Bayes factors

Evaluating evidence for models

Kass & Raftery 1995

KØBENHAVNS UNIVERSITET

Imagine that.....

You have data and

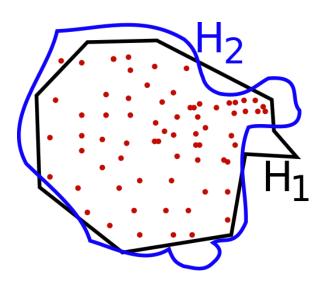
- Competing theories
- Prior opinion on theories

You want to

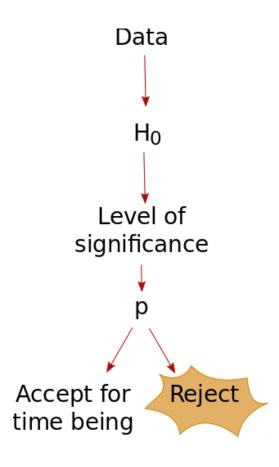
Evaluate evidence for each theory

or...

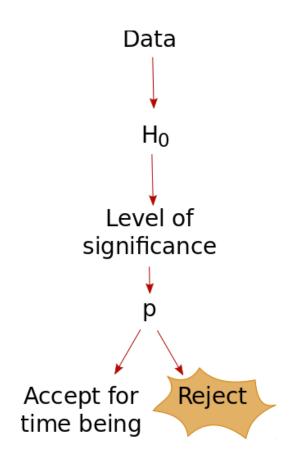
 You just want an estimate of a variable r no matter which theory is correct

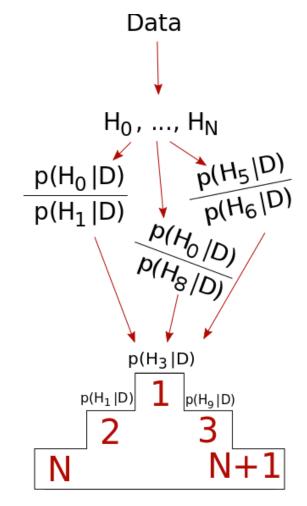


Mindset: Bayes factors



Mindset: Bayes factors





Evaluate evidence *for* hypothesis!

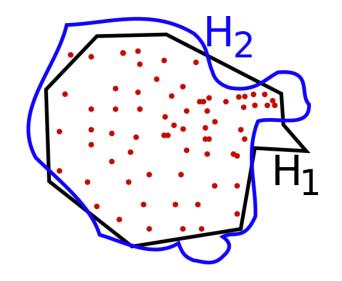
The math!

Bayes Theorem:

$$p(H_i|D) = \frac{p(D|H_i)p(H_i)}{p(D|H_1)p(H_1) + p(D|H_2)p(H_2)}$$

Taking the ratio $p(H_1|D)/p(H_2|D)$ gives

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)} = B_{12} \frac{p(H_1)}{p(H_2)}.$$



Bayes factor "transforms" prior odds to posterior odds

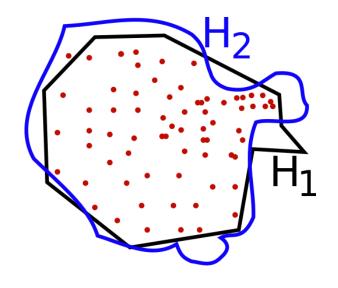
The math!

Bayes Theorem:

$$p(H_i|D) = \frac{p(D|H_i)p(H_i)}{p(D|H_1)p(H_1) + p(D|H_2)p(H_2)}$$

Taking the ratio $p(H_1|D)/p(H_2|D)$ gives

$$\frac{p(H_1|D)}{p(H_2|D)} = \frac{p(D|H_1)}{p(D|H_2)} \frac{p(H_1)}{p(H_2)} = B_{12} \frac{p(H_1)}{p(H_2)}.$$



Bayes factor "transforms" prior odds to posterior odds

B_{10}	Evidence against H_0		
1 to 3	Not worth more than a bare mention		
3 to 20	Positive		
20 to 150	Strong		
> 150	Very strong		

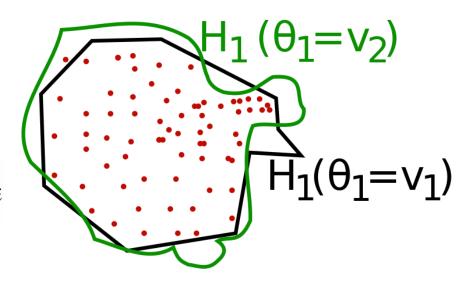
TABLE I. Interpretation of Bayes factor $B_{10} = 1/B_{01}$

Two important features...

