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In ”Optimal Design, Robustness, and Risk Aversion”[3], Newman, Girvan and Doyne
Farmer analytically derive the origin of power law behaviour in ”highly optimized toler-
ance” (HOT) systems and suggest an alternative approach that incorporates risk aversion
while preserving the desired qualities of the HOT model, fairly closely. Recent results
show that the difference between multiple measurements of the same quantity, is con-
sistent with a heavy-tailed Student-t distribution, meaning that a measurement more
often than expected is in disagreement with the estimated value.[1] Incorporating risk
aversion truncates the heavy tails, and could potentially lead to more consistent results
when comparing experiments.

In their article, Newman et al. use a model of forest fires to show why failure of
complex systems follow a power-law distribution. They argue that this is a trait of
HOT systems – that a system designed for maximizing the outcome naturally organizes
into statistically unlikely states that are robust to perturbations they were designed to
handle, but fragile to rare perturbations. They hypothesize that rather than optimizing
the yield of a system, one should optimize the utility, resulting in a model they decided
to call COLD (”constrained optimization with limited deviations”).

Like the proposers of the HOT model[2], the authors consider a HOT forest fire
model. Unlike the proposers, they use a continuum model instead of a lattice based one.
In this model a forester is charged with optimizing the system: finding the distribution of
trees that will maximize the harvest. The area of the patches of trees is s(r). However,
occasional fires, ignited by sparks that arrive by a given distribution, p(r), burn down
patches of forest. Areas of trees are separated by firebreaks, making the system more
robust. Still, any changes in the spark distribution or unforeseen events, can really lower
the yield of the forest, an example of being robust to expected perturbations, but fragile
to unforeseen ones.

The yield is Y = 1 − s(r) − F , where F is the cost in terms of yield of constructing

the firebreak around the patch m. F = agds
(d−1)/d
m , where a is the construction cost per

unit length/surface, g is a geometric factor of order 1 that depends on the shape of the
patch, d is the dimension and sm is the value of s(r) in patch m. The authors find the
total area of the firebreaks by summing over all m, inserting this into the expression for
Y :

Y =1 −
∫
p(r)s(r)ddr − agd

∫
s(r)−1/dddr (1)

By calculating the maximum yield (δY/δs(r) = 0) one derives an expression for s(r):

s(r) =

[
ag

p(r)

]d/(d+1)

(2)
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The distribution ρ(s) of fire sizes, when taking the optimal choice of patch sizes, is
given as:

ρ(s) =p(r)
ddr

ds
= −ag d+ 1

d
p(r)

ddr

dp
s−(2+1/d)

=C · p(r)
ddr

dp
· ”powerlaw”

(3)

where p(r) is given by eq. (2). The power law behaviour becomes apparent from the
term s−(2+1/d). However, to understand the behaviour of the terms containing p(r),
we need to assume a certain distribution – a normal distribution would be the obvious
choice. Consider a spark distribution, p(r), in two dimentions (d = 2) having the form
of two normalized Gaussians with different widths, σx, σy. Plugging this distribution
into eq. (3), one find the distribution of the event sizes to be ρ(s) = 3πσxσyags

−5/2.
Thus the model generates a power law with the slope of − 5

2 .
In their paper the authors argue that the optimization performed above is problem-

atic, and can lead to ruinous outcomes. Instead one could strike a reasonable compro-
mise between the optimization of the yield and the robustness, by following the proposed
COLD model. The COLD forest fire model incorporate risk aversion, described by the
utility function u(s), which is a function of the loss s:

u(s) =
(1 − s)α

α
(4)

Then by maximizing the average utility function U =
∫
p(r)u(s(r))ddr, for fixed F ,

we obtain the following expression:

dp

ds
=λ

(α+ 1/d)s− (1 + 1/d)

(1 − s)αs2+1/d
(5)

Substituting eq. (5) into eq. (3), instead of eq. (2), we find an expression for ρ(s) for
the COLD model, maximizing utility instead of yield. Simply by setting α = 1, the
HOT model is retrieved; For α < 1 we have a risk-averse utility function (COLD). The
authors then plot this function for variable values of α compared to the HOT model,
and find that incorporating the utility function truncates the power law behaviour of
the event size distribution. However, the distribution of utilities still follows a power
law.

The authors find that you pay a cost for risk aversion – the harvest of the forester
is smaller than with a HOT system. However, compared to HOT they find that the
cost in terms of average system yield is only a few percent smaller, but the reduction
of large losses is substantial. They also conclude that the suppression of the heavy tails
will make the system more robust to other, untested fluctuations.

Their result has implications for scientific measurements in general. Scientific re-
search, with people, hardware and software, are good examples of complex systems
designed to optimize outcomes: the best measurements possible. Such experiments will
be sensitive to unexpected events, resulting in a power law distribution of systematic er-
rors, and the final measurement of such experiments are more likely to be outliers than
expected. If applied to scientific research the results of Newman, Girvan and Doyne
Farmer should tell us that researchers willing to accept a small loss in experiment per-
formance could obtain more consistent results.

2



References

[1] David C. Bailey. Not Normal: the uncertainties of scientific measurements. 2016.

[2] J. M. Carlson and John Doyle. Highly optimized tolerance: Robustness and design
in complex systems. Phys. Rev. Lett., 84:2529–2532, Mar 2000.

[3] M. E. J. Newman, Michelle Girvan, and J. Doyne Farmer. Optimal design, robust-
ness, and risk aversion. Phys. Rev. Lett., 89:028301, Jun 2002.

3


