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INTRODUCTION

The article introduces a new approximation for the
distribution of the sum of random weights. The weight
distribution is unknown. It s expected that the sum of the
weights should follow a compound Poisson distribution
(CPD), which is normally approximated using a normal
distribution. The authors propose an estimation using
a scaled Poisson distribution. The approximation can
be used when estimating parameters. Additionally, they
introduce a new Poisson bootstrap method which can be
used to estimate confidence intervals.

SCALED POISSON DISTRIBUTION

The article starts out reviewing the CPD, and the ex-
pectation values for the mean (µ), variance (σ2), skew-
ness (γ1) and excess (γ2, also called kurtosis). They then
examine the special case where all the Poisson processes
of the CPD have the same probability. Having reviewed
the CPD, the authors define the scaled Poisson distribu-
tion (SPD). The mean value of the SPD (λ̃) is defined
as:
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where λ is the average of the CPD, w are the weights,
µ is the average of the weighted distribution, and s =
E(w2)/E(w) is a scale factor depending only on the mean
and variance of the weights and not on the individual
weights. They then define a scaled variable x̃ = sñ, where
ñ is taken from a Poisson distribution with an average of
λ̃. The last part ensures that E(x̃) = E(x) = µ, and
that var(x̃) = var(x) = σ2. The skewness and the ex-
cess are given by γ̃1 = 1/λ̃1/2 and γ̃2 = 1/λ̃. Afterwards,
they derive an inequality for the ratio between the CPD
and SPD (γ1/γ̃1, γ2/γ̃2) for both the skewness and the
excess, showing that both ratios are equal to or greater
than 1, with the equality holding if all weights are the
same. Again this shows that the skewness and the ex-
cess is estimated better for the SPD than for the normal
distribution, where both of these values are zero. How-
ever, both values being zero is not a desirable attribute
when estimating a CPD, as they are inherently skewed.
It should be noted the SPD approximation is only valid
for positive weights.

Comparing the CPD, SPD and Normal Distribution

To compare the skew, the excess of the SPD, and CPD,
one million events are simulated for different weight dis-
tributions. The number of weights is thereby randomly
taken from a Poisson distribution with a mean of fifty.
In table 1 the values are given. The weight distribution
from which is sampled is given in the first column. For
the first three rows a uniform distribution in the intervals
[0, 1], [1, 2], and [2, 3] are used. The next weight distri-
bution is given by an exponential function. The follow-
ing weight distribution is a truncated normal distribution
with a mean and variance equal to one. In the last two
rows the weight is either one or ten. The probability of
assigning one as a weight is indicated in the parentheses.
The second column gives the mean of the SPD calculated
by equation 1. The last four columns give mean values
of the skew and the excess of the CPD and SPD respec-
tively. It is noted that for the exponential weighted dis-
tribution the difference between the CPD and SPD values
are highest, as expected by the authors, since the SPD
approximation becomes worse if the weights differ a lot.
For each weight distribution the SPD is more similar to
the CPD than the normal distribution.

Figure 1: Comparison between skewness and excess between
SPD approximation and CPD

POISSON BOOTSTRAP

This method gives an estimate of parameter uncertain-
ties or confidence intervals. It can be used for a set of
observations xi, i = 1, 2, . . . , n, where each observation
corresponds to one event with weight xi. The observed
value is given by xobs =

∑
i xi. For the Poisson boot-

strap each value xi is taken ni times, where ni is a Pois-
son distributed number with mean equal to one. In the
method proposed in the article no results x =

∑
i xini

are thrown away. Nevertheless, by repeating this many
times the confidence intervals can be estimated from the
distribution of x.
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APPLICATIONS

The authors look into some of the applications of the
approximation by an SPD and the bootstrap method.
Both methods can be used when the weight distribution
is not known. Therefore the mean and variance of the
weights are approximated by the empirical values.

Parameter Estimation

The first application is parameter estimation. Simu-
lated weighted data and experimentally observed data in
a histogram are used to accomplish this. In each bin j,
there are mj observed events, where mj follows a Poisson
distribution. For the simulated data each bin contains
xj =

∑nj

i wij , where for each generated event a weight
is associated. The weight is dependent on the parameter
that is to be estimated. To estimate the parameter the
authors propose a Least Squares fit. For B bins the χ2

expression is given by:
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where c is a normalization constant to account for differ-
ent numbers of observed and generated events. The value
of the denominator δ2j must be estimated. This can only
be done by first estimating the mean µ, which is assumed
to be the mean of the two summations in the numerator.
For the normal approximation the mean is estimated by:

µ̂N =

(
cm

c2m
+

∑
w∑
w2

)
/

(
1

c2m

1∑
w2

)
(3)

where the bin index j is suppressed. For the SPD ap-
proximation the mean can be estimated by optimizing a
likelihood function. The result is:

µ̂SPD = cs
ñ+m

c+ s
(4)

where ñ = x/s. Then δ2 can be approximated by:

δ̂2SPD = cs (ñ+m) (5)

The results can be seen in figure 2, where λn and λm
are the expected values of events for the simulated data
and the observed data respectively. The different weight
distributions follow the same naming scheme as in figure
1. The mean, µ, should be estimated by the two meth-
ods. The following columns give the mean and the RMS
of the estimates for the SPD and the normal approxima-
tion respectively. It is noticeable that the mean for the
SPD is closer to the CPD for all simulations and that
its standard deviation is smaller compared to the normal
approximation.

Figure 2: Comparison of the two estimates µ̂SPD and µ̂N to the
nominal value µ

Approximation of Confidence Intervals

If there are n observations with weight wi, the con-
fidence intervals can be approximated by performing a
Poisson bootstrap and taking integrals of the final dis-
tribution of x. An improvement to this method is pro-
posed: The ni are not taken from a Poisson distribu-
tion with mean equal to one, but with a mean equal to
µ. The mean µ is chosen such that if one performs the
bootstrap, the fraction α of the outcomes is below the ob-
served value xobs. The value xobs ·µ gives the limit for the
1 − α interval. For a number of observations n, where n
is taken from a Poisson distribution with mean fifty, and
a uniform weight distribution between zero and one, the
authors get an observed value of xobs = 22.01. In figure 3
confidence intervals for both methods are given. The sec-
ond line gives the confidence limits for the first method,
and the last one for the improved method. It is evident
that the confidence limits for the improved method are
shifted to higher values, which is expected.

Figure 3: Confidence limits estimated by the two methods

SUMMARY

A compound Poisson distribution describes the sum of
random weights. The number of weights is hereby Pois-
son distributed. It is shown that an approximation by
a scaled Poisson distribution reproduces the higher mo-
ments better than a normal approximation. The SPD ap-
proximation also performs better than a normal approx-
imation with regards to parameter estimation. In addi-
tion, a special bootstrap method has been introduced.
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Using this one can estimate confidence intervals.