1. If model contains parameters:

$$p(D|H_i) = \int p(D|\theta_i, H_i) p(\theta_i|H_i) d\theta_i$$

Effectively: Punishment for extra parameters



2. $p(\theta_i|H_i)$ must be chosen

No need for choosing model

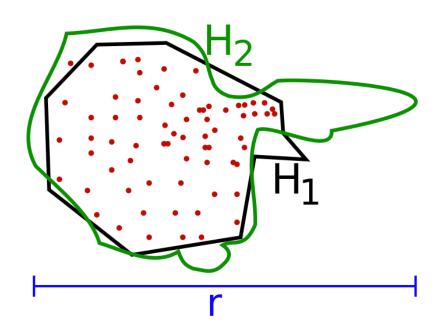
Maybe the exact theory is not important.. But you want to estimate *r*

$$p(H_i|D) = B_{i0} \frac{P(H_i)}{P(H_0)} / \sum_{m=0}^{n} B_{m0} \frac{P(H_m)}{P(H_0)}$$

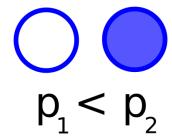
Use these as weights...

$$p(r|D) = \sum_{i=0}^{n} p(r|D, H_i)p(H_i|D)$$

This estimate of r takes model uncertainty into account!



<u>Bacteria:</u> 2 strains develop "AUD" with different probabilities



<u>Bacteria:</u> 2 strains develop "AUD" with different probabilities

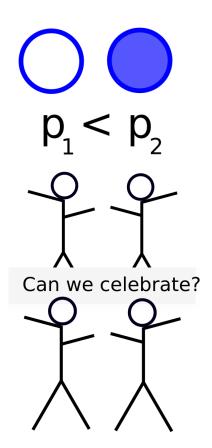
Researchers: Predict that probabilities are equal if trait A is selected for in "1"

 $p_{1} < p_{2}$ HUGE NEWS!!

<u>Bacteria:</u> 2 strains develop "AUD" with different probabilities

Researchers: Predict that probabilities are equal if trait A is selected for in "1"

Experiment: Shows probabilities roughly equal, so cannot reject hypothesis.

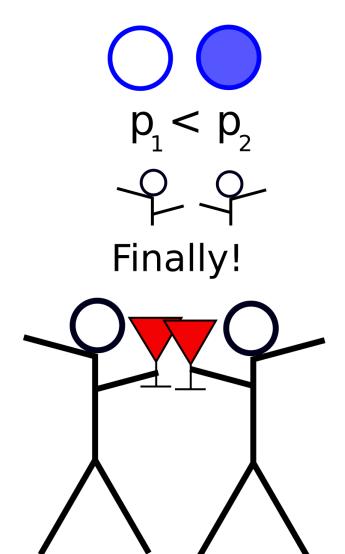


<u>Bacteria:</u> 2 strains develop "AUD" with different probabilities

Researchers: Predict that probabilities are equal if trait A is selected for in "1"

Experiment: Shows probabilities roughly equal, so cannot reject hypothesis.

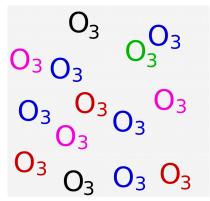
Bayes factor: $B_{10} = 0.065$ ("Positive" for H_0)



Example 2: Ozone in TX

Houston, TX: Often occurring high O_3 levels.

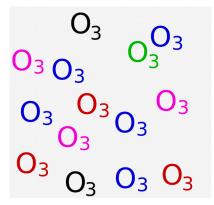
Now: Evaluate whether measures taken decreased levels.



Example 2: Ozone in TX

Houston, TX: Often occuring high O_3 levels.

Now: Evaluate whether measures taken decreased levels.



H_0	No decrease	$O(t) = O_{\text{past}}$
H_1	Gradual decrease	$O(t) = O_{\text{past}}e^{-kt}$
H_2	Abrupt decrease	$O(t) = O_{\text{past}}\Theta(t_0 - t) + O_{\text{new}}\Theta(t - t_0)$

Such functions are usually difficult to handle Not with Bayes Factors!

Example 2: Ozone in TX

Houston, TX: Often occuring high O_3 levels.

Now: Evaluate whether measures taken decreased levels.

$O_3 O_3 O_3$
$O_3 O_3 O_3 O_3$
$O_3 O_3 O_3 O_3$

H_0	No decrease	$O(t) = O_{\text{past}}$
H_1	Gradual decrease	$O(t) = O_{\text{past}}e^{-kt}$
H_2	Abrupt decrease	$O(t) = O_{\text{past}}\Theta(t_0 - t) + O_{\text{new}}\Theta(t - t_0)$

$$B_{10} = 0.02$$

 $B_{20} = 2.75$
 $B_{21} = 135$

Conclusion: If decrease, probably abrupt. This could be due to sudden advances in measurement technology, giving less extreme events. Researchers found such recent advances to have occured.

Remember...

If you...

- Want to evaluate evidence for hypotheses
- Want to compare several hypotheses, not reject
- Prefer few parameters
- Have prior opinions on parameters or hypotheses

Remember...

If you...

- Want to evaluate evidence for hypotheses
- Want to compare several hypotheses, not reject
- Prefer few parameters
- Have prior opinions on parameters or hypotheses

Bayes factors might be the BAYEST WAY TO GO!

(sorry)