS-Test

X

Note that both data 
sets can be EDFs, 
there is no strict 

requirement that both 
sets cannot be actual 
data, or sampled sets 
(e.g. finite statistics 

Monte Carlo)

*wikipedia


